PHYSICAL REVIEW A

VOLUME 50, NUMBER 6

Quantum-limited measurements with the atomic force microscope

G. J. Milburn
Department of Physics, University of Queensland, St. Lucia 4072, Australia

K. Jacobs and D. F. Walls
Department of Physics, University of Auckland, Auckland, New Zealand
(Received 27 April 1994)

We consider the quantum and classical noise limits to position measurement and force detection
by an atomic force microscope (AFM) with an optical readout of cantilever position. We model this
by treating the cantilever as a perfectly reflecting mirror for a highly damped optical cavity. There
are three sources of noise: the shot noise in the output laser measurement, the thermal noise in the
cantilever, and the measurement back-action noise. This last source of noise becomes large for good
measurements, measurements for which there is a high correlation between the output phase of the
light and the changing position of the cantilever. The back action simultaneously drives a diffusion
process in momentum and diagonalizes the cantilever state in the position basis. This latter result
is “state reduction.” Explicit expressions for the rate of the measurement back action in terms of
the device parameters are given. We also calculate the signal-to-noise ratio in the limit of a bad
cavity. A comparison to recent experiments suggests that current AFMs are not quantum limited.
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I. INTRODUCTION

If there is a problem of measurement in quantum me-
chanics, it must surely be this: why is quantum mea-
surement theory apparently so irrelevant to experimental
physics? More than 60 years of unresolved debate on the
interpretation of quantum mechanics and measurement
has not in the least slowed the progress of experimental
physics. Perhaps the answer to this question is, until very
recently, no measurement has been limited by quantum
noise. Thus it has simply not been necessary to consider
in detail the action of a measuring device at the quantum
level.

This is not to say that there are no experiments that
require a quantum explanation. Quite the contrary is the
case. However, in all cases the action of the measurement
device itself can be described, just as Bohr claimed, as
a classical device, limited perhaps by thermal or other
classical sources of noise. Furthermore it is not the case
that no progress has been made on the theoretical front.
Indeed it is only possible to undertake an analysis of real-
istic quantum limited measurements because of the rapid
progress in the field of quantum stochastic process over
the past few years [1-4].

In the past decade measurements limited by quantum
noise have become important. Perhaps the best exam-
ple comes, rather surprisingly, from the effort to detect
gravitational radiation. Gravitational radiation is very
classical; however, for most sources gravitational radia-
tion interacts so weakly with terrestrial detectors as to
excite the system to only the first few levels above the
ground state. If any detector is to work at all, this very
small excitation must be measured in the background of
many noise sources. It was realized by Braginsky [5] that,
after all classical noise sources had been minimized or
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eliminated, ultimately the sensitivity of the device would
still be insufficient, due solely to the irreducible quantum
fluctuations in the ground state of the detector. Consid-
eration of gravitational radiation detectors has forced us
to confront the real problems of measurement in quan-
tum mechanics. It was in this context that the concept
of a quantum nondemolition (QND) measurement arose
[6]. In recent years QND measurements have been car-
ried out on the electromagnetic field [7-9]. In quantum
optics measurements are necessarily limited by quantum
noise as at optical frequencies thermal noise may be ne-
glected compared to zero-point fluctuations in the elec-
tromagnetic field. Furthermore, optical nonlinearities are
sufficiently large to generate significant quantum coher-
ence effects, which do not appear at all in a classical
treatment. Outside of quantum optics and gravitational
radiation detection, it is very hard to find examples of
truly quantum-limited measurements.

In this paper we analyze the measurement of displace-
ment with the atomic force microscope [10,11]. The pur-
pose is to show, in the context of a real measurement,
how quantum limits appear and furthermore to show how
quantum state reduction appears from the viewpoint of
the experimentalist. Current atomic force microscopes
operate nowhere near the quantum limit. It is not even
clear that, for the measurement of atomic position, one
would want to operate at the quantum limit. However,
the analysis shows clearly how to modify current atomic
force microscopes should it become necessary to make
measurements so accurate that they are limited only by
the uncertainty principle. A recent proposal [12] has sug-
gested that the atomic force microscope (AFM) can be
used to image systems of precessing spins. In addition
there are many schemes that use the AFM to determine
the magnetic properties of surfaces. A quantum-limited
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atomic force microscope, in this context, might be a real-
istic alternative to superconducting quantum interference
device detection of small magnetic moments [13].

