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We present a formal theory and detailed calculations for phase-dependent laser-atom interactions in-
volving autoionizing states. First, through simple models, we demonstrate that the simultaneous one-
and three-photon excitation of one or twe neighboring autoionizing states can exhibit profound changes
of the line shape, as the relative phase of the two fields is varied from 0 to 7. Through a proper choice of
the field intensities and the phase, we obtain analytical results showing that one can cancel the transition
to the discrete or the continuum part of the wave function, thereby leading to a flat or a completely sym-
metric line shape, respectively. At higher intensities, additional effects come into play, providing addi-
tional coupling between the discrete and continuum parts, which also exhibits a phase dependence. Fi-
nally, our theory is applied to a much more complex situation in Xe, involving many channels, not
amenable to simple analytical expressions, but exhibiting nevertheless equally profound effects, including
a modification of the branching ratio of two different products. The theory, which is here developed for
atomic autoionization, is in fact fairly general and should pertain to related problems in any system in-
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volving discrete states embedded in continua.

PACS number(s): 42.50.Hz, 42.65.Ky, 32.80.Rm

L. INTRODUCTION

In a recent paper [1], we presented our main results on
the effect of the phase of the field on the excitation of an
autoionizing resonance. Specifically, we have developed a
theory and have performed related calculations which
demonstrate that, under the combined excitation by a
single- and a three-photon transition, mediated by two
separate fields whose relative phase is controllable, the
autoionization line shape undergoes profound changes as
the phase is varied from O to . It is the purpose of this
paper to present a complete account of the work includ-
ing a detailed exposition of the theory, as well as a more
extensive discussion of the results and their implications.

The subject matter of this work belongs to the general
area of what is referred to as the “coherent control” of
photoionization in atoms [1-8] and molecules [9-19],
which has been receiving considerable attention during
the last five years or so. The basic idea is appealing and
potentially of broad impact. If one can alter the strength
of a transition for selected channels, one can in principle
control the branching ratio of products with obvious im-
plications for chemistry [9-17]. Various methods for
achieving control of branching ratios have been pro-
posed; e.g., introducing a pulse delay between ultrafast
pulses [12-15], exploiting the polarization of the laser
fields [16], and of course manipulating the phase of laser
fields [9-11,17-19]. Achieving this through the phase of
the field [1-11,17-19] has a certain appeal of simplicity,
although the technical requirements for its experimental
implementation are far from trivial. In addition to its
possible impact on photochemistry, the idea certainly
offers a novel way of exploring atomic structure, especial-
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ly above the first ionization threshold. The possibility of
turning off channels into the continuum raises the pros-
pect of perhaps stabilizing (at least partially) an excited
state with interesting consequences on nonlinear optical
processes.

Our choice of focusing this series of studies on autoion-
izing states stems from the fact that they represent proto-
types of channel coupling which also involve continua.
Most of the discussion of phase control has centered on
transitions between bound states. It was not evident that
the scheme would work equally well in transitions into a
continuum. We have shown in separate work [4] that
phase control can indeed be extended to transitions
directly into a structureless continuum. An autoionizing
state, however, represents a more complex situation in
that it involves a continuum which acquires structure due
to intra-atomic interactions. In our work as discussed
herein, we have explored these questions beginning with
simple models that encapsulate the essential physics and
then proceed to rather complicated situations involving
several coupled channels. As discussed in detail later on,
the basic effects found in the simple models persist in the
more complex situations. Although our specific study
refers to autoionization in an atom, the context is more
general and would be equally applicable to any situation
involving discrete states embedded in continua, indepen-
dent of whether these continua represent ionization or
dissociation.

Most of our discussion is centered around situations
with relatively moderate intensities so that the atomic
structure and channels are not distorted by the field and
transition amplitudes in perturbation theory are applica-
ble. In general, intensity effects [20,21] may manifest
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themselves at higher intensities. We devote a small part
of our discussion to such effects, which may or may not
be of interest in this context. That remains to be seen.

The following is the outline of this paper. Section II is
devoted to the formulation for the atomic system we
study. We first derive the time-dependent density-matrix
equations for a single autoionizing state coupled to a
bound state by both a single- and a three-photon process,
whose relative phase of the fields is well defined. Then, a
time-independent single-rate equation is derived from the
density-matrix equations to obtain a simple physical pic-
ture. We further investigate the intensity effect men-
tioned above. As a generalization of our formalism, a set
of density-matrix equations and a single-rate equation are
obtained for two autoionizing states coupled to a bound
state by two fields as before. Results are presented in Sec.
III. As a demonstration that phase effects may be ob-
served in a much more complicated system, we present in
Sec. IV several MQDT (multichannel quantum defect
theory, [25,26]) calculations on the Xe atom. Autoioniza-
tion spectra and photoelectron angular distributions are
shown for various laser intensities and relative phase
values. A summary is given in Sec. V.

II. SYSTEM DESCRIPTION
A. Single autoionizing state

1. Density-matrix equations for a single
autoionizing state

We begin with the formulation of our system by con-
sidering one bound state [1) (usually the ground state)
and one autoionizing state (AIS) [2) with opposite parity.
The energies of these states are denoted by #iw; (j=1 or
2). We are, in particular, interested in the case where [1)
is coupled to the vicinity of [2) by the simultaneous ac-
tion of radiation at frequency @, and its third harmonic
®,=3®, [Fig. 1(a)]. The intensities of these fields are

2>

1> 1>

(@) (b)

FIG. 1. Schemes studied in this paper. The shaded area is
the atomic continuum. One bound state |1) and one (two) au-
toionizing state(s) [2) (and |3)) are coupled by two fields with
frequencies @, and @;=3®, and the relative phase ¢. (a) Single
autoionizing state. (b) Two autoionizing states. The dashed line
in (a), denoted as D'?, is the two-photon coupling between [2)
and continuum state (shaded area). As the field intensity with
frequency @, increases, the amplitude of this radiative coupling
D' increases and may become comparable to the intra-atomic
configuration interaction ¥, and autoionization spectra may be
significantly modified. This effect will be examined in Sec.
I1 A 3. For simplicity, we shall not consider the intensity effect
for (b).

denoted by I, and I;, respectively. An important in-
gredient of our problem is the relative phase ¢ of the am-
plitudes of the fields €, and €3, which we assume to be
controllable and whose effect on the photoabsorption and
its products is the central theme of this paper. Under
these assumptions, the total electric field interacting with
the atom can be written as

i(oyt+¢)

E(t)=(£,em"+e3e )+c.c., (1)

which is assumed to be linearly polarized along the z axis.
A generalization of the standard procedure [21-23]
(whose steps are shown in Appendix A) leads to the fol-
lowing set of density-matrix equations:

i : i
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where v is the effective ionization width directly into the
continuum, given by

