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The coherent states of SU(m, n) transformations arising in the description of certain multimode
nonlinear parametric processes bilinear in boson operators are constructed. The nonclassical prop-
erties of the coherent states of SU(m) and those of SU(m, 1) are identified. The dynamics generated
by SU(m, n) Hami&tonians is studied.
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I. INTRODUCTION

The Hamiltonians of most of the nonlinear optical
parametric processes reduce to a bilinear combination of
the bose operators. Those processes are of particular in-
terest in the generation of nonclassical states of radiation,
which is a problem of central interest in quantum optics.
The Hamiltonian of an optical parametric process involv-

ing bilinear combinations of n quantized field modes is a
generator of Sp(2n, 4R). The nonclassical properties of
the states generated by Sp(2,R):—SU(1,1) transformation
in a single-mode interaction have been widely discussed
[1—3]. Those states exhibit squeezing. The nonclassi-
cal aspects of the states generated by Sp(4,R) transfor-
mations in a two-mode interaction have been reported
recently [4). There is also considerable interest in the
nonclassical properties of multimode field states [5—7].

The Sp(2n, R) transformations are generated by n(2n+
1) bilinear combinations of n modes which include self or
degenerate as well as intermode or nondegenerate com-
binations [5,8]. There are clearly two types of nondegen-
erate Hermitian bilinear combinations possible with two
quantized modes (a, at) and (b, bt). One is the combina-
tion (gat bt + g' ab) that conserves (ata —btb) It de-.
scribes the process of parametric ampli6cation of the two
modes. The other combination (gatb+ g'bta) conserving
(ata+ btb) describes the process of frequency conversion.
Two modes in a multimode parametric wave-mixing in-
teraction can contribute to both of those processes. How-
ever, a class of interactions of considerable interest is one
of nondegenerate parametric interactions in which two
given modes contribute either to the process of frequency
conversion or to the process of amplification. Those in-
teractions involve bilinear combinations of bose operators
(ai„a&', b&, bt ) (k = 1, 2, ..., m; p = 1, 2, ..., n) such that
two A or two B modes give rise to only the process of
&equency conversion whereas the combinations of A with
B modes generate only the process of parametric ampli-
fication. The Hamiltonians of those interactions are the
generators of SU(m, n) [SU(m, 0) = SU(m)]. The process
of parametric ampli6cation involving two modes is thus
an example of SU(1,1) and that of frequency conversion
realizes SU(2) transformation. The SU(m) transforma-

tions arise also in the description of the interaction of an
m-level atom with classical Gelds.

The two-mode SU(1,1) and SU(2) Hamiltonians have
been extensively studied [2,9—11]. A three-mode Hamil-
tonian describing competing SU(1,1) and SU(2) processes
has also been investigated [12]. That Hamiltonian is,
in fact, an example of SV(2,1). Some applications of
the bosonic realization of SU(3) have been discussed by
Moshinsky [13]. Here we discuss the processes gener-
ated by SU(m, n) transformations for arbitarary m and
n. Those can be studied in terms of the action of a
group element on a state vector in the space of the states
of the group or equivalentaly in terms of its action on
the bose operators. An SU(m, n) group element acting
on a state ~Qo) in the space of its states generates, in
the sense of Perelomov [14], an SU(m, n) coherent state
corresponding to the state ]go) as a fiducial state. The
coherent states of SU(1,1) and SU(2) have been stud-
ied [2,3,14—17] for various fiducial states. The coherent
state of a collectively interacting three-level atomic sys-
tem constructed in Ref. [18] in analogy with the two-level
atomic coherent state [16] is an example of the SU(3) co-
herent state. Here we construct the coherent states of an
arbitarary SU(m, n) for some particular fiducial states.
We investigate, in particular, the nonclassical properties
such as sub-Poisson photon number statistics and single-
and two-mode squeezing of the coherent states of SU(m)
and SU(m, 1). Those aspects are of fundamental interest
in quantum optics. We also discuss the dynamics of the
modes under the action of an element of SU(m, n)

The paper is organized as follows. In Sec. I we in-
troduce the bilinear combinations of bose operators that
generate the SU(m, n) group and construct its coherent
states. The nonclassical aspects of the coherent states of
SU(m) and SU(m, 1) are discussed in Sec. II. The physi-
cal processes giving rise to SU(m, n) transformations are
described in Sec. III. Section IV discusses the evolution
of the operators under the group SU(m, n) The main.

conclusions are summarized in Sec. V.