II. AFM MODEL

We will first consider an AFM with interferometric
transduction of the cantilever position [14,15]. In this
configuration the cantilever forms a perfectly reflecting
mirror for one end of a low-Q cavity. The other cavity
mirror could be formed by the cleaved end of an optical
fiber placed close to the cantilever as in the experiment
of Rugar et al. [14] or it could be formed by a beam
splitter at which input light and back-reflected light are
combined as in the experiment of Schoenenberger and Al-
varado [15]. In the experiment of Schoenenberger et al.
there is also a reference cavity which is formed by reflec-
tions of a second beam, derived from the same source as
the detection beam, from a different position on the can-
tilever. This configuration permits homodyne detection
to be done in the presence of phase fluctuations in the
source laser. We will assume that the motion of the can-
tilever is simple harmonic. At the end of this section we
consider the case in which there is no explicit reference
to a cavity field.

The Hamiltonian describing the interaction between
the cavity field and the cantilever position is identical
to that used to describe the interferometric detection of
gravitational radiation [16]. The free Hamiltonian is

A2 me

HO = ﬁ"‘)ca'fa + 2p_m + -_2—qu ) (1)
where m is the mass of the cantilever, w,, is the resonant
frequency of the cantilever, w. is the cavity field, reso-
nance frequency, a is the annihilation operator for the
cavity field, and § and p are the canonical position and
momentum operators for the cantilever. The interaction
between the cavity field and the cantilever is described
by the interaction Hamiltonian [16]

wC A
Hy = h%alaq (2)

where L is the cavity length. Thus the mirror moves in an
effective linear potential with acceleration proportional
to the intracavity photon number. It is convenient to
define dimensionless canonical variables for the cantilever

Q= (%) i 3)
P = (2ﬁmwm) Sﬁ . (4)

The commutation relation is [@, P] = ¢/2. This means
that we are measuring position and momentum in units
of the rms position and momentum fluctuations in the
ground state of a harmonic oscillator. The interaction
Hamiltonian may then be written as

H; = kataQ, (5)
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where

K=(_2ﬁif_)% | ©

mwy, L2

Estimates of this coupling constant, for realistic AFMs,
is given in Sec. VI.

Both the cavity field and the cantilever oscillator are
damped and consequently subject to noise. The nature
of this noise, however, is quite different for the two sub-
systems. For the field at optical frequencies, the noise
is due entirely to quantum zero-point noise and the cor-
rect description of the damping is by the quantum-optics
master equation. The cantilever, however, is dominated
by thermal fluctuations and the appropriate description
of the damping is provided by the Brownian motion mas-
ter equation, in the high temperature limit [4]. The total
dynamics of the system is then described by the master
equation

dw

—p = ~wm[Q® + P2, W] —iE[a +a', W]

—iata(A + KkQ), W]
+g—(2aWaT —a'aW — Wa'la)

—i%[Q, [P, W]+] - ZNT[Q’ [Qa W]]’

where W is the total system density operator, [, |+ is
an anticommutator, E is the amplitude (assumed real)
of the coherent laser field driving the cavity, A is the
detuning of the laser, v is the cavity decay rate, I' is the
cantilever decay rate, w,, is the cantilever frequency, and
N7 is the momentum diffusion constant due to thermal
noise

_ TkpT
T Bmwm,

Nr

(7)

Corresponding to this master equation are the quan-
tum stochastic differential equations [4]

da

E:E—i(A—i—nQ)a—%-}-\/’_yain» (8)
d

d—? =w,P, (9)
% = —wmQ — %P - gaTa +E() (10)

where the noise operators for the cantilever are defined

by

TkT (1)
mhw,,

These equations may be linearized around the stationary
steady state with

(€@)e) = 8(t — ).

