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Deexcitation and charge exchange of excited muonic hydrogen are considered. The inverse
quasiresonant charge exchange process is taken into account. During cascade the inverse charge ex-
change balances the direct process down to the level with the principal quantum number # for which the
resonance defect is larger than the collision energy. The density of the muonic atom for n <# is then
determined by deexcitation and muon transfer to nuclei of heavier hydrogen isotopes. Energy depen-
dence of the ground-state population of the initial muonic hydrogen, q,,, is considered. Comparing our
results for the g, parameter with the available experimental data, we conclude that the collision energy
of the excited muonic atoms is ~3 eV for D-T and ~5 eV for an H-D mixture.

PACS number(s): 34.60.+z, 36.10.Gv, 34.70.+e, 82.30.Fi

I. INTRODUCTION

The slowing down and atomic capture of negative
muons by hydrogen have been investigated theoretically
in Refs. [1-6]. These processes present the first stage of
the formation of muonic hydrogen atoms and determine
their initial energy distribution in gaseous or liquid tar-
gets. Since there are no direct corresponding experimen-
tal data, the theoretical predictions become very impor-
tant.

Different theoretical approaches have been used to de-
scribe inelastic muon collisions with hydrogen atoms
[2—-4] and molecules [6]. The pioneering quasiclassical
treatment [1] with the approximation of the stopping
medium as an electron gas is more adequate for muon
collisions with multielectron atoms. Since the average
muon energy varies from a few eV to several keV,
different methods are adequate for various muon ener-
gies. Side by side with Born approximation for high-
energy muons, other quantum-mechanical and classical
calculations were adopted for low-to-intermediate ener-
gies, in particular, the diabatic-state treatment of muon
capture [2], as well as the classical-trajectory Monte Car-
lo method [3]. The model of inelastic collisions of muons
with hydrogen molecules in the framework of the adia-
batic representation method by the system of coupled-
channel equations was considered in Refs. [6].

After formation of muonic hydrogen in the mixture of
hydrogen isotopes its destiny is determined by deexcita-
tion and muon transfer to heavier nuclei. Such processes
were considered, e.g., in Ref. [7]. As for muon transfer
processes, in contrast with previous publications, we take
into account in the present paper also the inverse muon
transfer (from heavier to lighter nucleus of hydrogen iso-
tope) for collision energies € exceeding the resonance de-
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fect for a given principal quantum number n. As a result
we can explain the experimental data on the ground-state
population g, of muonic deuterium in D-T mixture [8],
considering the kinetics of the excited muonic atoms at
collision energies 2 <e <3 eV. The available experimen-
tal data for H-D mixture [9] can be explained assuming
collision energy ranges between 5 and 6 eV (see Sec. IV).

II. DEEXCITATION PROCESSES

Radiative and external Auger deexcitation modes of
the excited muonic hydrogen as well as deexcitation via
target molecule dissociation and Coulomb deexcitation
were considered by Leon and Bethe [10]. Auger deexcita-
tion was considered in the Born [10] and eikonal [11] ap-
proximation. For transitions shown in Fig. 1, we used
the rates of radiative deexcitation from Ref. [12] (see
Table I).

The decisive role in the deexcitation of the muonic hy-
drogen immediately after Coulomb muon capture belongs
probably to the chemical reactions involving the dissocia-
tion of the target molecules (dissociation energy for hy-
drogen molecule is €4,~4.7 V). In the present paper,

TABLE 1. Radiative deexcitation rates of muonic atom (see
Ref. [12)).