B U o M |
Y=2 & +e

q; V F2/2 q2\/r2/2
E'1/7(3)+ei¢1/7(1)l2+y(3)

incoherent *

(3)
7 incoherent

The quantities 7'V, ¥'*, and ¥pconerens Which describe,
respectively, the direct ionization width into the continu-
um by a single photon @;, or by three photons &,, and the
three-photon ionization width into the continuum, which
is accessible only through the three-photon process (in-
coherent contribution to the ionization) due to the dipole
selection rule, have also been introduced here. Q5 and
), are three- and single-photon Rabi frequencies between
states |2) and |1), respectively, and T, is the autoioniza-
tion width of state |2). 8,=3®,—(&,—®,) (note that @,
and @, are perturbed energy levels of states |1) and |2),
respectively) gives the detuning and ¢%*, ¢, are three-
and one-photon asymmetry parameters of state |2). It
should be stressed at this point that an AIS is modelled
here as a discrete state embedded in a single continuum.
In reality, the situation is usually more complicated than
that, and one must perform sophisticated and elaborate
atomic structure calculations for real atoms, in order to
obtain the atomic parameters we have defined above.

|
3)
1 2 (3) i¢ 2,
0'11=—'y— (q2 +E)+e E—
1+62| ¢V, /2 9, V'T,/2
) Q) (Q,)7
—(e+D | —55 2
(q2 )F2/2 (q2)r2/2
Noting that
) (QP)? (Q,)?
Y=
(¢5VT2/2  (g,)°T,/2
aP'q,
+2cos¢7)———— , (7)
q7°9:1,/2
the photoionization rate P is written as
(3)
1 Q;
P=—¢, < —(q> +e)
N+l g,z

+e'? (g, +e) (8)

Q,
‘12\/F2—/-i
This is nothing but the coherent superposition of the
transition amplitudes [24] due to the two fields between
the same initial and final states. This form is to be ex-
pected, in the single-rate limit, since the density-matrix
equations are additive with respect to the two fields.

Nevertheless, we begin our discussion with this simple
model in order to understand the essence of phase effects.

2. Single-rate approximation for a single
autoionizing state

To analyze the system we have described above, the
time-dependent density-matrix equations must in princi-
ple be solved. However, we first consider the case in
weak electromagnetic fields. By weak, we mean
r,>>y M,y 0, 0P, In this limit, the photoionization
line shape can be obtained in terms of a transition rate
(Fermi’s golden rule) without any time-dependent calcu-
lations. From the set of density-matrix equations for a
single AIS [Egs. (2)-(4)], the single-ionization rate is ob-
tained by assuming weak transitions out of |1), which
implies 0 (¢)~1, 0,,(¢)~0, and 6,,(¢)=0. Then we can
solve for 0 ,;, obtaining

—i i
- & 0(3) 1——
T s, (y 4T /2 | 2 7%
+e 7%, [1— (5)
q;

Substituting this into Eq. (2) and defining €,=8,/(T",/2),
which is a dimensionless detuning in units of the autoion-
ization halfwidth, we obtain

(g, t+e)

0(23)02

+2cosp————
4(23)42F2/2

| ©

3. Intensity effect within a single-rate approximation

We proceed now one step beyond the lowest order
single-rate approximation by considering the lowest order
correction due to the intensity. It had been pointed out
some time ago [20] that in a three-photon coupling of an
AIS with a bound state, the first intensity effect to be ex-
pected is represented by a two-photon (Raman-type) cou-
pling between the discrete state and the continuum to
which it is coupled by configuration interaction [see Fig.
1(a)]. It would be expected to influence the transition
process significantly when the intensity is such that this
two-photon process (whose amplitude is proportional to
the intensity I) becomes comparable to the
configuration-interaction matrix element that determines
the autoionization width [20]. Given that the three-
photon transition amplitude to the autoionizing state is
proportional to the laser intensity I3/2, there should in
general be an intensity range for which this will be the
dominant intensity effect, before other intensity effects
such as the saturation of the three-photon transition set
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in. The net effect of this correction due to the intensity is
to modify (through the addition of intensity-dependent
terms) the Rabi frequency and the g parameters and to
introduce an effective configuration interaction V, which
involves the intensity-dependent two-photon transition
mentioned above. In this paper, all quantities with (“ =)
indicate that they are intensity dependent. From now on,
we use the notation P . to represent the principal-value
integration over all possible (both bound and continuum)
states |c ). With the explicit terms which depend on the
laser intensities I, and I; with frequencies @, and @-, re-
spectively, the intensity-dependent § parameters and
Rabi frequencies ) may be written as

(3).377
~ y’lcelV
Q(3)=ﬁ 1 (3)83+P - e
2 HizEi 2 #(33,—o,;)
=(A+a®1)I13? 9)
a3
7 =
2(“11)8:;, Cz)w -u)l'f‘}a)l
. (4+a®1,)qs
T oA+ Bgsr (10
Up) 1
.u'lcE3I7
Q=% lu,e+PyY ——
28 2 #(30,— ©,1)
=(B+a¥I IV, (11)
7= Q, _(B+a"'I))q, 12
2 =~ - >
Th (It1c53V )c:wﬁﬁbl B+qZB(3)I
5
== ;2 (13)
2
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Va=Vatud(e)?,
T,= 17ch210) =0, +35,
3) 3
633)5“12(51 p 2 #1c €)' Ve, = A,
i # (30, —w.;)
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a(S):Pz I’LICIJ‘L‘Z ,
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#i . #(30,—w,)
a3=p > ek ,
- (3D, —w,,)
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In the above equations, p;; and ,uf-j'-” indicate the single-

and effective n-photon electric dipole matrix elements be-
tween states |i) and |j). In Sec. IIT A 3, we will plot the
graphs as a function of this dimensionless but intensity
dependent €, normalized by the intensity-dependent au-
tommzatlon width T',. It may be worth stressing that {1,
g5, 92 , and @ ~(3 are intensity dependent through the
effective conﬁguratlon interaction ¥, due to the photon
@,. Introducing the parameters defined above, the photo-
ionization rate P [Eq. (8)] is rewritten as

E) P 2
1

Q (3) Q
Poc—— —(~ +2‘)+e‘¢—-(q2+?) .19
2+1 q q,

We further rewrite this expression in terms of the fol-
lowing intensity-independent parameters:

L a(S) L B(S) . a(3) _ Bll)
a = A b B_ A » a= B ’ B— B 1) (16)
in the form
1
(1+¢¥'B1) ) +1
X 0P |(1+a'T)+—5(1+¢ BT, P
a3
2
+eit, (1+a11)+qi(l+q2311)3 , an
2

which exhibits explicitly the intensity-dependent parts.
Clearly, by setting 1, —0, one immediately obtains Eq.
(8). Assuming a single continuum, £ and € are related
with &= (qzﬂz/q2()2) e—(q“’n‘;’/qg”n‘;’)ze. Alterna-
tively, €=(1+g¢,BI,)?e=(1+¢5"B'I,)%. This equation
also imposes a restriction between B and ', namely
9,8=45'B.

