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Enhanced squeezing by periodic frequency modulation under parametric instability
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A general analysis of an oscillator with periodic frequency modulation is given. It is shown that
squeezing and excitation energy exponentially grow with the number of modulation cycles under
the condition of parametric instability. This condition yields a prescription for maximized squeezing
when the frequency is periodically swept in an adiabatic fashion, with an abrupt return to the initial
frequency at the end of each period. The type of modulation considered is shown to have remarkably
broad instability domains near arbitrarily high ratios of the oscillator period to the modulation cycle
duration. This property stands in striking contrast to the rapid narrowing of the squeezing domains
with the ratio of the pump frequency to that of the signal in existing parametric processes. %e
discuss a possible realization of the proposed scheme, based on frequency modulation of a cavity
mode in the microwave domain by a periodic train of optical pulses, and show that extremely strong
squeezing is feasible under rather moderate requirements.

PACS number(s): 42.50.Dv, 42.65.Ky

I. INTRODUCTION

Reduction in the uncertainty of a quantum observable
below that of its counterpart in the ground (vacuum)
state of the system is known as squeezing. This class of
phenomena has been extensively studied in several con-
texts. The focus of attention has been on squeezing of
electromagnetic Geld observables through Beld-rnatter in-
teractions in bulk media and cavities, and their potential
technological applications [1—3]. In a different context,
squeezing of atomic [4] and molecular [5—7] observables
has been considered. Our concern here is with quadra-
ture squeezing in a harmonic oscillator with temporally
modulated &equency, which has been recently addressed
by a number of theoretical studies [8—16].

As shown by Graham [9], an abrupt change of the os-
cillator &equency can squeeze a coherent state, whereas
adiabatic change of the &equency and its subsequent
restoration only produces cyclic evolution of the sys-
tem, ending in the original state, without any squeez-
ing. Agarwal and Kumar [12] have analyzed the ex-
plicit time dependence of squeezing on nonadiabaticity,
ranging anywhere between the abrupt and adiabatic lim-
its, in the simple case of linearly swept restoring force.
Lo has obtained [13] a formal solution for squeezing
generation starting &om a number state, for arbitrary
time-dependent parameters of the oscillator. Most re-
cently, Janszky and Adam [14] and Dodonov et aL [15]
have studied squeezing in the model of temporal Kronig-
Penney modulation, i.e., periodically alternating abrupt
&equency jumps separated by a quarter-period constant-
frequency oscillation. Squeezing of a coherent state by
several types of &equency modulation was considered by
Abdalla and Colegrave [16].

The extensive investigations of squeezing in a harmonic
oscillator with temporally modulated &equency have still

left several important questions open: (a) What are the
general conditions that must be met by the &equency
modulation in order to obtain squeezing? (b) How can
this squeezing be optimized? (c) Is there a connection be-
tween physical mechanisms underlying squeezing in this
model and in parametric optical processes [1—3]? (d) Can
this model be implemented in optics?

We purport to answer these questions by showing that
quadrature squeezing can grow exponentially with time
(until disturbed by dissipation) under the condition of
parumetric instability in an oscillator whose &equency is
periodically swept in an arbitrary adiabatic way, with
an abrupt return to the initial &equency at the end of
each period. The same condition leads to exponential
growth of the oscillator energy. Explicit WKB expres-
sions are derived for squeezing accumulated in N cy-
cles of alternating adiabatic modulation and abrupt &e-
quency restoration. These expressions are compared with
the exact results for periodic linear sweeping (Sec. II).
We then discuss a possible realization of this scheme
based on optically induced Kerr-type modulation of the
re&active index at a cavity-mode frequency in the mi-
crowave domain (Sec. III). A remarkable property of the
proposed scheme, which makes it potentially advanta-
geous for parametric ampli6cation and squeezing, is that
the spectral width of the parametric instability domains,
wherein squeezing is accumulated, does not change signif-
icantly with the integer ratio of the modulation cycle du-
ration to the oscillator period. This allows ampli6cation
or squeezing using modulation frequencies that are orders
of magnitude lower than the oscillator &equency, in sharp
contrast with currently used two-mode parametric pro-
cesses (Sec. IV), wherein the pump driving &equency is
commonly not lower than one half or one third the oscilla-
tor (signal) &equency. However, due to an abrupt turnoff
of the modulation cycle, the modulating force spectrum
has a greater bandwidth, which greatly exceeds the fun-
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damental frequency. The conclusions are summarized in
Sec. V.