(n,1);—(n,]); Araa(100 s71)

2p—1s 13
3s—2p 0.12
3p—2s 0.43
3p—>ls 3.5
3d—2p 1.3
415 0.3
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TABLE II. Rates for du deexcitation caused by molecule
dissociation calculated according to Ref. [10] for collision ener-

gy e=1eV.
n—n; Ama(10 s71)
87 12
9—8 19
10—9 29
11-9 42
12—10 59

molecular dissociation is considered for excited muonic
atom states with the principal quantum numbers
8=<n =12 (see Fig. 1). Following Ref. [10] the corre-
sponding cross sections are approximated by the geome-
trical ones (the transition rates are then proportional to
V) which seems to be justified for collision energy
€ <gg; only. On the other hand, as it was shown in Sec.
III of the paper, the q,, parameter practically does not
depend on deexcitation processes for the states n>4 at
collision energy €>2 eV for D-T, and n>6, at e=5 eV
for the H-D mixture. Therefore, the energy dependence
of cross section for € > gy, is rather unimportant for our
q,, results. The rates of deexcitation caused by molecule
dissociation, calculated for collision energy e=1.0 eV ac-
cording to Ref. [10], are presented in Table II.

Auger deexcitation rates were calculated for muonic
hydrogen using the values obtained for pionic hydrogen
in Ref. [10] (see Table III). As for the Stark mixing of 2p
and 2s states and the induced 2s —2p — 1s transition, we
follow the results of Refs. [13—-18]. For collision energy
larger than the 2p-2s Lamb shift, i.e., €>0.2 eV, the
directs 2s —2p transition is energetically allowed and its
rate exceeds A, 4(2s—2p—1s). The rates of 2s—2p,
2p —2s, and A, 4 are given in Table IV.

The process of Coulomb deexcitation, which was men-
tioned in Ref. [10],

(Hu);+H'—(Hp); _+H' (1
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FIG. 1. Scheme of du atom deexcitation and muon transfer
processes in the collisions with tritium.

(H,H'=p,d,t and n =2) requires a special consideration.
The numerical analysis of reaction (1) for symmetric case
H =H' was performed in Refs. [19-22].

We use the quasiclassical approximation, which is
justified for the interaction of the excited muonic hydro-

TABLE III. Auger deexcitation rates for du atom (10'° s™') were calculated using the rates of pion-
ic hydrogen [10]. The rate for the 12—9 transition is allowed for the collision of the du atom with the

hydrogen isotope atom only (not the molecule).

ng 2s 2 2p 3
n;

3p 6.4

3d 18

4 0.8 97
6.3

428

28 1372
89 3393
16 251
43 457
91 900
28 177
56 310
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TABLE IV. Rates for 25 —2p, 2p —2s, and 2s —2p — 1 transitions in the du atom.

Collision du+D collisions dup+T collisions 2s-2p-1s

energy A (10" s71) A (10" s71) transition
(eV) 2p—2s 25—2p 2p—2s 25 —2p Aing (1010 s71)
0.01 0.00 0.00 0.01 0.00 0.25
0.02 0.01 0.00 0.04 0.00 0.32
0.04 0.04 0.00 0.16 0.00 0.40
0.06 0.10 0.00 0.33 0.00 0.42
0.08 0.21 0.00 0.61 0.00 0.45
0.10 0.36 0.00 0.91 0.00 0.47
0.50 100.10 300.31 100.10 300.31 9.80
1.00 157.30 471.90 157.30 471.90 9.80
2.00 222.45 667.36 222.45 667.36 9.80
3.00 272.45 817.35 272.45 817.35 9.80
4.00 314.60 943.79 314.60 943.79 9.80
5.00 351.73 1055.19 351.73 1055.19 9.80

gen with nuclei according to the validity condition
dA/dR <<1, where A is the wavelength of the muonic
atom and R is the internuclear distance. Thus one may
consider that the muonic atom moves along a classical
trajectory with an impact parameter p.

In the framework of this approximation the cross sec-
tion is given by

o=m f Opme dp?, )
where P is the reaction probability

P =2exp(—28)[1—exp(—28)] (3)
with Massey parameter

8=|m J p(R)R|, @)

where p(R)=MvV'1—U/e—(p/R)* is the radial
momentum, M is the reduced mass of colliding atoms, v
is the relative velocity of colliding particles at R — oo,
£=Mv?/2 is the collision energy. The effective potential
U of the interaction of an excited muonic hydrogen, hav-
ing parabolic quantum numbers (n,n,n,,m), with a hy-
drogen nucleus corresponds to the molecular term of the
two center Coulomb problem which is asymptotically
determined by linear Stark effect.