2FE2%k2

A= v (12)
2

ag = TE . (13)

That is to say, we choose A so that the cavity is on
resonance in the steady state. The linearized quantum
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stochastic differential equations are

déx v in

dé .

d—ty = —géy—MQJrﬁy"‘, (15)
déQ

—E— = wm5P y (16)
BP L p 60 — pbz +£(t) (17)
dt m

where we have defined the quadrature phase fluctuation
operators

1

i(a—ao—{-H.c.), (18)
—%(a—ao —H.c) (19)
and the coupling constant u is defined by p = ke .

We now define the Fourier components of the fluctua-
tion variables by

sute) = [ Tly@)e 4 sy(w) e (20)

and similar expressions for the other quantities in the
linearized equations. Note that as dy(t) is Hermitian,
then dy(w) = dy(—w)!. In frequency space the noise
correlations are

(z™(w)z™ (W)} = §(w - '), (21)
W™ @y (@) = dw - o), (22)
(@ (W)y™ (")) = id(w — ') . (23)

In addition to these equations we have the boundary con-
dition which relates the output fluctuation field from the
cavity to the input field and intracavity field,

out \/—(sy y (24)

Measurements are made on the output field from the
cavity in order to determine the change in position of
the cantilever. It is clear from Eq. (15) that information
on the changing position of the cantilever is contained
on the out-of-phase quadrature of the field dy(t). We
thus expect that the corresponding output quadrature
component will be correlated with the variable §Q(t).
To see this we compute the correlation function

_ (09(w), 65°*(@))sym
V(8g(w)2) (dyout (w)2)’ (25)

where
(AB)oym = 3(AB + BA) = (4)(B). (26)

Solving the linearized equations in the frequency domain
we find that

D+2NT(1+‘%’;)

IC|? = e\ o
D+ 2N (1+ %) + $516(wm)]?

,o (27

where N7 is the thermal noise rate constant defined in

Eq. (7).

2
p=2~ (28)
Y
8k2E?
= 73 (29)
and
. 2 2
21w w Tw

As we show below, the rate constant D determines a
diffusion in the momentum of the cantilever and thus
represents the quantum back action of position measure-
ment. The correlation function will become small for
increasing w due to the last term in the denominator of
Eq. (27), so we consider the resonance case of w = w,,.
In Fig. 1 we plot |C|? versus ;— for various values of
D with N7 /D fixed. It is clear that the best correlation
occurs for v much larger than the resonant frequency of
the cantilever. This is the “bad cavity limit.” The field is
so rapidly damped that the output field from the cavity
responds almost instantly to the moving cantilever. In
the bad cavity limit we find

O 1+242
N N r'/m)?
1+25 + LZT)T'

(31)

Thus for a good measurement we need, in addition to the
bad cavity limit, the condition D > I'/m. This result
is illustrated in Fig. 1. Realistic values (see Sec. VI) are
v/wm = 10°, which is clearly in the bad cavity limit,
and D = 0.5 57! and I'/m = 0.4 s!, which just sat-
isfy the good measurement criterion. It should be noted,
however, that a measurement for which the correlation
function is close to unity is not necessarily quantum lim-
ited. Indeed for realistic values N7 ~ 10° s71, so that
we expect the signal to be limited by thermal noise, not
back-action noise. This is discussed further in Sec. V.

0.
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FIG. 1. The correlation coefficient between the output

out-of-phase field quadrature amplitude and the cantilever
position at the cantilever frequency wm versus the field damp-
ing rate v in units of wm, I'/m = 0.001, and Nr/D = 1. (i)
D =0.1, (ii) D = 0.01, and (iii) D = 0.001.
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III. BAD CAVITY LIMIT

In the preceding section we concluded that for a good
position measurement we need the cavity to respond
rapidly to the changing cantilever position, that is, we
need v > w,,. Indeed, as we show in Sec. VI, this is
the limit in which current devices are operated. In this
section we derive a master equation for the cantilever
alone by adiabatically eliminating the cavity field. This
is done as follows [17]. In the absence of the coupling
to the cantilever, the field reaches a steady state with
coherent amplitude o given by

2E

(32)
5

Qg =

We then transform the total state of the system in the
steady state by

W = Dt(ao)WD(ay) - (33)