We are interested in the change of the photoionization
rate P as a function of the intensity I,. If I, is increased
with “fixed” I, the phase-dependent interference will of
course eventually decrease, since the three-photon transi-
tion will become dominant over the single-photon transi-
tion. Hence it should be understood that I; is also as-
sumed to be increased as I, is increased, so that
Q¥ /Q,=const. In the numerical results which will be
shown in Sec. III, intensity effects are not taken into ac-
count unless otherwise mentioned explicitly.

B. Two autoionizing states

1. Density-matrix equations for two autoionizing
states

The extension of our formalism to the case which in-
volves two AIS’s of the same parity connected to a com-
mon bound state by two laser fields [Fig. 1(b)] is straight-
forward. The set of density-matrix equations can be ex-
pressed as
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j J
O _is,+1y+T)) |op=—i |0® [1-—L |+e—q, [1-L | |o
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As in Sec. ITA 1, 0(3) and Q; (j=2,3) are three- and
single-photon Rabi frequencles between state |j) and
[1), respectively, and I'; (j=2,3) is the autoionization
width of state |j). "The detuning is defined as
8,=3®»,—(®;—®,) (note that ®, and @, are perturbed
energy levels of states |1) and |} ), respectively) and g},
q; (j=2,3) are three- and one-photon asymmetry param-
eters of the state |j). We are assuming a single continu-
um for both AIS’s |2) and |3). One should notice that
the direct ionization widths y'") and ¥ are then the
same for both |2) and |3). Noting that both y'! and
y'® should be describable in terms of parameters for |2)
and |3) equivalently, we have

r

This restriction, however, will be lifted if incoherent
channels exists.

2. Single-rate approximation for two autoionizing
states

A single-rate approximation can be made for two AIS’s
as well, by following the procedure described in Sec.
IT A 2. For a single laser field, the photoionization rate P
is written as

« (¢12€3'*"13€2'*'€2€3)2
(6,637 + (€, €5)?

(24)

() 4(Q,)? _ 4(Q,)? where g; and €; (i=2,3) are the g value and the dimen-
Y= 42T = 4T 22)  sionless detuning from the states |2) and |3) in units of
202 303 I'; and T'5, respectively. A detailed derivation of this rate
and equation is given in Appendix B. We now turn on two
4Py H Q) sources with frequencies @, and @;, whose phase
yP= 2 (23)  difference is defined as ¢. We can immediately write
(q(z3 ) )2F (qm )2F3 down the photoionization rate for two AIS’s, which reads
J
o 1 a7 (q(3)e3+q(33’62+6263)+e‘¢———(12—(q263+q362+6263) 2
(€263 + (6,1 €)% | ¢V T,/2 g, V'T,/2
(3) 2
€€
- 109 e+ L+ I3 | 1 oibq, eyt Pyt 2 (25)
(6263) +(€2+€3) q; q; q> 9>
Alternatively,
1 0(3) 9'2 2
o« (@ e;+qP e, +6265) Het—————(g,6: g6, + €565)
(6263 +(€e+€3)* | ¢V T,/2 (g2 etas et e V) 9261t q36, €66
(3) 2
1 (3) q3 €,€3 €2€3
« 22ttt | e, | eyt + 22 (26)
(6263)2+(€2+63)2 3 q(3) 3 2 q(3) 3 q; 3 2 q;
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This is the consequence of our assumption that both au-
toionizing states are coupled to the same single continu-
um state. If |e;] >>|e,|, this equation reduces to the ex-
pression for the single AIS case, as it should be. Obvious-
ly, from the above expressions, it is possible to suppress
the photoionization from one of the two AIS by choosing
the proper relative phase and laser intensities, depending
on the g values. Without any fundamental difficulty, we
could explore the equations which include intensity
effects for two AIS’s, as in Sec. II A3 for a single AIS.
We shall not consider this case here, however, since our
purpose in this paper is to demonstrate the important
features for a simple system.

III. RESULTS AND DISCUSSION
A. Single autoionizing state

1. Weak-field limit

As shown in the previous sections, the photoionization
rate P, under the presence of two laser fields which cou-
ple the initial and final states by single- and three-photon
transitions, is written as a coherent superposition of the
two photoionization rates. It follows that we can control
the ionization rate by manipulating the relative phase of
the two laser fields without changing the laser intensities.
To observe the maximum phase-dependent interference,
the intensities of the sources must be chosen so that the
two (single- and three-photon) transition amplitudes be-
come comparable. Further investigation of Eq. (8) shows
that if 95> /¢%=Q,/q, [or —(Q,/q,)] and ¢=7 (or
$=0),

1
e+1

This equation indicates that the ionization line shape be-
comes symmetric (Lorentzian) under these conditions.
This implies that the continuum part of an AIS is can-
celled. Cancellation of the discrete part of an AIS can
also be achieved under the condition of Q3*’=Q,. Then,
1 1]

e — — e

e+1 ¢ a,

Namely, the ionization line shape becomes flat with the
window at e=0. However, the fact that the position of
the window is not arbitrary suggests that the atom still
remembers where the AIS is, even after the cancellation
of the discrete part has been achieved by the phase con-
trol.

One may want to ask if it is possible to change the au-
toionization width by phase control. As one can see from
the formalism, this is not the case because the
configuration interaction is independent of the external
laser fields. It is always there. The autoionization width
may be affected only if the intensity effect, which we have
derived in Sec. IT A 3, is taken into account.

We show now in Figs. 2(a)-2(d) some representative
results for selected values of the parameters. The most
drastic change is observed when g,=—g'» [Fig. 2(a)].
The two transition amplitudes interfere 100% destruc-

95" =g, . @7

P«

2

P < (28)

|
20 -20 -10 0 10 20

ionization rate

20 20 -10 0' 10 20
detuning

20 10 0 10
detuning

FIG. 2. Change of the autoionization line shape in a weak
field as a function of the dimensionless detuning. Relative phase
¢=0 (solid line), ¢=1/3 (dotted), ¢ =27 /3 (dashed), and ¢=1m
(dot-dashed). (a) QP'/Q,=—1, ¢¥'=1, ¢=—1. ©®
QP /0,=1, ¢ =1, ¢,=1. (© QP /Q,=5, ¢¥ =5, ¢,=1. (d
Q5 /Q,=1, ¢ =5,q,=1.

tively or constructively as the relative phase changes
from ¢=0 (cancellation of the discrete part) to ¢=m
(cancellation of the continuum part). This is a special
case since the conditions for the cancellation of the
discrete part and continuum part are satisfied for
digt):rent values of phase ¢ with the same ¢, ¢*, Q, and
Q.