The molecular terms corresponding to the initial and
final states of reaction (1) and their crossing points are
evaluated in the complex plane of the internuclear dis-
tance R [23]. According to the theory, the transition
probability is completely determined by the analytic
properties of terms, corresponding to the initial and final
states of the system, being large mainly in the region of
quasicrossing of the terms in question, i.e., in the region
close to the singularities (branch points) of the terms.
The transition region is passed twice in accordance with
Eq. (3).

The integral in Eq. (4) is taken along a contour C en-
closing the branch point R, in the complex R plane. The
maximum impact parameter p,,,, in Eq. (2) is determined
by the requirement that p(R) be real at the trajectory,
i.e., for R ZReR,.

According to Ref. [23] the branch points responsible
for reaction (1) belong to the T series, which connects the
terms with parabolic quantum numbers (n,n,n,,m) and
(n—1L,n,n,—1,m).

If H=H", one should distinguish symmetric (gerade) g
states and antisymmetric (ungerade) u states. Both g and
u states have a common T series of branch points with
the same ReR,, but ImR,, ~2ImR,,. For this reason,
due to large values of Massey parameters, the transition
between the u terms has a much lower probability (with
the possible exception of a very large n, where the Massey
parameters are small due to small AU values). Coordi-
nates of the T series of branch points were calculated ap-
proximately with the help of the semiclassical approxima-
tion for the terms calculated in Ref. [24(a)]. Table V con-
tains our branch points calculated numerically for sym-
metric (gerade) terms for n > 4.

In contrast with Refs. [21 and 22], the exact values of
terms, calculated in semiclassical approximation [24a],
are used in the present paper to obtain Massey parame-
ters.

Only attractive initial states (with n, <n,) that give
the largest contribution to cross section due to the
“focusing” of the particles were considered. The screen-
ing of the charge of the hydrogen nucleus by atomic elec-
trons was taken into account in the same manner as in

Ref. [7].
The cross section of reaction (1) is
0,= 3 [(n—|A])/n*lo,(A), 5)

A<O

where A=n,—n,. If H=H', 0,(A) is an average over
the g and u states and

0,= X [(2=8y,)/n*)(1/2)[o,(n,m)+0,(n,m)], (6)

where o, , is the cross section corresponding to the sym-
metric or antisymmetric state.

If mass M of the nucleus H is smaller than that of H',
M,, the initial term becomes an antisymmetric ¥ term, or
eZ, term, since the difference in masses can be expressed
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in terms of the difference of charges of the nuclei, so that
Z,=2Z,+AZ (see Refs. [23 and 24a]).

The coordinates of T points are practically indepen-
dent of AZ for values in question (AZ <0.034). Since the
Massey parameter for the u term is much greater than
that for the g term, one might come to the conclusion
that the cross section for such a process is much smaller
than that for the opposite case M, >M,. This is true,
however, only for the direct transition via the T point.
As we shall show in the next section, there exists a three-
step process, realizing the reaction (1) for the asymmetric
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case M, <M, and having a cross section that is close to
that for the symmetric case M| =M,.