In this “displacement” picture the steady state of the
field is close to the vacuum state and we can try an ap-
proximate solution of the form

W = p0|0)a(0] + (p1]1)a(0] + H.c)
+ p2|1)a(l] + (p2'|2)a(0] + H.c.). (34)

The cantilever density operator is then given by

oM = trtW
=potpz2. (35)

The resulting master equation for the cantilever alone is

dp

E - —":“-"'r'n[Q2 + P27 P] - iK’IQOIZ[Qap] + 21’f(t)[Qa P]

- i%[Q, [P,p]+] — 2 (NT + %) (@, (@.r]] , (36)

where the quantum back-action noise D is given by
Eq. (29) and where we have included a possible classical
linear driving force f(t). The quantum Langevin equa-
tions, corresponding to this master equation, are linear
and will be analyzed in Sec. IV.

In the above we have included an explicit cavity field,
albeit only to adiabatically eliminate it from the problem.
However, we can consider the case in which a multimode
traveling wave field is directly coupled to the cantilever.
In this case the interaction Hamiltonian is [18]

Hj = 2kkb} (t)bi(t)q , (37)

where b;(t) is the field amplitude operator defined so that
[b1('),b:(t)] = 6(t' —t) and k is the wave number at car-
rier frequency of the input field. In dimensionless posi-
tion the interaction becomes

Hp = hgbl(t)b:(t)Q , (38)

where

g=2 (Z_ﬁ)/ . (39)

MWy

To obtain a master equation for the cantilever alone we
proceed as follows. Let the field operator be written as
a sum of a coherent amplitude and a vacuum fluctuation
term

b; (t) = Ab; (t) + gi(t) s (40)

where &;(t) = Ee ™It and |&;|? is the photon flux of
the input field. With these assumptions the contribution
of this interaction to the master equation is as given in
Eq. (36) with the replacements x|ao|? = g|&;|? and

D = g%|&;|%. (41)

IV. STATE REDUCTION

Before turning to the most important aspect of the
problem, that of determining the frequency response of
the signal-to-noise ratio, we first consider the perennial
question of state reduction. If the AFM does indeed re-
alize a measurement of position, a naive consideration
would indicate that the cantilever state should be “re-
duced” in the position basis. At the density matrix level,
where we do not specify a measurement result but only
that the measurement is taking place, state reduction
appears as an effective diagonalization of the density op-
erator in some basis, here the position basis [19].

Such is indeed a consequence of Eq. (36). To see this
we note that in the position representation the quantum
back-action noise term contributes in the form

d '

HaOld) _ () DG~ ) (alele) . (42)
where (---) indicates the dynamics arising from all the
other terms in Eq. (36). It is clear from Eq. (42) that
the off-diagonal elements of the cantilever density oper-
ator, in the position basis, decay at a rate proportional
to D and the square of the separation from the diagonal.
This is the standard way in which state reduction be-
comes manifest for continuous measurement in a Markov
regime. The parameter D, which determines the rate
of diagonalization, also determines the diffusion constant
for momentum. This is just the back action required by
the uncertainty principle. This is seen by evaluating the
contribution of the double commutator term to (P2),

d{p?
%l:(...)_kp. (43)
Thus for very accurate measurements, D is large, diago-
nalization is rapid, and, in a complementary fashion, the
diffusion in momentum is rapid. Thus D is responsible
for diagonalization in position and diffusion in momen-
tum.

The above discussion shows how the density matrix for
the cantilever becomes diagonal on the long time scale
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associated with the adiabatic approximation. In the Ap-
pendix we consider the opposite time scale, the time scale
in which the cantilever dynamics can be neglected. In
this approximation one can obtain the total dynamics of
the cantilever and cavity field.

The result in Eq. (A8) indicates that on the time scale
vt << 1, off-diagonal matrix elements of the cantilever,
in the position basis, decay as t%. Specifically we find

ple,qt E?k*(q — ¢')?t
rora i G ) RN

However, on the adiabatic time scale yv¢ > 1, we find
the expected Markov decay rate in Eq. (42).