II. ANALYSIS OF SQUEEZING BY PERIODIC
FREQUENCY MODULATION

A. General treatment

Q( ) ~( ) i( (0)
& P(NT) ) k P(0) )

'

where the single-cycle evolution matrix is

U(T) = l( u(T) v(T)
q u(T)/~p v(T)/~p y

(2.3)

(2 4)

The Hamiltonian of a harmonic oscillator with time-
dependent frequency is given by

Here u, v are the e-number solutions of the following
equation for the single-cycle modulation:

II(t) = 2p + 2(u (t)j, (2.1) +~(t)
~

~=0,
d2

2 (u)
dt' (2.5)

where p and q are the momentum and coordinate oper-
ators, respectively, and ur(t) is the time-dependent fre-
quency. We introduce the scaled dimensionless operators

with the initial conditions

v(0) = u(0)/up ——0, u(0) = v(0)/(up ——l. (2 6)

(2.2)

where wp is the initial frequency (at the t = 0).
Their evolution following N modulation cycles of du-

ration T, each cycle ending by an abrupt return to the
initial frequency coo, is given by

det[U(T)] = 1. (2.7)

By raising the single-cycle evolution matrix in Eq. (2.4)
to the Nth power, we And

Since the Wronskian of u and v, W = uv —vu does not
depend on t, it follows from Eq. (2.6) that

( u(T) sinNp —sin(N —1)p v(T) sinNp
sing q [u(T)/~p] sinNp [v( T)/~ ]psi nNp —sin(N —1)&p ~

' (2.8)

with

& = cos (-'[u(T) + v(T)/ ]). (2 9)

are expressed via the single-cycle transformation param-
eters

Equations (2.3)—(2.9) constitute the N-cycle
Heisenberg-picture solutions in the Q —P basis. The
signi6cance of the solution parameters is noted on writ-
ing, e.g. , the coordinate variance u~ after N cycles, for a
coherent initial state,

oq(NT) = f['u(T) sinNp —sin(N —1)p]
+v (T)sin Np)/sin y. (2.10)

Alternatively, we may work in the usual basis of anni-
hilation and creation operators

pT = u(T) + v(T)/up + i[u(T)/wp —v(T)], (2.14a)

vT = u(T) —v(T)/(dp + i[u(T)/cup + v(T)]. (2.14b)

ll(NT) = Rt(HN)St((lv)apS((N)R(0&) (2.15)

with

The transformation of Eq. (2.12) is unitary and can thus
be written as a product of the stretching (squeezing) of
the quadratures, described by operator S, and their ro-
tation, described by operator 8

II = P+iQ, at = P —iQ (2.11) R(OIv ) = exP[io~aptap], (2.16a)

The ¹ycle solution of Eq. (2.3) is thereby recast in the
form of a Bogoliubov transformation [17] S((~) = exp ap — ap

(N -2 6N -t2
2 2

(2.16b)

a(NT) = pIqTap + vIvTap, (2.12)

rg(PlVT ) ~(~~ = tall
~

lVT/P~T
~

@AT = [pT sin Np —sin(N —1)y]/ sin rp, (2.13a)
arg((~) = 2[arg(V~T) + 0~]. (2.16c)

vlvT' = PT' sill Np/ sill (p (2.13b) Here the absolute value of (~ is the squeezing parameter,
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whereas 8~ is the rotation angle of the axes (or quadra-
tures).

C. The WEB regime: alternating adiabatic and
abrupt modulation

B. Progressive accumulation of squeezing

In order to obtain physical insight into the evolution,
let us consider the transformation 8 that diagonalizes the
single-cycle evolution matrix

(2.17)

In what follows, we study the dependence of squeezing
on the form of single-cycle modulation by examining the
&KB regime, which is amenable to an analytical treat-
ment. The WKB approximation is applicable when the
modulation throughout a single cycle is adiabatic [18].
This means that the frequency changes only by a small
fraction during one period of vibration, 2z'l~l/~ && 1.