Figures 2(a)-2(f) show the calculated values of the
rates

A,=0,UN , (7)

reduced to the liquid-hydrogen density (LHD)
N =4.25X10% cm 3, for reactions (1) in “symmetric”
and M, > M, cases versus collision energy €.
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FIG. 2. (a) Rates for symmetric Coulomb deexcitation of pu atom in collisions with hydrogen as functions of € for different princi-
pal quantum numbers 7 indicated on curves. (b) Rates for symmetric Coulomb deexcitation of du atom in collision with deuterium
as functions of ¢ for different n indicated on curves. (c) Rates for Coulomb deexcitation of du atom in collision with protium as func-
tions of € for different n indicated on curves. (d) Rates for symmetric Coulomb deexcitation of zu atom in collision with tritium as
functions of ¢ for different n indicated on curves. (e) Rates for Coulomb deexcitation of tu atom in collision with deuterium as func-
tions of € for different n indicated on curves. (f) Rates for Coulomb deexcitation of ¢z atom in collision with protium as functions of

¢ for different n indicated on curves.
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TABLE V. T and P series of branch points obtained for the principal quantum number n and A=n, —n,.
P series T series P series T series
n —A ReR, ImR, ReR, ImR, n —A ReR, ImR, ReR, ImR,
2 1 24.8 4.1 6 340 18.7 226 40.5
5 309 18.9 207 39.2
3 2 53.6 6.5 4 278 19.2 185.5 37.9
1 42.1 6.6 3 247 19.5 166 36.5
2 213 20.1 145 35
4 3 93.7 8.9 45.4 15.3 1 180 21 123.7 334
2 78.5 9 36.1 14.3
1 63 9.2 27.1 13.2 10 9 578 23.6 406 56
8 540 235 381 55
5 4 145.3 11.4 80.8 71.6 7 502 23.7 356 53.3
3 126.3 11.5 68.7 70.5 6 464 24 329 52
2 107 11.7 57 19.4 5 425 24.2 304 50.7
1 86.5 12 44.8 17.9 4 385 24.7 278 49
3 345 25.2 253 47.8
6 5 208.5 13.8 126 28 2 301 26.1 227 459
4 185.8 13.9 111 27 1 258 27.6 204 4.1
3 163 14 96.8 25.8
2 138.8 14.4 81.8 24.5 12 11 833 28.2 605 71
1 114.7 14.8 67.6 229 10 788 28.3 574 69
9 743 28.5 544 68
7 6 283 16.2 181 34.8 8 696 28.7 513 67
5 257 16.3 164 33.6 7 651 29 482 65
4 230 16.5 146.5 324 6 603 29.4 450 64
3 203 16.8 128.5 31.1 5 556 29.8 420 62
2 173 17.3 112 29.7 4 506 30.5 388 60.5
1 144 17.6 94.2 28 3 457 31.1 357 59
2 402 324 326 57.1
8 7 370 18.6 246 41.6 1 349 34.6 297 55.1
A C R C
n n
10 (e) I o)
5 (tp)atd = (tp)n-1+d : : (tp)atp = (tp)a-i+p
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FIG. 2. (Continued).
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III. MUON TRANSFER
A. Quasiresonant reactions

Muon transfer reactions,

(du), +t—(tu), +d , (8)
(pu), +d—(dw), +p , 9
(pu), +t—(tuw), +p , (10)

represent quasiresonant reactions for which initial and
final terms in the limit R — oo differ by a small value of
the resonance defect AU =(pu,—p,)/2n*=48n "2 eV for

(dp)att = (tp)a+d

10 " e . ey
0.1 1
collision energy (eV)

Ao (s7)

Eq. (8), 135172 ¢V for Eq. (9), and 183n 2 eV for Eq.
(10), u; and pu, being reduced masses of the initial and
final muonic atoms, respectively. For energies smaller
than the resonance defect the reactions (8)-(10) are ir-
reversible. It is clear, however, that for ¢ > AU inverse
transfer reactions can proceed,

(tp), +d —(du),+t, (11
(du),+p—(pp),+d , (12)
(tp), +p—(pu),+t . (13)

The larger the n the lower the threshold for inverse reac-
tions (11)-(13).