If g, and g5 have the same sign (not necessarily the
same magnitudes), a change of the phase from 0 to 7 does
not cause a dramatic alteration of the line shape as in Fig.
2(b), but still the ionization rate is controllable through ¢.
Given ¢, and q‘z”, which are determined only by the
atomic species and its states, one can always choose the
laser intensities so that Q% /¢'¥=Q,/q, in order to
achieve the cancellation of the continuum part of an AIS.
An example is given in Fig. 2(c) for ¢,=1 and ¢’ =5.
Partial cancellation is obtained as ¢ changes from O to 7.
At ¢=m, a complete cancellation of the continuum part
is achieved, which is indicated by the symmetric
Lorentzian line shape. If, on the other hand, the laser in-
tensities are chosen so that 0(23)=02, we achieve the can-
cellation of the discrete part, leaving only the transition
directly into the continuum, as discussed above. An ex-
ample is given in Fig. 2(d) for g,=1 and ¢5* =5. It is
worth stressing that the cancellation of the discrete or
continuum part is achievable for any g, and ¢% by
choosing the laser intensities (which is equivalent to
choosing the magnitudes of Q, and Q) so as to satisfy
the conditions we have given above.

2. Moderate and high intensity

In Sec. IIT A 1, we have examined the system in terms
of the single transition rate approximation. This is valid
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when external pumping fields are weak in the sense that
the configuration interaction V is much stronger than
both the single- and three-photon electric dipole interac-
tions, and one may treat the excitation as a weak pertur-
bation. However, when the intensities of pump fields are
increased so that Q,,Q52T,, both configuration in-
teraction and electric dipole interaction must be treated
on an equal footing. In other words, the time-
independent single rate of the electric dipole interaction
is not valid any longer. In this intensity regime, there-
fore, the time-dependent equations must be solved. One
might think that the intensity effects we have described in
II A 3 should be taken into account in this intensity re-
gion. This may or may not be true, depending on atomic
species and states considered. Although there is no
difficulty in including the intensity effects in this intensity
regime, we will not consider it here and assume that the
configuration interaction V is intensity independent. We
are interested in the modification of the ionization line
shape through the phase. But in a time-dependent calcu-
lation, for the ionization line shape to be fully developed
[21], the product of the laser-pulse duration T and the au-
toionization width I', must be sufficiently large; namely,
if I',T <<1 the spectrum is flat. Therefore, in the follow-
ing sections, we have employed the values of either
I';T=5 or 10, as indicated in each case. During the
laser-atom interaction an AIS will be populated, which
will then decay into the continuum through configuration
interaction. This autoionization decay rate is given by
I';. We assume that the laser fields will be turned on at
time ¢t =0 and last until £ =T (square pulse). At a time
t > T, the ionization yield Q(z) is given by

Q(t)=1—0(T)—opn(Te 277,

(29)

If the ion is collected a long time after the lasers are
turned off [in the sense that I")(z —T) >>1], the last term
of the above equation may be ignored. This is perhaps
most realistic, and the ionization Q in all the graphs in
this paper is defined as Q=1—o0,(T).

First, we show in Fig. 3 how the line shape varies with
the atomic parameters, which satisfy the condition for
the cancellation of the discrete part of an AIS. In the low
intensity region [Fig. 3(a)], the line shape is somehow
similar to Fig. 2(d), which is obtained from the transition
rate equation. Note, however, that in these figures, the
dips for ¢ = do not reach zero at the zero detuning, be-
cause some atoms are in the excited state just after lasers
are turned off, and they will ionize eventually. As the in-
tensity increases [Figs. 3(b) and 3(c)], this tendency is
enhanced and deeper dips are observed instead of the
peaks. As for the cancellation of the transition directly
into the continuum part of an AIS, no significant change
is observed [Fig. 4(a)], compared with Fig. 2(c), until the
Rabi frequency becomes comparable to the autoioniza-
tion rate. If the Rabi frequency is comparable to I', [Fig.
4(b)], the ionization yield for ¢ == decreases as the de-
tuning becomes large, while for the rest of the values of ¢
it increases. For some Q3> and Q,, no significant phase
effect is observed, while for the other Q5 and Q,, the
effect is maximized. This is obvious by examining Eq. (8).
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FIG. 3. Cancellation of the discrete part of an autoionizing
state at three different Rabi frequencies. ¢5' =5, ¢,=1, I',=5,
and T=2 for all graphs. Relative phase ¢=0 (solid line),
¢=m/3 (dotted), ¢=2m/3 (dashed), and ¢ =1 (dot-dashed). (a)
0¥=0.01, 0,=0.01. (b) 2¥'=1,Q,=1. (c) Q¥ =5, Q,=5.
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FIG. 4. Cancellation of the continuum part of an autoioniz-
ing state at two different Rabi frequencies. ¢% =5, ¢,=1,
I';=5, and T=2 for both graphs. Relative phase ¢=0 (solid
line), ¢=m/3 (dotted), ¢=2m/3 (dashed), and ¢== (dot-
dashed). (a) 2=0.05, 2,=0.01. (b) Q¥'=5, Q,=1.
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We should stress that the cancellation of the discrete or
continuum part of an AIS can always be realized by ad-
justing the laser intensities and the relative phase in the
moderate and high intensity regimes, as well as the weak
intensity region.

If we consider Eq. (2) and choose Q5, Q,, and ¢, so
that
i

P +e'*Q, =0,
9

i
1_._
g%

the second term in Eq. (2) involving o,; vanishes, and the
equation now reads

d
5;0'11:—”}/0'11 . (30)

This shows that [1) is completely decoupled from [2).
The ionization from |1) shows a completely flat line
shape without any windows. This can occur at any inten-
sity.

So far we have not included the incoherent ionization
channel y{3) ;.en.. We now examine the effect of the in-
coherent channel on the line shape. Since we consider
the interference between single- and three-photon ioniza-
tion, there will always be incoherent, direct three-photon
ionization channels from the ground state to the continu-
um. One of the simplest examples is an /=3 continuum
reached via the three-photon ionization from an ns?
ground state of an alkaline-earth-metal atom. This con-
tinuum does not interact with a total angular momentum
J=1 autoionizing state. Thus, the phase-dependent in-
terference for a J=1 autoionizing state occurs only
through an /=1 continuum. The direct ionization to an
=3 continuum contributes as a background. Since in-
coherent channels contribute to the ionization yield as a
background, no change of the structure of the spectrum
should be observed. Whether the phase-sensitive effects
can be detected or not in experiments depends on how
much ionization occurs through the incoherent channels
and how sensitive a detection system is. In other words,
it is a matter of signal to noise ratio. Depending on the
atomic states, in many cases the incoherent channel may
in fact be much smaller than the coherent channel.