The WKB solutions [18] of the Eq. (2.5) are linear
combinations of ur ~~2(t) exp[ki8(t)] with the adiabatic
phase

where Aq 2 are the corresponding (complex) eigenvalues.
This transformation yields the following two linear com-
binations of the operators Q and P

t

8(t) = ~(t') dt'.
0

(2.24)

(A2) qP) (2.IS)
On using this form with the initial conditions (2.6), the
single-cycle evolution matrix (2.6) becomes

Ag 2(NT) = A~ 2Ag, 2(0). (2.i9)

Hence, their variances scale as follows

The N-cycle evolution of the "quadratures" Aq 2 obeys,
[according to Eqs. (2.17) and (2.18)] the simple transfor-
mation rule

u(T) .(T) ) & .-' O i
u(T)/(up v(T)/~p ) ( 0 s

& cos8(T) sin8(T) &

~
—sin8(T) cos8(T)

&

'

(2.25)

(6A,'(2) (NT) ) A', (2). (2.2o)
which is a factorized product of a stretching transforma-
tion with the parameter

By virtue of the unimodularity of U(T) [see Eq. (2.7)],
AqA2 ——1. This property is crucial in determining the
scaling, as noted &om the eigenvalue equation for U(T)
[Eq. (2.4)]

—2Acosy+ 1 = 0, (2.2i)

whose solutions are

Ag 2
——e+'~. (2.22)

l
cos yl = ~~ lu + v/cup

l

= 1. (2.23)

For
l cosyl ) 1 we enter the instability domain, in

which Imy g 0, and thus the squeezing parameter l(~l )
0.

Two distinct regimes are apparent from these solu-
tions,

(i) If Imy g 0, then the quadrature operators dis-
cussed above undergo a scaling transformation. This
means that, say, Aq(NT) is "stretched" as exp(NImy) =
exp((~), at the expense of "compression" of the orthog-
onal quadrature A2(NT) as exp( —NImy) = exp( —(~).
Here (~ is the squeezing parameter [same as in
Eq. (2.16)]. Thus progressive accumulation of squeezing
in consecutive modulation cycles is caused by parametric
instability.

(ii) Conversely, if y(T) is purely real (lAq 2[ = 1),
then (~ = 0 and only rotation of the axes takes place.
The boundary between stable (limited squeezing) and un-
stable (unlimited squeezing) regimes corresponds to [cf.
Eq. (2.9)].

~(T)s = exp]6
(dp

(2.26)

(z being the single-cycle squeezing parameter, and a ro-
tation by the adiabatic phase angle 8(T).

As noted in the introduction, the modulation must end
abruptly at each cycle, if we wish to retain the squeezing
accumulated throughout the cycle. This can be seen by
comparing the initial coordinate variance o'~(0), for a co-
herent state, with its value at t = T, following a period
of adiabatic frequency modulation. On setting N = 1 in
Eq. (2.10) and using Eq. (2.25) we have

oq(T) = [u (T) + u (T)] = [up/cu(T)]~~(0).

(2.27)

Thus, we obtain squeezing, i.e., o'~(T) & o.~(0), if
the instantaneous &equency ur(T) exceeds the initial &e-
quency up. However, we should bear in mind that the
oscillator state remains nearly coherent throughout the
adiabatic evolution. Hence, at t = T we have a coherent
state with &equency ~(T) which is squeezed only rela
time to the initial coherent state with kequency mp. In
order to observe this squeezing, we need to restore the &e-
quency back to cup. The restoration cannot be adiabatic,
because it would simply change o~(T) back to o'~(0), by
the inverse of Eq. (2.25). The squeezing acci~~ulated
during 0 & t & T can be preserved only by switching the
frequency back to up rather abruptly, preferably much
faster than the oscillation period 2z/up. Then the sud-
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p(T) = cos [cosh(qcos0(T)]. (2.28)

The ¹ cl— ycie evolution matrix (2.8~ is then o
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(225~ d '

formation paramete
) an (2.9) it follows that ta +.e trans-

me er y assumes the form

In contrast, squeezing grows in a
e num er of cycles for aram

i
r parameters correspondin to the

s a e 'instability) regions.
g o e

Two basic limitations on the obtainable s
strength must still b

e o aina le squeezing
s i e rec oned with: i D'

e num er o cycles over which
is accumulated. (ii) F

ich squeezing
a e . ii uctuation of the adiabaticia a ic phase

nce con i ion 2.2

-in ensi y e ects ma ham
ing degree.

y amper the squeez-

0{T)=km, k=1, 2, 3, . . . , {2.29)

which signi6es "in- "in-phase consecutive fre uenc
The correspondin d'

'
e equency sweeps.

ing coor lnate variance'ance exponentially de-

o, (NT) = o.,(0)e ' '~' = 0, '0'= ~, (0) l
. (2.30)
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F~ (d T )) = 2((q + P ))~ cosh 2%i(pl, (2.31)
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approximation by

~ is expressed in WKB

D. Periodic linea'near sweeping: exact treatment
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ing o e restoring force

~'(t) =~,'(1+qt), 0& t & T. (2.33)

1- .
u(t) = — Ai(z)Bi'(zo) —Ai'(zo)Bi(z) (2.34a)
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oq(t+7. ) = oq(t)cos ((up~) +2 sin (4)p7

sin(2(up~),
0 t

(dp
(2.36)
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the oscillating variance is near its minimum, then the
next cycle can cause stronger squeezing [see Fig. 3(a)].
For an "unsuccessful" choice of T (outside an instability
region) [Fig .3(b)] it is impossible to have unlimited ac-
cumulation of the squeezing. Rather, the envelope of oq
undergoes long-time oscillations (Fig. 4).