II. THE COHERENT STATES OF SU(m, n)

Consider the set of operators (ai„a~&., b„,bt) (k
1, 2, ..., m; p = 1, 2, ... , n) obeying the canonical boson
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commutation relations

[ai„a&,] = 8i, i, , [b&, b„,] = 8&z, [ai, bz] = [ai„bt] = 0.
(2.1)

Consider the unitary unimodular t"ansformations gener-
ated by those bilinear combinations of the bose operators
(2.1) which commute with

7n n

N =) ata, —) btb„
i=1 p=l

(2.2)

Those transformations, generated by (m+n) —1 bilinear
combinations

X,l'„l = i(a~tag —H.c.), X(3) t t
lk ~k~& +1

Y„l l = i(btbq —H.c.), (2.3)

Z,i„l = i(a, b„—H.c.), Zii
——aiai+bibi+1, j&k=1,2, ..., m; p&q=l, ..., n,

(3) t

constitute the group SU(m, n) [SU(m, 0) =SU(m)]. An
element U of that group is given by

3 m n

U = exp i ) ) a, '. X;" + ) b("lY„i"l
r=l i(j=l p(q=1

ent states of SU(m, n) for arbitarary m and n.
We construct first the coherent states

l pcs ) of
SU(m) for the fiducial state i/0) = l(0},N), where
at a l(0},N) = Nl(0}, N), apl(0}, N) = 0, and k g m.
By definition

+),',"'Z,',"'
27p

(2.4)
m —i

lQcs (N)) = exp~ ) (n,'. a, a —n;a~ a;} l(0},N).

where a, . , bpq and c,„are real.(r) ( ) (r)

The constraint (2.2) reduces the Hilbert space of the
group SU(m, n) into subspaces, each characterized by
an eigenvalue N of N. The Fock states l(j~},(l„})
(a~a, l(j~},(i~}) = j~l(j„},(i~}), b~tb~l(j„}, (l~})
l~l(ji, },(l„})obeying the condition

In terms of the operator

rn —1

B= —) na, ,

where

(2.6)

(2.7)

) ji, —) l„=N
k=1 p=l

(2.5)
(2.8)

can be chosen as a basis for representing the vectors
lg(N)) in the subspace of fixed N. Note that for n = 0,
i.e., for the group SU(m), the states l(ji,}),k = 1, 2, ..., m
span an N-dimensional space. The space of the states of
SU(m, n) for n g 0, on the other hand, is always infinite
dimensional.

Next, following the definition of Perelomov [14], we
construct the coherent states of SU(m, n) To that end.
one first selects a state i/0), called the fiducial state, from
the space of the states of an irreducible representation T
of the group G. Let H be the stationary subgroup, i.e. ,
the subgroup of those elements (h} of the group which
are such that T(h) lgo) = exp(in)lgo), where n is a real
constant. The coherent state lQcs) with respect to the
state l@o) is determined by the point x = x(g) of the
factor space G/H corresponding to the element q of the
group G. The set of those states is complete [14]. The
coherent states for the Heisenberg-Weyl group, i.e., the
bosonic coherent states and those for SU(2) and SV(l, l),
are well known [2,3,14—17]. Here we construct the coher-

the expression (2.6) can be rewritten as

l&cs'(N) )

j+7) $1 g2 2m —1

A I 1 I2 im —1

rn —1 x 1/2

~, r~, I. . .~
k=1

m —1
1L TX $1,$2, ..., g~ 1, CV—

k=1
(2.10)

m —i

l@cs (N)) = xp ) I'[Bta —a~ B] l(0},N). (2.9)