3. Intensity effects

The results of the phase-dependent autoionization with
the inclusion of intensity effects are presented in this sub-
section. Since there are many possible combinations of
the parameters a’, ', a, and 3, we show only three exam-
ples. The parameters used for the calculations are listed
in Table I. Following the argument in Sec. II C 1, only
three of those four parameters are independent, and we

TABLE 1. Parameters for the inclusion of the intensity
effects.
Set (a) (b) (c) (d)
Parameter
a'l, 0 0.2 —04 —0.4
al, 0 0.2 0.4 —0.4
BI, 0 0.2 0.4 —0.4

chose B’ as a nonindependent parameter. Results are
shown in Figs. 5-7.

Each set of graphs (a)-(d) corresponds to the parame-
ter sets (a)—(d) in Table I. In reality, the relative magni-
tudes of a’, B', a, and B are determined by the atomic
states considered. It should be noted that the variation of
the phase-dependent line shape, given from (b)-(d), is not
observed for one atomic state. In other words, graphs
(b)-(d) in each of Figs. 5-7 should be compared with
graph (a) in each of Figs. 5-7, which does not include in-
tensity effects, and not with each other. Figure 5(a) cor-
responds to the case in which the cancellation of the
discrete part is achieved at ¢ = without intensity effects
[identical with Fig. 2(d)]. Depending on the intensity-
dependent parameters, which are determined for every
atomic state considered, the phase-dependent line shapes
are shown in Figs. 5(b)-5(d). It is seen that the ioniza-
tion line shape changes, depending on the parameters
representing the intensity effects. Another example,
which shows the cancellation of the continuum part
without intensity effects [Fig. 6(a), which is identical with
Fig. 2(c)], is shown in Fig. 6. Again, we see the distortion
of the spectrum depending on the intensity-dependent pa-
rameters [Figs. 6(b)-6(d)]. Figure 7 is another example.
For this choice of parameters, the cancellation of neither
the discrete nor the continuum part can be achieved
without intensity effects [Fig. 7(a)]. The line becomes
narrower [Figs. 7(b) and 7(c)] or broader [Fig. 7(d)] when
different intensity-dependent parameters are employed.
It should be mentioned that the autoionization width T,
changes because the configuration interaction ¥, is now
intensity dependent. Therefore, the detuning in all of
these graphs has been normalized with respect to the
intensity-dependent autoionization width T',. How much
the linewidth varies depends on the intensity-dependent
terms such as g, ), and T, etc.
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FIG. 5. Variation of the phase-dependent line shape with in-
tensity effects taken into account. Each of (a)-(d) contains
graphs at four different relative phase ¢=0 (solid line), 7/3
(dotted), 27 /3 (dashed), and 7 (dot-dashed). g5’ =5, g,=1, and
Q5/Q,=1. Intensity-dependent parameters employed in each
graph (a)—(d) are listed in Table I.
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FIG. 6. Variation of the phase-dependent line shape with in-
tensity effects taken into account. Each of (a)-(d) contains
graphs at four different relative phase $=0 (solid line), 7/3
(dotted), 27 /3 (dashed), and 7 (dot-dashed). ¢%* =5, ¢,=1, and
Q5 /Q,=5. Intensity-dependent parameters employed in each
graph (a)-(d) are listed in Table 1.

B. Two autoionizing states

1. Weak-field limit

Having investigated the variation of the ionization line
shape through the change of the relative phase between
the two laser fields in the vicinity of a single AIS |2), we
now explore the influence of another AIS |3) lying near
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FIG. 7. Variation of the phase-dependent line shape with in-
tensity effects taken into account. Each of (a)-(d) contains
graphs at four different relative phase ¢=0 (solid line), 7/3
(dotted), 277 /3 (dashed), and 7 (dot-dashed). ¢’ =5, ¢,=1, and
Q' /Q,=1. Intensity-dependent parameters employed in each
graph (a)—(d) are listed in Table 1.

|2). This is a natural question since, in reality, it often
happens. From Eq. (25), it should be clear that one can
turn on and off one of the AIS at will, by choosing Rabi
frequencies carefully. We shall not show results here,
since from the results in Secs. IIIA 1 and IITA 2, it is
clear that results in the weak-field limit are incorporated
in those of moderate or high intensity.

2. Moderate and high intensity

We now examine how the ionization spectrum near
two AIS’s changes as the intensity varies. The level sepa-
ration S of two AIS’s is defined with respect to the larger
of the two autoionization widths I', and I';. To see how
the level separation S affects the phase-sensitive spec-
trum, we have plotted results for two different S (Figs. 8
and 9), each of which contains three graphs at three
different Rabi frequencies with ¢,=g¢;=5 and ¢}’
=¢’=5. The two peaks of the two AIS are not
resolved with this S. In Figs. 8(a)-8(c), S is
0.5max{I',,I';}. The separation of the two AIS’s still
cannot be observed. In Figs. 9(a)-(9c), S is
3.0max{TI',,I";}, and the Rabi oscillation is prominent in
Fig. 9(c).
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FIG. 8. Ionization line shape in the vicinity of two autoioni-
zation states. Separation S between the two autoionization
states is 0.5 max{I',T3}. ¢ =q,=¢{ =¢;=5, I',=T;=5,
and T=1. Relative phase ¢=0 (solid line), 7/3 (dotted), 27 /3
(dashed), and 7 (dot-dashed). At ¢=, the ionization is com-
pletely suppressed in all three graphs. (a) Q¥’=Q,=Q¢
=0;=0.1. () Q¥=0,=0P=0;=1. () 9¥P=0,=0
=Q,=5.
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FIG. 9. Ionization line shape in the vicinity of two autoioni-
zation states. Separation S between the two autoionization
states is 3 max{T,,3}. ¢ =¢,=¢¥ =¢,=5,,=I;=5, and
T=1. Relative phase ¢$=0 (solid line), w/3 (dotted), 27 /3
(dashed), and 7 (dot-dashed). At ¢=r, the ionization is com-
pletely suppressed in all three graphs. (a) Q9'=Q,=Qf
=0,=0.1. ) 0P=0Q,=0%=0,=1. (© Q¥ =0,=0
= 93 =5.

IV. APPLICATION TO Xe

So far we have examined the variation of the autoioni-
zation spectrum through phase control by using simple
models. We have assumed a single continuum coupled to
a single (or two) AIS. This modelling, however, is not
adequate for the description of all real atoms quantita-
tively, since real AIS’s are to be described as a superposi-
tion of more than one discrete state embedded in general
in more than one continuum. Therefore, to simulate the
variation of the ionization spectrum of a real atom, we
need to carry out more elaborate atomic structure calcu-
lations. For this purpose, we have performed calcula-
tions for Xe using MQDT (multichannel quantum defect
theory, [25,26]). Schematic energy-level diagrams are
shown in Fig. 10. We examine the phase effects in two
final energy ranges. One is the energy region above the
first excited ionic level Xe* [*P, ,] and below the second
excited ionic level [Fig. 10(a), which we call case (a)]. A
Xe atom excited to this energy region has two possibili-
ties to ionize. One is the 2P;,, and the other is the 2P, ,,

J

If
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Xe [P, |
9, Xe'l’P, |
G)'I
® ®
3 1 ~
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B, 3,
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FIG. 10. Schematic diagram of Xe. Two laser frequencies @,
and @; have a relation 3@, =a,. (a) A Xe atom excited in this
final energy region can decay into either Xe* P;,, or P,,, ionic
states. (b) A Xe atom excited in this final energy region may ex-
hibit strong resonance structure (autoionization).