V. OUTPUT SIGNAL

Of course what is actually measured is some property
of the output field from the cavity, not the cantilever
position directly. One expects that variations in the can-
tilever position will appear as phase shifts on the output
field, which can then be determined by phase-dependent
detection, for example, by homodyne detection. If one
does direct photon counting on the output field, the re-
sulting photon current, for unit quantum efficiency, is
proportional to the process rate i(t) given by

i(t) = ytr(alaW) . (45)

The conditional state of the intracavity field and can-
tilever, given a single count in an interval dt at time t, is
given by [17] the count superoperator J, where

W=Jgw (46)

=yaWa' . (47)

However, in keeping with the adiabatic approximation
we do not wish to make explicit reference to the intra-

cavity field. We are thus led to define the effective count
superoperator Js by

Tmp =tr(JW), (48)

where tr is a trace over field variables alone. To deter-
mine this superoperator explicitly, we need the approxi-
mate form of the steady state of the cantilever and field
W in the adiabatic approximation and the displacement
picture. This is given by

-~ X2
W= (p - ngQ) 10} (0]
- (i%eionII)a(m + H.c.)

2
+ %QpQ!l)aﬂl

_ x? £2i0 02 c
( T @ l2)a0] + B ) (49)

G. J. MILBURN, K. JACOBS, AND D. F. WALLS 50

where x = 2u. In the Schrodinger picture, the steady
state is D(ag)WDt(a). Substituting Eq. (49) into
Eq. (48) we find

Jmp = cpc' | (50)

where
c= x/“?(laol - 2i$cz) (51)

with «¢ given by Eq. (32). In the adiabatic approxi-
mation terms of higher order in % have been neglected
so Eq. (51) indicates that the position of the cantilever
simply causes a phase change in the field reflected from
the cavity.

In order to see such a phase change it is necessary to
consider a phase-dependent detection scheme. Here we
will consider homodyne detection. The output field from
the cavity is mixed with a coherent local oscillator field
at a beam splitter. The combined field is then subjected
to direct photodetection. A full quantum theory of ho-
modyne detection is given in Wiseman and Milburn [17].
The detected field operator may be written as

B=~(a+p8), (52)

where /703 is the local oscillator amplitude in units such
that the corresponding amplitude squared is in units of
photon flux. In practice the local oscillator is derived
from the same laser which is driving the cavity. In order
to ensure good phase matching between the local oscilla-
tor and output field, it would be desirable to first pass the
local oscillator through a cavity identical to that seen by
the signal, but with the end mirror fixed in place. This is
essentially the scheme of Schoenenberger and Alvarado
[15].

The effective count superoperator for the cantilever is
then given by

Imp = tr(a + B)p(a’ + 8%)] . (53)
If we choose 3 = —iag, then
Im = 2y]ac)?p + x|ao|(Qp + pQ) , (54)

where we have dropped terms of order % and higher.
The mean photocurrent is then

E(i(t)) = 2v|aol® + 2x|aol(Q) - (55)

The mean signal s(t) can then be defined as the photo-
current minus the dc component 27|ay|?, that is,

s(t) = 2x|eol(Q) - (56)

The fluctuations in the homodyne current are given by
(17]

E(i(t +7),i(t)) = 2v]ao2[4D(Q(t + 7), Q(£))s + 8(2)] ,
(57)
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where D is the same back-action noise parameter de-
fined in Eq. (29) and the symmetrized correlation func-
tion (, ), is defined by Eq. (26). The last é-function term
is the shot-noise term. The signal spectrum is defined by

s(w) = / dtets(t) . (58)
The noise spectrum is defined by

N(w) = / T rEGi(t + 1), i(t)) e

— 00

= 2v|ao|? (1 +4D /_00 dre™H(Q(t + T),Q(t))a> .
(59)

If we define the positive and negative frequency compo-
nents of Q(t) by

Q) = /0°° dw[Q(w)e ™" + Q' (w)e™] (60)

then the signal-to-noise ratio R(w), defined by

_ _ ls(w)]
Rl = 5ot (61)
is given by
[R(w)]z — 4D|(Q(w)>l (62)

[ +4D(Q(w), Qw))J2T ’

where T is the measurement integration time defining
the Fourier components and D is given by Eq. (29). It
was shown in Secs. II and III that a good measurement
should correspond to D large. This is clearly seen to be a
good measurement from the point of view of the signal-
to-noise ratio; if D is large the signal-to-noise ratio is
determined only by the intrinsic signal-to-noise ratio in
the cantilever position Q(¢).