Since [B,Bt] = 1 it follows that Bta, a~ B and (BtB—
a~ a ) j2 obey the angular momentum commutation re-
lations. The exponential in (2.9) can therefore be dis-
entangled using the disentangling theorem for angular
momentum operators [16] to obtain
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where

p; = tan(I')a;/r,
m-i ) -1/2

i+ ) Iv I'
I

The coherent state of SU(m, n) is thus characterized by
mn complex variables (p,,„}.The expression (2.16) for
the coherent state of SU(m, n) assumes a simple form for
n = 1 given by

(2.11)

The coherent state (2.10) of SU(m) corresponding to the
fiducial state I(0},N) is thus characterized by m —1 com-
plex parameters. The general expression (2.10) for an
SU(m) coherent state evidently reproduces the known
expressions for the coherent states of SU(2) and SU(3)
for m = 2 and m = 3, respectively.

Next, we construct the coherent state of SU(m, n) cor-
responding to the fiducial state I(0}), i.e., the state of
vacuum for all modes. It is de6ned as

Igc(s'"l) = exp ) ) (o.;„atbt —a,'„u;b„} I (0}).

X A1) A2) ...) Am) A~ )

i=1
(2.20)

where

p; = tanh(r )a;/r, B = 1 —) Iy~I2. (2.21)
p=l

Clearly, P, I p,; I

~ ( 1. Note also that

(~i), B ~ Pi P2 '''P~ g( i+ 2+'''+ ~).
n1 on2 ~ ~ ~ snm 0

(2.i2)
The expression (2.12) can be rewritten by defining the
operator

):[@:u' I&*I bi]l@cs' ) = 0 (2.22)

where

1
Cp = — ckipGi)

~ i=1

r2 ) I
I2

i=1

(2.1S)

(2.14)

i.e., I@c(s' )) is an eigenstate of an operator formed by
the linear combination of m a~iiihilation and a creation
operator.

In the following section we identify some of the non-
classical properties of the coherent states (2.10) and
(2.20) of SU(m) and SU(m, 1), respectively.

as

n
'"

) = exp ) I' [Ctbt —H.c.] I(0}). (2.15)

III. NONCLASSICAL PROPERTIES OF SU(m)
AND SU(m, 1) COHERENT STATES

Tl

I@c(s'" ) = exP ) tanh(rz)C&tbzt I(0}), (2.i6)

Since [C~, Ct]=1 it follows that Ctbt, b&C„and (CtC& +
btb~+ 1)/2 obey the SU(1,1) commutation relations. The
exponential in (2.15) can be disentangled using the dis-
entangling theorem of SU(1,1) operators to get

First we determine the nonclassical properties of the
SU(m) coherent states (2.10) corresponding to the fidu-
cial state I(G},N), i.e., the state in which the mth mode
is in the Fock state IN) and all other modes are in the
state of the vacuum. The properties of, say, the ith mode
in the state (2.10) can be studied in terms of its reduced
density operator p;, which is found to be given by

which in turn gives, for n g 1, ) IP ll )'
p /pl

n —1

Pin —+i Piq
q=1

(2.18)

+t' J kq ~

m n
~@(, )~ I)-) r;, 4=' ~ 1

& (ra) (p) i=i q=l
m m m

x ~n};) &„„)&„„..., ) p„„,
r=1 )=1

where

where

I~'I' =1+ ) (3.2)

1+)

It is straightforward to show that the average occupa-
tion number and its variance in the ith mode are given
respectively by

(2.19) and
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aa;' —a'a-'

It then follows that

a~a, ' — ata, ' — ata;

= —Kly, , I4

for example, S(ai, b; vr —P) & 1/4 for all p. It is, how-

ever, evident from (3.9) that for m g 1, S(a, , b; g) is less
than 1/4 only for certain values of p for any Q. Thus
SU(l, l) is always two-mode squeezed, but SU(m, 1) for
m &1 is squeezed only for certain p, . Note also that there
is no squeezing involving two a modes. The two-mode
squeezing parameter can be determined experimentally
by mixing the two modes with a strong local oscillator
field of phase g and frequency halfway between the fre-
quencies of the two modes. The number Buctuation of
the resulting field is then a measure of S [19].

i.e., the variance is less than the mean. Hence the number
distribution in each of the modes in the SU(m) coherent
state is nonclassical. Those states, however, exhibit no
single- or two-mode squeezing.