Here the dimensionless constant A oc pp2i2/I' with p de-
noting the gas density, and pi2 is the ~1) + ~2) transition
dipole moment. The difFerence b —b' = uz2 —~12 is given
by Eq. (3.1), so that the single-cycle squeezing (2.26),
which is determined by the relative frequency change of
the cavity mode (provided b, h' » I') satisfies

III. POSSIBLE REALIZATION IN MICROWAVE
CAVITIES

exp 1&i I

= (~o ~o) /~o = 1 no/no

Ar(S-i —S -'), (3.3)

The foregoing analysis has demonstrated the remark-
able properties of parametric amplification and squeez-
ing, achieved by repeated abruptly terminated modula-
tion cycles. The question to be still resolved is whether
the realization of such a process is experimentally feasi-
ble with significant modulation strength p, on the one
hand, and a short restoration time of the initial oscilla-
tion frequency (much faster than the oscillation period
2n/up) on the other hand. These requirements can be
met for a microwave mode of a cavity filled with a dilute
gas. A train of short optical pump pulses modulates the
frequency of the cavity mode. Each pulse produces Stark
shifts of the atomic levels which modify, in turn, the re-
&active index experienced by the cavity mode, thereby
causing its frequency to change. In what follows we an-
alyze this process.

The gas atoms can be viewed as three-level systems,
in which the transition ~1) -+ ~2) is at a microwave fre-
quency ariz, whereas ]2) ~ ~3) is at an optical frequency
4)zs (Fig. 5). The levels

~
1) and ~3) are uncoupled in

the dipole approximation. The cavity-mode frequency
Mp (microwave) is detuned &om uri2 by h » I', I' be-
ing the ~1) ~ ~2) transition linewidth. An optical pump
pulse centered at frequency ~p = ~23 —4 shifts the level

~2) relative to that of ~1) by [20]

which is the desired expression for the modulation
strength. If the pump field is strong enough, so that the
shift A~/6 is of order h, then the single-cycle squeezing

(3.3) is estimated to be (AI'/8)i~2.
The switching-ofF time must satisfy

wi2 « 2x/«& &. (3 4)

IV. COMPARISON WITH TWO-MODE
PARAMETRIC COUPLING IN CAVITIES

We can choose Rydberg-level transitions with parameters
tui2 & 10 GHz, I' & 10 Hz, I'/8 0.02, and A = 0.1.
The pump pulses satisfying (3.4) must then have a tail
falling ofI' within a few picoseconds, although the overall
pulse duration may be much longer. The exponent in
(2.30) that determines the squeezing strength becomes
large for ~(iv~ = N~(i~ = N(AI'/b) ~ && 1, which re-
quires in this case N )) 10 /, N being the number of
periodically recurring pump pulses. Such a value of X is
consistent with the number of cycles, each lasting 10
sec, that can fit well within the off-resonant absorption
lifetime of the gas (in order to avoid dissipation).

02
p

~12 12 +
4A

(3.1)

rb rs'
np ——1+A mno ——1+A 2 . (32)I'2 + $2 (F2 + A/2)

)3)
)I

(2) 4/

IZ
0

FIG. 5. Frequency modulation scheme for a three-level sys-
tern.

where Op is the pump-field Rabi frequency. This level
shift alters the detuning &om b = cdp —(d12 to 8'

(dp —4)~2, thereby changing the refractive index of the
gas &om np to np. The well-known rule of Lorentzian-
line dispersion yields

We are now in the position to compare the merits of
the present scheme, discussed in Secs. II and III, with
those of the following existing schemes for the generation
and squeezing of a signal at frequency ~, using a pump
at a frequency ~p in a cavity that supports only these
two modes:

(a) Harmonic generation [21,22]: In the process of nth
harmonic upconversion ~, = nap, the signal field E,
is driven by the nonlinear polarization P~"~ = y~"~E„",
where Ep is the pump field. Classically, E, then evolves
as a driven harmonic oscillator, whose amplitude scales
with y~"~E„".This scaling is in sharp contrast with the
growth of the signal field in our scheme, which is governed
by the pump-dependent squeezing parameter (i. As seen
from Eqs. (2.26), (2.32), and (3.3), this parameter is in-

dependent of the ratio of the signal frequency ~p to the
modulation cycle 2vr/T, nor is it related to the pump
carrier frequency. This remarkable property reHects the
abrupt termination of the cycle U(T), which gives rise to
a broad excitation spectrum, and yields efFective upcon-
version of the modulation cycle even for high harmonic
ratios, n = upT/2m » l.