To proceed we need the quantum Langevin equations
corresponding to the master equation for the cantilever
Eq. (36). These are

%Cf— = wnP, (63)
%’t_’ = —wmQ — %P— -'23|a012 +f(t)+&@),  (64)

where the operator-valued white noise source £(t) is de-

fined by

ey = (Ne+ 3 )e-0). (6

The constant force proportional to |ap|? is just the ra-
diation pressure force. We will assume that this may be
removed by applying a constant force to the cantilever
and hence neglect it in what follows. Taking the Fourier
transform of these equations and ignoring initial tran-
sients (as we are only interested in the stationary fluctu-
ations) we find

wmf(w) =, (66)

Q) =

where f(w) is the Fourier transform of f(t). The noise is
given by

w? (N7 + %)
—qefj2 ”

QW)QW)") = l (67)

w?, — w?
For a dc force, f(t) = fo and f(w) = foT, with T the

measurement integration time. Then at w =0,

8D f2T
w2, +4D (NT+ %) ’

[R(0)]* = (68)

Thus the minimum detectable force (signal-to-noise ratio
is one) is determined by

2 _ L (“n onpiD (69)
mno AT \ 2D )

We can express this in terms of a minimum detectable

displacement using

fo = (2hmwy,) Y%K d, , (70)
where K is the spring constant in newtons per meter and
dp is the displacement in meters. Thus

dmin =

hmw,, (w2,
-2},{—251— (E +2NT+D) . (71)

The term proportional to D~ is the error due to shot
noise on the output intensity. This may be made small by
increasing the laser power, i.e., increasing D. The second
term is the error due to the thermal fluctuations in the
cantilever. The final term is the error due to the quantum
back-action noise, which in physical terms arises from ra-
diation pressure fluctuations. Clearly there is an optimal
value of D, which is easily found to be

Wm
V2
At the optimal value for D, and in the quantum limit

of D >> N7, the minimum detectable displacement
squared is

Dopt = (72)

h
. = — 73
i = T T (73)
This is the “standard quantum limit” [19] for this prob-
lem.

VI. DISCUSSION AND CONCLUSION

Current AFMs do not operate anywhere near the quan-
tum limit. However, it is instructive to estimate the
quantities N and D for operational systems. We will
consider two examples: the optical system of Schoenen-
berger and Alvarado [15] and the optical trap AFM of
Ghislain and Webb [20].

Schoenenberger and Alvarado use a cantilever with an
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optical interferometric transducer. The cantilever forms
a mirror and has a resonant frequency of around 4.5 X
10% s71. The Q of the cantilever is 200 and the spring
constant is 20 Nm™!. At room temperature this leads to
a value for the thermal noise constant A’ = 4 x 10° s~ 1.
The wavelength of the light used in the detection scheme
is 6.3 x 1077 m~! at a power of around 0.1 mW. This
gives an intensity in photon flux 7 = 3 x 10!¢ s7!. In
this case D [Eq. (41)]is 0.5s™!, rather smaller than Nr.
Clearly this device is nowhere near the quantum limit,
and it would seem unlikely that any realistic device could
ever operate near the quantum limit due to the smallness
of D compared to the thermal noise.

However, the optical trap scheme of Ghislain and Webb
[20] seems more promising. In this scheme instead of
using a cantilever as the force transducer, an optically
trapped microparticle is used. This device has a very
small spring constant (10~° Nm™!) and consequently can
be used to detect much weaker forces. In the Ghislain
and Webb proposal the microparticle is also suspended
in water and thus the performance is limited by thermal
fluctuations in the liquid. However, with this scheme
there is nothing in principle to prevent operation in ul-
tra high vacuum, provided sufficiently small particles and
high power trapping lasers can be used. In that case the
effective thermal noise is due only to laser intensity fluc-
tuations and incoherent scattering of light by the micro-
particle. An analysis of these noise sources will be given
in a subsequent paper. Using the figures quoted by Ghis-
lain and Webb, we estimate that Np = 2.5 x 1012 s7!
and D =5 x 10% s~!, which is clearly heading in the
right direction.