Next, we examine the nonclassical properties of the
coherent states (2.20) of SU(m, 1). The reduced density
matrices for the modes a, and 61 in that state are found
to be given respectively by

and
(3.6)

(3.7)

Each of the modes in SU(m, 1) is thus in the thermal
state. The statistical properties of individual modes
in the coherent state of SU(m, 1) are therefore classi-
cal. The nonclassical aspects of those states are re-
Bected in mode-mode correlations. Those correlations
can be examined in terms of the two-mode squeezing
parameter S(a, b;Q) between modes a and b That p.a-
rameter is a measure of the variance in the operator
A(@) = 1/(2i/2) [a exp(i@/2) + b exp(ig/2) + H.c.]:

IV. GENERATION OF SU(m) AND SU(m, n)
COHERENT STATES

Hi ——(gab+ g*atbt), (4.1)

The nonlinear optical parametric interactions have
been shown to be useful in generating a variety of non-
classical states [19,20]. The SU(m, n) transformations
can be realized in nondegenerate optical parametric pro-
cesses describing the mixing of the electromagnetic field
modes of different frequencies in an optically nonlin-
ear medium. The lowest-order parametric process in a
noncentrosymmetric medium is three-photon mixing and
that in a centrosymmetric material is four-photon mix-
ing. Since the quantized field modes are characterized
by boson operators, the fully quantized Hamiltonian de-
scribing the lowest-order nonlinear interaction is a trilin-
ear or quartic combination of boson operators. In prac-
tice, however, the parametric processes often involve one
or more intense monochromatic fields. The terms corre-
sponding to those fields can be treated as harmonically
varying externally prescribed parameters. The Hamilto-
nian then reduces to linear or bilinear combinations of
boson operators. Consider the case of nondegenerate op-
tical parametric processes described by the Hamiltonians
bilinear in the boson operators. Evidently there are two
types of nondegenerate processes possible involving bi-
linear combinations with two boson operators (a, at) and
(b, bt) leading to two types of Hamiltonians: One is the
Hamiltonian

(3.8)

The states for which S(g) & 1/4 for some g are non-
classical. For the SU(m, 1) coherent state (2.20) we find
that

H = (gatb+ g'bta). (4.2)

describing parametric amplification of the two modes,
and the second is the &equency converter Hamiltonian

S(a;,b;@) =

(
x

] 2lp, ;I cos(P; + @)+ I&;I + ) Ip,

(3.9)

where p, = Ip, l exp(iP, ). The values of p; for which
S(a;, b; it) & 1/4 can be easily identified. For m = 1,

The Hamiltonian Hi is a generator of SU(l, l) and H2
that of SU(2) transformations. Those interactions have
been extensively studied. Two given modes, in gen-
eral, can participate in both the processes simultane-
ously. However, the SU(m, n) transformations are re-
alized if two given modes participate only in one type
of process. A three-mode Hamiltonian describing com-
petition between parametric amplification and &equency
conversion with two given modes involved in only one
type of process, as discussed by Mishkin and Walls [12],
is an example of SU(2,1) transformation.