Xe" ionic state. The ratio of the number of neutral
atoms decaying to these two final ionic states is defined as
a branching ratio, which is determined by the atomic
structure.

The other is the energy region between the two ionic
states Xe* 2P, ,, and Xe™ 2P, ,, [Fig. 10(b), which we call
case (b)]. In this region, there are many AIS’s, most of
which are Rydberg states Xe [2P, ,2)nl converging to the
Xet 2P, ,2] threshold. A Xe atom excited in this energy
region will eventually ionize leaving the Xe™ [P, ,2] ion.
If the final energy happens to be in the vicinity of states
Xe* [2P,,,]nl, the ionization is enhanced (autoioniza-
tion).

Our main interest here is whether the branching ratio
of the 2P;,, and 2P, ,, ions can be controlled in case (a),
and the autoionization line shape can be strongly
modified in case (b) due to the interference through the
relative phase between the two laser fields. We assume
that the two linearly polarized lasers have the frequency
relation &;=3®, as before, and employ 5 ns square tem-
poral pulse shape. By the three-photon absorption, the
final states can be either J=1 or 3 odd-parity states,
while by the single-photon absorption, the final states can
be J=1 odd-parity states only, due to the selection rule
of the electric dipole transitions. In jj coupling notation,
J=1 odd-parity states have five channels, namely
CPixdsn, PP3pldsp, [PP3pldsp, [PPiplsiy, and
[’P5,,1s1,- J=3 odd-parity states have six channels
which are given by [2P, ,1ds 5, [*P3,,1d3,2, P32 )d5 2,
CPi,2)87/20 *P3s2,189,0, and [*P35lg7,. (PPyp) or
[2P; ;] are the designations for the ionic core 5p°, and
d; ,,, etc., are the designations of the outmost electron.)

Given the quantum defects u,’s and transformation
matrix U,;, we can expand the final-state wave function
in terms of spherical harmonics Y. (For the applica-

tion of MQDT to the multiphoton processes and the de-

tails of the notations used here, the reader is referred to
[26].) Namely,

(R,r)= ile ""S'Y,;I(I?) e~iw"(a|chJM,)(JCjJMJIJchijj)(Jcmjcjmj|lm,sms)}a> , (31)
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where §,; is the Coulomb phase shift and k =(6, @) characterizes the direction of the photoelectron with respect to the
laser polarization axis for linear polarization. The N-photon partial ionization amplitude is now written as

MM &) me,m; 1= 3 =1

Lmy,j,J,a

The differential ionization rate under the presence of
two fields with the intensity I, and I, (both in W/cm?) is
given by

4R _

q= 3 ImMOE)m,m, I VT,

ms,m.,c
+etn MR m,m; LIV, (33)

where n,=0.767 and n,=5.47X107'® are the conver-
sion factors to the appropriate units (s ~!). The total ion-
ization rate R is now obtained by integrating the calculat-
ed differential ionization rate dR /d () over the solid angle
). Obviously, the interference due to the two laser fields
occurs between the states with the same Y"": for R and

between any states with any Y”"z for dR/dQ [3]. Tt

should be clear at this point that to consider the interfer-
ence by the two laser beams at &; and @;, one must fur-
ther decompose every channel mentioned above (five
channels for J=1 and six channels for J =3) into a super-
position of the spherical harmonics. The number of pos-
sible Y’"'z exceeds 10 for J=3. It is far from obvious at

this stage whether the phase-dependent interference will
be observable or not.

First, we discuss bound-continuum transitions [case
(a)]. In this case, the ionization occurs to either *P;, or
2P, ,, ionic states, and the ratio of these two yields gives
the branching ratio, which is defined as B=(P,,, ion
yield)/(P;,, ion yield). Under the presence of a single
laser field, this branching ratio is determined from the
atomic structure and the number of the photons involved,
and does not depend on laser intensities. The frequency
dependence of the branching ratio B for each single- and
three-photon ionization from the ground state of Xe is
shown in Fig. 11. Note that the branching ratio in
three-photon ionization reveals structure due to the inter-
mediate states lying near the two-photon energy levels.
The simple explanation of the peaks near the 135000
cm™~! is that, since there are two near-resonant states
with P,/ ion core at the two-photon energy range, an
atom excited with this photon energy is likely to have
P, ,, ion character; therefore the branching ratio becomes
large in this range. The branching ratio by single-photon
ionization does not have structure, simply because there
are no near-resonant effects.

We now discuss what will happen when an atom is ex-
posed to two fields with a well-defined relative phase. Al-
though the phase effects should be observed at any ¢, we
have chosen ¢=0 and ¢ = only for demonstration, and

V2—m; =i+~ M 8,

Y ()2 + 12T +1)]72

JJ

m, —M, z, D\ . (32)

not because maximum phase effects are observed at these
¢’s. The final states consist of many partial waves with
Y,,s complex phase shifts. It is not a priori obvious at
which ¢ the maximum (or minimum) interference
through the phase will occur. In Fig. 12, the laser inten-
sities are chosen so that the ionization by single-photon
absorption is much stronger than by three-photon ioniza-
tion, and the phase effects are very small. Some deviation
from the background ionization is observed when the
three-photon ionization is enhanced by near resonance at
the two-photon absorption level. In the energy range of
Fig. 12, the three-photon process comes near resonance
with several states as the photon frequency @, is scanned.
We list below those resonant states, which lie around the
two-photon energy region 2@, together with the final en-
ergy 3@, reached by the resonant photon frequency in
each case [27].