(b) Intensity-dependent refractive-index processes,
which have the following two origins:
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(i) Self-phase-modulation [22,23): This process, which
is induced by the nonlinear refractive index y(") [E,~"

(for odd n) is commonly encountered in Kerr media,
where n = 3. In such processes, the dynamics of E,
is determined by anharmonic oscillator equations. This
entails a fundamental limitation on squeezing [23]: An-
harmonic dispersion will transform an initially coher-
ent state first into a squeezed state (self-squeezing), but
subsequently into a "Schrodinger cat," i.e., superposi-
tion of coherent components with distinct mean phases
that counter-rotate in the phase plane. A large self-
squeezing parameter will thus result in rapid quenching
of the squeezing. By contrast, in our scheme harmonic-
oscillator dispersion is maintained (only the oscillation
frequency is changed), whence no intrinsic limitation on
squeezing exists in time.

(ii) Pump-induced refractive index pr-ocesses governed
by Hill's equation: When the pump is much stronger than
the signal, we can make the nondepleted pump approxi-
mation [21,24], whereby

pA /lc,
2—

2 3
2~,/~,

FIG. 6. Stability diagram for a signal field parametrically
coupled to an intense pump field (Hill's equation modulation).
Compare the width of shaded spaces (instability regions) with
those in Fig. 1 for same values on the axes.

Ep ~ Ap cos Kpz) (4 1) V. CONCLUSIONS

assuming that the cavity supports a standing-wave mode
of the pump, with wave vector tc„=~ez~z/c Then, .the
nonlinear correction to the re&active index of the sig-
nal field is governed by Hill's equation for a periodically
modulated oscillator [24], which has the following form
for the most common case n = 3:

82E, 2 psA2
2 + Ks 1+ 2

cos KPz E 0)0 z K
(4.2)

where Ps y( ), and r, = ~e,u, /c. The properties
of Hill's equation [which in the case of (4.2) becomes
Mathieu's equation] may, therefore, elucidate the onset
of harmonic or subharmonic amplification in this system.
These properties imply that parametric amplification oc-
curs near the resonances (corresponding to perfect phase
matching) 2r, /r„=m, where m = 1, 2, 3, ..., only ivithin

the instability regions of the solutions. The width of the
instability zone is proportional to (PsA&/r, )2 [26] (see
also [25]) and, therefore, becomes negligible for m )) 1.

Comparison of the foregoing results with those ob-
tained in Sec. II underscores once more the advantageous
property of abrupt switching off of the parametric mod-
ulation, for which the instability region width is nearly
independent of m = ~oT/vr In Fig. 6 we sho. w the corre-
sponding instability regions of Eq. (4.2) by plotting the
modulation amplitude PAz/e2 versus the wave-vector
ratio 2r, /Ic„. These instability regions should be con-
trasted with those shown in Fig. 1 for the same values of
the modulation strength s —1 and frequency ratio 8/z.

Our analysis of periodic &equency sweeping in har-
monic oscillators (Sec. II) has elucidated the general prin-
ciples underlying the occurrence of squeezing and para-
metric amplification in the various models that have been
considered thus far [6,7,9,12—16]. The parametrically un-
stable solutions, which have been shown to be the key
to the desired dynamical evolution, are the temporal
counterparts of evanescent waves (band-gap solutions) in
structures with spatially periodic re&activity.

The experimental realization of the present scheme in
the microwave domain suggested in Sec. III has been
shown to present rather modest requirements: Strong
squeezing (more than 99%) requires a resonator with a
Q value exceeding 10s, filled with moderately dense gas
that should be driven off resonance by a train of several
hundred nearly-identical equally spaced optical pulses
with picosecond switch-off times. Nevertheless, the ex-
isting detection efficiency would limit the observation of
much stronger squeezing than in a parametric amplifier
(50% squeezing at microwave frequencies [27]). By con-
trast with currently known pump-upconversion methods
(Sec. IV) in our scheme the pump-dependent squeezing
parameter and the modulation spectral bands (instability
regions) are independent of the frequency ratio between
the signal and the modulation.
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