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Two electrons in an external oscillator potential: The hidden algebraic structure
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It is shown that the Coulomb correlation problem for a system of two electrons (two charged
particles) in an external oscillator potential possesses a hidden sl;-algebraic structure being one of
recently discovered quasi-exactly-solvable problems. The origin of existing exact solutions to this
problem, recently described by several authors, is explained. A degeneracy of energies in electron-
electron and electron-positron correlation problems is found. It manifests the first appearance of a

hidden sl;-algebraic structure in atomic physics.

PACS number(s): 31.20.Di, 03.65.Fd, 03.65.Ge

The problem of the evaluation of effects of interelec-
tronic interactions is one of the central problems in
atomic physics. The main difficulty comes from the fact
that this problem cannot be solved exactly even in partic-
ular cases, while numerical solutions are too complicated
to gain a proper intuition. Therefore, it is quite impor-
tant to find and elaborate situations where this problem
can be modeled in some relevant way, admitting exact,
analytic solutions. One such situation has been described
recently in [1,2]. A system of two electrons in an exter-
nal harmonic-oscillator potential with an additional lin-
ear interaction in the relative coordinate studied defined
by the Hamiltonian!
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was studied, where ry » are the coordinates of the elec-
trons and 3 = 1. Atomic units A = m = e = 1 are
used throughout and an overall factor  is omitted. It
was found that for certain values of oscillator frequency
w and the parameter A some eigenstate of (1) can be ob-
tained analytically. The main purpose of this paper is
to show that this feature is nothing but a consequence
of the fact that (1) is one of recently discovered quasi-
exactly-solvable Schrédinger operators [4, 5]. It implies
an existence of a hidden algebraic structure [6]. Here-

after, we will focus on the case A = 0.
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'In [3] so-called pseudoatoms were introduced: a quantum
system made from atomic ones in which all Coulomb interac-
tions are replaced by oscillator ones, attractive or repulsive as
the case may be. The system described by (1) can be treated
as a modified two-electron pseudoatom: where Coulomb at-
tractive interactions are replaced by oscillator ones, while
Coulomb repulsion remains unchanged or modified by the lin-
ear interaction.

1050-2947/94/50(6)/5335(3)/$06.00 50

Quasi-exactly-solvable  problems are quantum-
mechanical problems for which several eigenstates can
be found explicitly. They occupy an intermediate place
between exactly solvable (such as Coulomb potential,
harmonic oscillator, etc.) and nonsolvable. The quasi-
exactly-solvable Schrodinger equations appear in two
forms: (i) the Hamiltonian with an infinite discrete spec-
trum with several eigenstates known algebraically and
(i) the Hamiltonian depending on a free parameter, say
B, and a certain fixed magnitude of energy corresponds to
the ith state of the Hamiltonian at ith value of param-
eter 3 (where i = 0,1,2,...,n).2 Those problems are
named the first and the second type, respectively. Sur-
prisingly, exactly solvable problems such as the Coulomb
problem, the Morse oscillator, and the Poschl-Teller po-
tential have two equivalent representations, either as the
first-type problems or as the second-type ones [4].3

The underlying idea behind quasi-exactly solvability
is the existence of a hidden algebraic structure. Let
us recall a general construction considering the one-
dimensional Schrédinger equation as an example. Take
the algebra sl; realized in the first-order differential op-
erators

J} =r%d, —nr,

JO—_‘ dr_—a
"‘ T 2 )

JI =d,,

where 7 € R and d, = ‘%_. Those three generators obey
slo-algebra commutation relations for any value of the

?Precisely speaking, this means that for the parameters
Bo,B1,...,Pn, the ground-state energy at Bo is equal to the
energy of the first excited state at (i, is equal to the energy
of the second excited state at 32, etc., is equal to the energy
of the nth excited state at 3,.

3For the Coulomb the second-type representation is nothing
but the well-known Sturm representation.
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parameter n. If n is a nonnegative integer, the algebra (2)
possesses (n + 1)-dimensional irreducible representation

7:)n%—l(r) = (1,’!‘,1‘2,...,7‘n> . (3)

It is evident that taking any polynomial in the generators
(2), we arrive at a differential operator having the space
(3) as the finite-dimensional invariant subspace. In other
words, almost any polynomial in the generators (2) pos-
sesses (n + 1) eigenfunctions in the form of a polynomial
in r of degree n.

Let us take the quasi-exactly-solvable operator?

Ty = —J2J; + 2w, J — (n/24+204+2)J; —w,n. (4)

Substituting (2) into (4), one gets the differential opera-
tor

To(r,dp;n) = —rd? + 2(w,r? — 1 — 1)d, — 2w,nr (5)
for which one can define the spectral problem

TZ(T? d,.;?’l)p(’f') = _ﬂ(n)p(r)7 (6)

where ((n) is a spectral parameter. It is clear
that this problem possesses (n + 1) eigenfunctions,
po(r),p1(r),p2(r),...,pn(r) in the form of a polynomial
of the nth power. Other eigenfunctions are nonpolyno-
mial and in general, they cannot be found in closed an-
alytic form. Now let us make a gauge transformation in
(5),(6), introducing a new function,

u(r) = r'*p(r) exp(—w,r?/2), (7)

then make a replacement in the last term in (5),

2w,n =€ —w. (2l + 3), (8)

where € is a new parameter, and divide (6) over r. Fi-
nally, we obtain the equation

(n)
A + i+ u(r) = €ulr). (9)

2 2,2
—d; +wir® + 2

T

Putting in (9) 3™ = 1 and saying that now a spectral
parameter is €, we arrive at Eq. (9) of Ref. [2]. If w, = 2w
and 2¢’ = € is the energy of the relative motion, this equa-
tion appears in [2] as a radial equation for the relative
motion in (1) after separation of the c.m. motion.