State 3@, (cm™})
[2P5,,16p,j=2 117 180
[2P,,,16p,j =2 118818
[%P;,,16p,j =0 120 180
[2P;,,17p,j=2 132528
(2P, ,,17p,j=2 133031
[2P5,,17p,j=0 133265
(2P, ,16p",j =2 133745
[P, ,,16p",j =0 134790
[2P;, J4f,j=2 136275
(2P, 5 141, =2 136 367

10
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(¢}

1-photon

O n
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-1
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FIG. 11. Branching ratio of Xe as a function of final-state en-
ergy. Branching ratio is defined in the text. Branching ratio by
three-photon (3@,) absorption (solid line) and single-photon (@;)
absorption (dashed line) are shown. Note that each plot has
been obtained in the presence of a single laser field (either @, or
5)3).
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FIG. 12. Ionization yield and branching ratio as a function of
final-state energy in the presence of two laser fields. 5 ns square
pulse has been employed. I,=10® W/cm? and I; =10 W/cm?.
(a) Tonization yield of P,,, ion and P, ,, ion. Relative phase is
set to $=0 (solid line) or ¢ == (dashed line). (b) Branching ra-
tio at =0 (dotted line) and ¢ == (dashed line). In (b}, the ratio
of branching ratios at ¢=0 and ¢=7 has also been plotted
(solid line). The bigger deviation of this value from 1 indicates
the bigger phase effects.
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FIG. 13. Same as Fig. 12, but at I, =10° W/cm?. Pulse dura-
tion and I; are kept to the same values as those in Fig. 12.

Figure 13 shows a little more interference, with the
three-photon laser intensity increased by one order of
magnitude. The deviation from the background, howev-
er, is observed again only in the vicinity of the resonant
energy we have listed above. This indicates that the tran-
sitions through the three-photon absorption are still
weaker than the single-photon process, unless the three-
photon process is enhanced through resonance. Slight
variation of the ion yield through the phase at the non-
resonant energy region begins to be seen. But most of the
peaks in Fig. 13 are due to the resonance effect. (The
divergence at resonances has been truncated.) An excep-
tion is the peak at 135100 cm™~!. This energy is about
300 cm ! away from the nearest resonant state. Figure
14 shows the most interesting features. When the final
energy is near resonant, no phase effects are observed,
since the ionization through the three-photon process be-
comes dominant over the single-photon process. There-
fore, strong interference is seen when 2@, is away from
any levels (Fig. 14). The peaks of the branching ratio ap-
pear when no resonance occurs, and the branching ratio
becomes as large as 10. These results indicate that the
branching ratio of the 2P,, and ?P,, ion can be
significantly controlled by manipulating the relative
phase of the laser fields without changing the laser inten-
sities. We have also calculated the photoelectron angular
distribution at a final energy 133 800 cm ™' as an example
(Fig. 15). As we have seen in the total ionization yield,
the strong phase dependence is found in the photoelec-
tron angular distribution as well. Figs. 15(a)-15(d) are in
increasing order of the laser intensity I, with fixed I;.
When I, is not sufficiently strong, the total angular distri-
bution is dominated by that of the single-photon process
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FIG. 14. Same as Fig. 12, but at I,=10' W/cm?. Pulse
duration and I; are kept to the same values as those in Fig. 12.
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FIG. 15. Photoelectron angular distribution (PAD) from the
final energy 133 800 cm ™! under the presence of two laser fields
at different relative phase ¢=0 (solid line) and ¢== (dotted
line). After the emission of a photoelectron, a Xe core is left in
either P, or P, ,, ionic states of Xe*. PAD’s corresponding to
each P;,, or P, ,, ionic state are plotted separately and indicat-
ed in each graph. I;=10 W/cm? [fixed through (a) to (d)]. (a)
I,=10° W/cm? (b) I,=10° W/cm? (c) I,=5X10° W/cm?.
(d) I,=10" W/cm?
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FIG. 16. Change of the autoionization line shape of Xe
through the relative phase ¢ of two laser fields. I;=10 W/cm?
[fixed through (a) to (c)]. 5 ns square pulse. (a) I, =10° W/cm?.
(b) I, =5%X10° W/cm?. (c) I,=10'"° W/cm?. Dashed line corre-
sponds to the incoherent ionization by the two fields. 8s’, 6d,
and 6d; in the figures correspond to the autoionizing states
[Pl/2 ]8S1/2 J= 1), [Pl/2]6d3/z = 1), and [P]/z ]6d5/2 (J=3),
respectively.
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FIG. 17. PAD from the autoionization peak 8s’ of Xe under
the presence of two laser fields at two different relative phase
#=0 (solid line) and ¢= (dotted line). I;=10 W/cm? [fixed
through (a) to (d)]. 5 ns square pulse. (a) I, =10° W/cm?. (b)
I,=10° W/cm?. (c) I, =5X10° W/cm?. (d) I,=10'° W/cm?

[Fig. 15(a)]. As I, increases, two (single- and three-
photon) transition processes interfere strongly with each
other, and the strong variation of the angular distribution
is seen [Fig. 15(b)]. Further increase of I, causes the
dominance of the three-photon process, and the phase-
dependent interference decreases [Figs. 15(c) and 15(d)].

We consider now the phase effects in the autoioniza-
tion region [case (b)]. The same procedure has been ap-
plied: We expand the final open channels as described
above. Ionization spectra are plotted in Figs.
16(a)-16(c), again in increasing order of I, with fixed I,.
The feature of Fig. 16(a) comes from the single-photon
autoionization because the three-photon transition ampli-
tude is too weak. As the three-photon laser intensity in-
creases, the phase effects begin to appear [Fig. 16(b)].
The line shape, however, still resembles that of the
single-photon process. The further increase of the three-
photon laser intensity reveals the more interesting line
shape. Figure 16(c) demonstrates that the autoionization
line shape is significantly changed by the relative phase of
the lasers. The sharp peak at 101390 cm™! (8s') is
enhanced (dehanced) as the relative phase changes. We
have also plotted the photoelectron angular distribution
corresponding to the autoionization peak 8s’ (Fig. 17).
The significant variation of the angular distribution is
found again in the autoionization region.

V. SUMMARY AND CONCLUSIONS

By using a simple model, we have shown that the line
shape of an isolated AIS is significantly altered under the
presence of a laser field of frequency @, and its third har-
monic @;=23®,, as a function of their relative phase. A
careful choice of the laser intensities and the phase leads
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to the cancellation of the discrete or a continuum part of
an AIS. As the laser intensity I, at &, increases, intensi-
ty effects, which cause an additional Raman-type radia-
tive coupling between the discrete and continuum part of
an AIS as well as the nonradiative configuration interac-
tion, emerge. This effect has been examined within the
single-rate approximation. A few representative illustra-
tive intensity effects have been presented, and it has been
seen that, depending on the strength and the sign of this
Raman-type coupling transition amplitude, intensity
effects might significantly distort the autoionization line
shape compared with the one at a lower intensity, which
does not exhibit intensity effects. To investigate how
much an autoionization line shape is affected by another
AIS lying nearby, we have performed model calculations
with two AIS’s, both of which are coupled to a bound
state (usually a ground state) simultaneously by a three-
and a single-photon transition with well defined phase
difference. We have also carried out MQDT calculations
on Xe under the presence of two laser fields. Two energy
regions have been examined. One is above the first excit-
ed state of Xe*. The other is between the ground and
first excited state of Xet. In both regions, significant
phase effects have been found in terms of the photoelec-
tron angular distributions as well as the ionization yield.
The photon energies and intensities employed in these
calculations for Xe are accessible experimentally by
current laser systems. We believe that our model as well
as our realistic calculations support the idea that these
effects are rather general and should be found in most
systems, provided that the frequency of the radiation and
the proximity to excited states are chosen judiciously.