In order to realize SU(m, n) consider a nonlinear
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medium piimped by several coherent fields or several in-

dependently piiiiiped nonlinear media inside an optical
cavity leading to bilinear coupling between m+ n quan-

tized field modes (ai, a&t, b~, bt) (k = 1,2, ..., m; p
1,2, ..., n) such that two A or two B modes participate
only in the process of frequency conversion described by
the form (4.2) whereas the combination of an A with a B
mode occcurs only in the form (4.1) characterizing para-
metric ampli6cation. The most general Hamiltonian de-
scribing that interaction in an appropriate rotating frame
is given by

A(t) = col[ai(t), a2(t), ..., a (t)] (5.2)

and M is a matrix whose elements are given by

M~ =a;~, (5.3)

with o.~; = a, Hence M(t) is Hermitian and its eigen-
values are real. If lg;) are the eigenstates of M corre-
sponding to the eigenvalues A; (i = 1, 2, ..., m), then it
follows from (5.1) that

H = ) u;iataz+ ) Pzqbtbq+) ) p;za~bz+H. c.
a, (t) = ) y, (t)a

j=1
(5.4)

p(a=1 i=1 p=1
(4 3)

On comparing with (2.3) it is clear that (4.3) is a gener-
ator of SU(m, n).

The group SU(m) describes also an m-level atom
driven by classical fields. If li), i = 1, 2, ..., m, are the
atomic levels and o.;~ the strength of coupling between
the external field interacting resonantly with levels li)
and

lj), then the Hamiltonian of interaction in an appro-
priate rotating kame is given by

where

(t) = ) exp( —a&,t)(al&„)(Alj)
A:=1

(5.5)

Note that the operators (a;(t), at(t)), obtained by a uni-

tary transformation on the canonical operators (a;, at),
are also canonical. Hence it follows from (5.4) that

II = ) a,iA;i+ H.c., (4.4) ij i' = ii' (5.6)

t(g

where the operators A;i—:li)(jl commute with

N=) A;, . (4.5)

By a straightforward examination of the commutation
relations of A;~ or by going over to the Schwinger repre-

sentation in terms of the boson operators a, , at, namely,

A;~ = a;az, it is clear that (A;~ ) constitute the SU(m) al-

gebra and hence (4.4) is a generator of the group SU(m).
The coherent state of a collectively interacting two-level
atomic system, known as the atomic coherent state [16],
is an example of SU(2) coherent states. In analogy
to the two-level atomic coherent states, Agarwal and
Trivedi [18] constructed the coherent state of a collec-
tively interacting system of N three-level atoms. That
coherent state is the same as the SU(3) coherent state
obtained from the general expression (2.10) for the co-
herent state of SU(m).

ln„n„..., n ) = ',', l(0)).
ni ~ n2 ~

' ' n~.
(5 7)

Hence, by virtue of the fact that JIl(0)) = 0 it follows
that

exp( —iHt) lni, n2, ..., n )

() 2 (t) a (t)](0)) (58)
A1eA2o ' ' ' A~a1 t. . . t

The dynamics of an arbitarary observable can thus be de-
termined by evaluating the functions f;~ (t). Those func-
tions are oscillatory. Hence the evolution generated by
the group SU(m) is oscillatory.

The operator dynamics can also be used to study
the dynamics of an arbitarary state vector. Any state
vector can be expanded in terms of the Fock states
lni, n2, ..., n ), which in turn can be written as

V. DYNAMICS GENERATED BY SU(m, n)
TRAN SFORMATIONS

In this section we study the evolution of the opera-
tors under the Hamiltonian (4.3) generating the group
SU(m, n). Consider first the SU(m) transformations.
Those correspond to the Hamiltonian (4.3) for n = 0.
The Heisenberg equations of motion for the annihilation
operators in that case form a closed system given by

p; = f';/f', i = 1, 2, ..., m —1. (5.9)

It also follows that the state

where at(t) are given by the Hermitian conjugate of (5.4).
The expression (5.8) can be evaluated by expanding each
of the at(t) in powers of (a".(0)). If, for example, the
initial state is l(0), N), then it follows from (5.8) that
the state at time t is the coherent state (2.10) with

where

A.(t) = —iMA(t), (5.1)

0 Z1 ) Z2y ~ ~ ~
y Z~

t', ,&
f'

—:exp —
2 ) lz;l exp ) z;a, l(0)), (5.10)

i i=1
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which is the coherent state for each of the boson annihila-
tion operators, remains coherent under the SU(m) group
transformations. By virtue of (5.4),

R;, =0, R; +p
——pp, R +p, ———p,*„, R +~ +q

——0,

i, j = 1,2, ..., m; p, q = 1, 2, ..., n .(5.17)

exp( —iHt)
I go)

(= exp —
2 ) Iz;I I exp ) f ~(t)z;a. I(0}).

i i j=1

(5.11)
Hence a state that is coherent for each of the modes re-
mains coherent under the action of SU(m).