Equation (9) is a particular case of the quasi-exactly-
solvable Schrodinger equation of the second type (case
VIII in the classification [5]).> From the physical view-
point, the parameter 8 in (1) has a meaning of the con-
stant of the interelectronic interaction. This parameter
can be changed by replacing an electron by a charged par-
ticle with charge Z. In principle, keeping the frequency
w and the energy €' fixed, for any n and [ one can find
(n + 1) systems of two particles with different charges in
the oscillator potential related to each other via hidden
sly-algebraic structure (see a discussion in footnote 2).

Now let us describe some features of the eigenvalue
problem (6).

(1) It is clear that the operator T3 is self-adjoint and
hence its eigenvalues are real. The first (n+1) eigenvalues
coincide with the eigenvalues of the Jacobian matrix with
vanishing diagonal matrix elements

0 2w, 0 0
nn+1+4+2l) 0 4w, 0
H= 0 G+ D)GE+2+420) 02n—i4+Dw, - 0 |. (10)
0 0 0 0 2nw,
0 0 0 2(1+1) 0

One can show that the spectrum of (10) is symmetric,

Snt1(B) = det ||fI - Bl
(11)

Sn+1(ﬁ) = (_1)n5n+1(—ﬂ) s

that follows from the fact that all odd powers of the ma-

“It belongs to the case VIII in the classification [5].

trix H are traceless, Tr H%t1 =0, j =0,1,... .5 So, for
any w, > 0 there exist [(n + 1)/2] (footnote 7) positive
eigenvalues and the same amount negative eigenvalues.
This property leads to an important conclusion: for the
fixed n, [, and w, there exist two eigenstates, one at 3 > 0
and another at 3 < 0, degenerate in energy [see (8)]. In
particular, this may allow the electron-electron correla-

5General case VIII corresponds to A # 0. In [4] this problem
was named the generalized Coulomb problem.

5T am grateful to P. Mello for a discussion of this point.

"[a] means integer part of a.



50 BRIEF REPORTS 5337

tion energy to be to related to the electron-positron one
in problem (1) (see discussion below).

(ii) Another important property of (6) is that all
eigenvalues 3™ o« ./w, and, hence, depend on w,
monotonously. For instance,

B = +24/w, (1 + 1),

B, = {£2¢/w, (41 +5) , 0}.

Therefore, in order to find the eigenvalues of (6) it is
enough to perform calculations in one point on the w,
axis, e.g., at w, = 1.

The situation becomes slightly more complicated if we
want to keep the parameter § fixed in the formula (1),
declaring that now we want to consider namely a two-
electron (or electron-positron) system, which implies 5 =
1 (—1). The relevant formulation of the problem is the
following.

Let us fix n and [. This defines unambiguously the
functional form of the pre-exponential factor in (7). Take
a positive eigenvalue 8 in (6), which corresponds to re-
pulsion of the particles in (1). It depends on the param-
eter w, monotonously, growing from zero up to infinity,
which means that one can always find the value of w,
for what 3 = 1 or any positive number. Since there
exist [(n + 1)/2] positive eigenvalues of 3 (see above),
each of them is equal to one for a certain value of w,.
Correspondingly, the lowest eigenvalue [ground state, no
nodes in p(r) following the oscillation theorem] leads to
the smallest value of w,, the next eigenvalue leads to big-
ger value of w, [one positive root in p(r)], etc. Finally,
we arrive at [(n + 1)/2] values of the parameter w,, for
each of them the problem (1) has the analytic solution
of the form (7) with p(r) as a polynomial of the nth de-
gree with a number of positive roots varying from 0 up to
[(n+1)/2] (see Fig. 1, where the case n = 3 is described
as an illustrative example).®

Taking the negative eigenvalues of 8 in (1) (that corre-
sponds to attraction of the particles), one can repeat the
above considerations with the only difference being that
the number of positive roots varies from [(n+1)/2] up to
n. Following the property (i) for any eigenstate from the
algebraized part of the spectra (see above) of the problem
(1) with positive 8 one can find an eigenstate with neg-
ative 8 with the same energy. For example, for the fixed

®It explains a systematics found in numerical calculation in

[2].
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FIG. 1. Four eigenvalues of (6) at n = 3 having polyno-
mial eigenfunctions as function of w,. Numbers in parenthe-
ses mean the amount of positive roots of the corresponding
eigenfunctions.

n and the minimal w,: w,(‘o), the ground-state energy at
B =1 [p(r) has no positive roots] is equal to the energy
of the nth excited state at 3 = —1 [p(r) has n positive

roots]. For w{"), the energy of the first excited state at
B =1 [p(r) has one positive root] is equal to the energy
of the (n — 1)th excited state at 8 = —1 [p(r)has (n — 1)
positive roots], etc. (see e.g., Fig. 1). This is reminis-
cent of the situation in one-dimensional supersymmetic
quantum mechanics by Nicolai-Witten, where if the su-
persymmetry is unbroken, all states of the bosonic sector
(except the lowest one) are degenerate with the states of
the fermionic one.

It is worth noting that recently it was shown [6] that
whenever some analytic solutions for eigenfunctions of a
certain one-dimensional (or reduced to one-dimensional)
Schrodinger equation occur, it signals the existence of
the hidden algebra sl;. Our present results manifest the
appearance of quasi-exactly solvability in atomic physics.
Developments of a hidden algebra method in quantum
mechanics, solid-state physics, and quantum field theory,
and also mathematical foundations can be found in Refs.

[7]-
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