In this paper we have analyzed in detail the noise limi-
tations of atomic force microscope transducers including
both classical and quantum back-action noise. We have
shown how state reduction occurs when the device is fully
quantum-limited and that the parameter that determines
the rate of state reduction appears from an experimental
point of view as the noise constant for quantum back-
action noise. The analysis indicates how difficult it will
be to make quantum limited AFMs unless a way can
be found to overcome thermal noise. Perhaps feedback
schemes might be useful in this context [21]. However,
replacing a cantilever transducer with an optical trap
transducer indicates that a quantum-limited AFM may
be possible.
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APPENDIX: STATE REDUCTION

In this appendix we show how the monitoring of the
cantilever position leads to a diagonalization of the can-
tilever density operator in the position basis. Two time
scales are considered, a short non-Markov time scale and
a longer, exponential decay, time scale.

Assume that the time scale for diagonalization is such
that we can ignore the motion of the cantilever due to
free evolution or damping. Thus the master equation
that governs the field-cantilever dynamics is

%’ = —ix[a'aQ, p] — iE[a + a', ]
+ %(2apa)f —atap — pata) . (A1)
Now define a field operator
pr(2:q5t) = (glp(t)ld) , (A2)

which is the matrix element of the density operator in
the cantilever position basis. Then

0 't . .
p—f(;’tq—) = —ikz[a'a, pr] — iry{a'a, pr}
—iE[a + af,pp]

—*—%(Za;oa.t —atap — pata), (A3)

where z = (¢+¢')/2 and y = (¢ — ¢')/2. We now use the
positive-P representation [4] for the operator pp,

pr = [ PlevB)Ale p)dads (a4)
Then
oP 08 (. vy . .
5t = 5 (zE + e + tkza + mya)P
0 . ¥ . .
+ e (—~1E + 56 —ikzf + myﬁ) P
— 2ikyafP . (A5)

Note that when y = 0, 3 can equal o* and we have a
Fokker-Planck equation for the (unnormalized) density
operator pr(q,q,t). If we integrate P(a, ) over a and
3, we obtain the off-diagonal matrix element p(q, ¢’,t) for
the cantilever at time t. Equation (A6) can be solved by
the method of characteristics. If we assume that the field
is initially in a vacuum state and the cantilever is in an
arbitrary pure state |¢), then we find

E?(1 — e~ l1/2+in(z+y)lt)

p(q:4'st) = exp [—%ny (

E?(1 — e l1/2-in(z=y)lt)

(7 +is(z+y)|[F -z —y)] [T +in(z+y)P[T - is(z - y)]

EZ(]_ _ e—(‘y+2iny)t)

TGt yIE - )P | F + i+ y)]E - il - v)](7 + 2iny)

)}p(q,Q',O) . (A6)
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We now consider two limits, the long time limit and
the short time limit. The long time limit is vt > 1 and

1t
lp(q,q',t)| exp<

T [P/4+ R2 (22 — )2 + y2k2y2

(A7)

_ 2k2E%y%yt
lo(g,9',0)|

In this case we have a simple exponential decay and thus
identify this as the Markov limit for decay of coherence.
Note that the rate of decay is proportional to (¢ — ¢')?,
as noted in Sec. III. This leads to a rapid diagonalization
of the cantilever density operator in the position basis.
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It is easy to see that in the adiabatic limit of large +y the
decay rate is D(gq — ¢')?, as expected, with D given by
Eq. (29).

The short-time limit is y¢ << 1. In this case we find

’ 2,2, 2,4
G501 R 2 "a o (A8)
lo(g,q',0)| 2

Clearly this is a non-Markov decay on short time scales.
However, it is still the case that the coherence decay rate
is proportional to (¢ — ¢')2. The reason why coherences
initially decay at a rather slower rate is due to the need
for free evolution to develop correlations between the field
and the cantilever.
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