As an example, consider the three-mode Hamiltonian

H = Ki(a b+bta)+K2(a c+cta) +i Ks(b c —etb) (5.12)

generating an SU(3) transformation. The eigenvalues
of M, defined in (5.3), in that case are Ai ——0 and

A2
———As ——I' = QKi + K2+ Ks. The corresponding

eigenvectors are given by

1
IQ, ) = —col(Ks, —zK2, zKi),

The matrix R is antisymmetric. Hence its eigenvalues are
imaginary. If Ig;) are the eigenvectors of R corresponding
to the eigenvalues iA; (A, are real and i = 1, 2, ..., m+ n),
then it follows that

C, (t) = ) exp(A, t)(iIQ, )(Q, Ik)Cg(0). (5.18)

C = —iQC, (5.19)

where Q is defined as

Since R is a traceless matrix, the sum of its eigenvalues is
zero. Hence at least one A, is positive, thereby implying
that the fields in the case of parametric amplification
grow with time.

Finally, the Heisenberg equations for the general
SU(m, n) evolution read

/2(K2+ k2)r

xcol[I'K2 + iKiKs, KiK2 + zI'Ks, (K~ + Ks)],

Q, ~
= o'.,~

= Q~,. (g g i),
Q', +p = v'p = —Q* p„,,

Q-+p, +q = /tv = Q*+,, +„(p8 g),

(5.20)

1
IWs) =

/2(K + K')1

(5.13)
x o1[—I', +, „,, — I' „( ,'y ',)].

l)g = 1, 2, ...)m) p)g = 1 2, ... , 'B.

Note that Q is, in general, not a normal matrix. Hence
the solution of (5.19) can be written in terms of the right
and the left eigenvectors (Igt, )}and ((PgI} of Q as

The expressions (5.13) for the eigenvectors can be substi-
tuted in (5.5) to evaluate f,~ (t). The dynamics of any ob-
servable and that of the state vector is thus determined.
In particular, the state of the field initially in the state
IO, O, N) is the SU(3) coherent state (2.10) at time t with
y, i and p2 given, using Eq. (5.9), by

m+n

C;(t) = ) g; (t)C (0)

where (Ag} are, in general, complex and

(5.21)

2i[I'K2 cos(I' t/2) + KiKs sin(1 t/2)] sin(I' t/2)
(K22+ K2s) cos(I' t) —K2i

(5.14)
2[I'K sin(1't/2) + K K cos(1't/2)] cos(rt/2)

s(1 t)—

g,, (t) = ) exp( —iA&t)(il&&)(4'&Ij) (5 22)
A;=1

The dynamical characteristics of the observables under
SU(m, n) transformations is thus governed by the func-
tions (g,~ }.The canonical commutation relations obeyed
by (C, (t)} imply that

The nonclassical characteristics of those states have al-
ready been discussed in Sec. III.

Consider next the special case n,~
= P,~

= 0 of the
SU(m, n) transformation (4.3) representing the process
of parametric amplification. The Heisenberg equations
of motion for the bose operators in that case are

m+n

j=m+1

m+n

9'pj9pl j = ~pp'~

j=m+1
C(t) = —iRC(t), (5.15)

where i, i ' = 1, 2, ..., m; p, p' = m + 1, m + 2, . .., m + n (5.23).
C = col(ai, a2, ..., a;bi, b2, ..., b )

and the matrix R is given by

(5.16) The dynamics of a state vector can also be determined
by using the solution (5.21) of the Heisenberg equations
by expanding the state vector in terms of the Fock states
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where

„) a'"'(t)a'"'(t) - . . ' (t)
1~( ))ni.n2 ~

' n~ ~
l. . .