pn:_iﬁgl [(D(132)+1)12)P21+ E(D(13c)+1)xc)Pc1_C-C- ] )

pn=—if" [(D(231) +Dylprt X Vaeper—c-C. } )

pa=—iwypy —ifi! [(D(z:;l)+$21)Pn+ S VaePer—pu DR +Dy)— 3 p5 (DR +D.)) |,
c c

pclz _iwclpcl_iﬁk1 {(Dc(%) +Z)cl)pll+ 2 Vc2p21_p02(D(231) +$21) ] ’
[4

Per=—i@pey—ifi ! [(Dc(i” +Delpint 3 Vepn—pa(DY +$12)] )
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APPENDIX A

We present the derivation of the density-matrix equa-
tions, which describe the atomic dynamics of a two (one
bound state |1) and one discrete state |2) embedded in a
continuum |c ), i.e., an AIS) level system coupled by a
single photon with the laser frequency @; as well as by
three photons with the laser frequency @; with 3&,=®;.
These two atomic states |1) and |2) have energies #io,
and #iw,. For simplicity, we do not include the intensity
effects in this derivation. The generalization to the two-
AIS case is straightforward. Our total atomic Hamiltoni-
an is

H=H,+D®+2D+V, (A1)

where H,, is the unperturbed atomic Hamiltonian, D‘® is
an effective three-photon (3@,) electric dipole operator, 2
an electric dipole operator (®;=3®,), and V is a
configuration interaction. Then, starting with the equa-
tion of motion of the density operator p,

ifip=[Hy+D®+D+V,p], (A2)

we obtain

{AS5)
(A6)

(A7)

where D/}’ and D,; denote the single- and effective three-photon dipole matrix elements between |i ) and |j ), respec-
tively, and w;; =w; —w;. 3. represents the integration as well as the summation over all possible virtual (bound and

continuum) states. Introducing slowly varying amplitudes, namely, p;; =0 ; (i=1,2), pPn=0€

i3t _ —i3a,t
» Pc1— 0 1€ ’

and p., =0 ,, followed by the rotating-wave approximation, we obtain

op=—ifi"! [(#(132)5?'*’#1253‘-’%)021‘*'2(#(11)5?+#1c533i¢)0c1—C-C- ] )
c

Gpp=—ifi"! [(#(231)€T3+#215;e_i¢)012+2 VyeOca—c.c. ] )
c

01 =i(38,—wy)oy —ifi !

(#1231)*3?3'*'#215;9_i¢)(011—022)+ 2 V00— > [#(csl)efs‘*'#clf‘-;ew ]Uzc
c

(A8)

(A9)

, (A10)

4
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(3).%3

cl=i(3ml l)acl_lﬁ 1[ l“c € +p’c1€;e

N g 3) %3
Ooy= =100, —ifi (e} +pu e3e o, +V,

The time derivative of the last two equations may be
ignored by applying the adiabatic approximation. Then,

1

0.1~ [( (3)Et3+# Ete—inﬁ)o,
cl H30,— ) +ie Her€q c1€3 11
+Vc20'21] y (A13)
aczz;w_—[(u‘j’ef3+uc,£3e '¢)‘712+ 202,
c2
(A14)

where € is a small positive number and lim,_, ,, should
be taken in the end wherever € appears. Substituting
these two equations,

el +py eqe™?
L =2#""Im p> Hic €1 H1cEs i
c (38, —w,)
+247 ' Im | (ue}+ e e,)
(i e+ picese Ve,
+2 0'21 .
¢ ﬁ(3a)1—&)c1)
(A15)
Defining
(3).3
eV
o= ”‘2 +Pz—”—'f‘— (A16)
ﬁ (3wl—wcl)
)
(3) =
9 = ) (A17)
mh e}V, 2)y . =, +38,
V.,
Q,= “‘“+Pz—’-‘&——, (A18)
#(30,—w,,)
Q,
q2'=_ -2 ’ (Alg)
mh (.ch*ichz),,,c=,,,1+3a>1
S, — —ﬁ‘Zz it +ueese (A20)

30, —w,ti€

in the last equation, the ac Stark shift S; of state |1) has
been introduced. We now have

0(3)

1_.__

011=—Y0'11+2Im‘ q(3)

+ei¢02 1""_"'
9>

021] . (A2])

Similarly,

_i¢)011+ V20

2022 (#12 51"’#12533 ¢)0c1]

g .,1, (A11)
(A12)

(3).%3 *
—(par'el” Ty Ese

[

é22=_F2022_2Im 9(3) Ts)l
Up)
+eidq, |1+ L Jaﬂ), (A22)
q;
with
[V, |?
S, ——r =#"2 < (A23)
2 % (3(01 cl)+ie
and
61=[i8,—3(Fy+7y)]oy
—i|a@ |[1-—L |+e 0, [1-L | |0
[ q(3) 2 9, 11
+i|Qf 1+W
+e 4, |1+ | |0y, , (A24)
q;
where 8,=3%,— [(w,+5,)— (0, +8,)]=38,— (&,— &)
APPENDIX B

A derivation of the photoionization rate from a bound
state |1) to the double AIS is similar to that for the sin-
gle AIS case, which has been given in the text. Starting
from the full set of the density-matrix equations, and as-
suming the weak-field limit which implies o(¢)~1,

02(t)=033(t)~0, and 65, =03, =0J;,=0, we obtain
[—i8,+ Ly +T,)]oy=—i0, [1—‘1#], (B1)
2
[—i8;+ iy +Ty]oy=—iQ, [1—-— (B2)
3

The term with o 3, has been ignored in the lowest order
approximation. Solving these equations and substituting
into the equation for ¢ ,, we obtain

—i(Q,)?
2 q;

(—18,+T,)

2
1__ ] (—183+F3/2)
0112_Y+21m

2
—i(Q,)? [1—;’—] (—i8,+T,/2)
3
+2Im

(—i8,+T,)(—i8,+T;/2)

(B3)

After some algebra,
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L2
1— -
q;

i

0= —7+2(0,)’Im
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(—183+F3/2){8283_1(82F3/2+83F2/2)}

)2
i ll—qi ] (—i8,+T,/2){8,8,—i(8,1'3/2+8;T,/2)}
3

(8,82 +(8,0'3/2+8,T,/2)*

+2(Q;)Im

(B4)

(8,85)2+(8,1'3/2+8,T,/2)

Defining the dimensionless detunings €; =8, /(T'; /2) and noting that Q?=g?T;y /4 (i =2,3), we finally obtain

(g,63Fg36,+€6,63)°

(€,63)*+ (€, +€;)?

onT

(B5)
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