(s.24)

given in terms of the vacuum state 1(0}) as in (5.6) so
that

1= —CO K3) —CK2) —ZKy )

1@(t)) = exp( —iHt)1{0}). (5.25)
xcol[D&2 + zrie3) KiK2

Note, however, that in this case, unlike the case of
SU(m), II1(0}) g 0. The state lg(t)) can be deter-
mined in the case of SU(m, 1) by invoking the fact that
C;(0)1(0})= 0 for i = 1, 2, ...,m and | +i(0)tl(0}) = 0
so that

+aDr s, (~2 + ~s)] )

1
l&s) =

D/2(r~ + n,~)

(5.31)

xcol[—Dn2 + inins, eir2 —aDn3) (~2 + ns)].

c;(t)1@(t))= o, i =1,2, ..., m

c'„(t)l&(t)) = o.

(s.26)

2 1) 2) ) m (s.27)

I '/~m+1, m+1 + ~m+1,j (5.28)

Equation (5.28) determines (p,;}.Those (p;}, by virtue
of (5.23), also satisfy (5.27).

As an example, consider the SU(2,1) process generated
by the Hamiltonian

H = Ki(a b+b a)+K2(ac+c a ) +i+ (sbc—ctbt). (5.29)

The solution of (5.26) can be found by using the ex-
pressions (5.21) for t;(t) and making use of the fact
that lg(t)) has the form (2.20) of the coherent state of
SU(m, 1). Equations (5.26) then lead to

The functions g;i(t) can now be evaluated by substitut-
ing (5.30) and (5.31) in (5.22). The dynamics of the
observables as well as of the states is thus completely
determined. For example, the state evolving from the
vacuum state 1(0})is the coherent state (2.20) with (p;}
given, using (5.28), by

.[~i~a cos(Dt/2) + Drz sin(Dt/2)] cos(Dt/2)
(~zi —[~zz+ rsz] cos(Dt)}

(s.32)

[ninz sin(Dt/2) + Drs cos(Dt/2)] sin(Dt/2)
(niz —[~zz + ~zs] cos(Dt) }

The Hamiltonian (5.12) for ns ——0 has been studied by
Mishkin and Walls [12].

VI. CONCLUSIONS

The eigenvalues A;, i = 1, 2, 3, of the evolution opera-
tor in that case are found to be given by A~

——0 and

A2 — A3 —D, where D = gtci —re&
—res. The eigen-

values are imaginary if r~ —tcz —K3 & 0 and real oth-
erwise. Note that e~ is a measure of the strength of the
process of parametric amplification and ~z + e3 is that
of the process of &equency conversion. Hence the cou-
pled process is of the parametric amplification type or
the type of frequency converter, depending on which of
the two is dominant. The eigenvectors of Q and Qt are
given respectively by

1
lg, ) = —col(rs, —x~2) mi),

1
I&2) =

D/2(r. 22 + rs2)

xcol[Dr2 + ar, ir3)1 r.ir.2

The Hamiltonians generating SU(m, n) transforma-
tions in multimode nondegenerate optical parametric in-
teractions are discussed. Those Hamiltonians acting on
a vector in the space of-the states of SU(m, n) generate
a coherent state of that group. The coherent states of
SU(m, n) for some particular fiducial states have been
constructed. The nonclassical properties of the coher-
ent states of SU(m) and those of SU(m, 1) are studied.
The photon number distribution of each of the modes in
the SU(m) coherent state is found to be sub-Poissonian.
Each of the modes in the coherent state of SU(m, 1), on
the other hand, is found to be in the thermal state. The
SV(1,1) coherent state always exhibits two-mode squeez-

ing, but the two-mode squeezing of SU(m, 1) coherent
states for m g 1 depends on the values of the parameters
defining the coherent state. The dynamics generated by
SU(m, n) Hamiltonians is discussed.

(5.30)+iDrs, —(~2+ ns)],

l&s) = 1

D/2(n, 2 + r„2)

xcol[—Dr2 + critics, ri+2 —aDtc3) (~2 + ns)],
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