10 M ey . . — . —
01 1
collision energy (eV)

T

10 * 4

(c)

(p)att = (tu)s+p

10 M +————rr
0.1

T

1
collision energy (eV)

FIG. 3. (a) Rates for direct quasiresonant muon transfer from deuterium to tritium as functions of € for different » indicated on
curves. (b) Rates for direct quasiresonant muon transfer from protium to deuterium as functions of ¢ for different » indicated on
curves. (c) Rates for duect quasiresonant muon transfer from protium to tritium as functions of ¢ for different » indicated on curves.
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According to Ref. [23], quasiresonant reactions
(8)—(13) are determined by a P series of the branch
points, which arise due to exchange interactions and form
an infinite family of branch points with approximately
equal ReR,. All these points connect the given initial
term (n,n,,n,,m) with the final one, which has the same
quantum numbers but different muon localization.

The reaction probability (for double passing the transi-
tion region) is [7]

P=(2cosh?)7!, (14)
which follows from the fact that there is an infinite family
of branch points instead of a single one. Table V contains
coordinates of the branch points of the P series for reac-
tions (8) and (11). The corresponding rates for reactions

(8)—(10) are demonstrated in Figs. 3(a)-3(c).

As follows from the comparison of our data for cross
sections and rates of the reactions (8)-(10) with the corre-
sponding ones of Ref. [7], new results are smaller than
former ones for large n. It is explained by consideration
here of the electron transfer from target nucleus to initial
muonic atom nucleus during muon transfer process. The
quenching factor arises from the overlap of the initial and
final electron wave functions for large distances.

Figure 4(a) presents the rates as a function of principal
quantum number » for reactions (8) and (11). As follows
from these figures the rates of the inverse processes are
very close to the rates of the direct ones. The analogous
situation holds for H-D and H-T mixtures. Rates for re-
actions (12) and (13) are presented in Figs. 4(b) and 4(c),
respectively.
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FIG. 4. (a) Rates for inverse quasiresonant muon transfer from tritium to deuterium (solid lines) as functions of » for different € in-
dicated on curves. The curves for direct muon transfer are also shown for comparison (dotted lines). (b) Rates for inverse
quasiresonant muon transfer from deuterium to protium (solid lines) as functions of n for different € indicated on curves. The curves
for direct muon transfer are also shown for comparison (dotted lines). (c) Rates for inverse quasiresonant muon transfer from tritium
to protium (solid lines) as functions of n for different ¢ indicated on curves. The curves for direct muon transfer are also shown for

comparison (dotted lines).
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_— (dwptt (eZ, - term)
= (tp)p +d (eZ - term)

— (dp)p-1 +t  (€Zy' - term)

(o1 +d  (eZ7' - term)

FIG. 5. Figure illustrates inverse muon transfer from tritium
to deuterium as a two-step process. The notation is explained in
the text.

B. Nonresonant reactions

Inverse muon transfer is possible also via reactions

(tp), +d—(du), _+t, (15)
(du), +p—(pu), _,+d , (16)
(tp), +p—(pu), _+t, (17)

which can be realized even for the lowest collision energy
since the energy gain in deexcitation AU
~(n —1/2)/n*n —1)* is much higher than the thresh-
old for the inverse muon transfer.

According to Ref. [23], such a process develops as a
two-step process for which two ways are possible:

(a) The first transition proceeds from the initial eZ,

-1 -1
>\n (S ) )\n (S )
<i 4
104(q E 10"4(b %
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FIG. 6. (a) Rates for inverse muon transfer from tritium to deuterium as functions of ¢ for different n indicated on curves. (b)
Rates for inverse muon transfer from deuterium to protium as functions of € for different » indicated on curves. (c) Rates for inverse
muon transfer from tritium to protium as functions of ¢ for different n indicated on curves.



term via the T point (g transition), then the system comes
from the lower eZ term to the eZ one via the pl point
(Fig. 5). This way turns out to be the main one due to the
higher probability.

(b) The first transition proceeds from the initial eZ,
term to the eZ, one via the p2 point (there is enough en-
ergy for this reaction due to the acceleration on the way
to the p2 point). Then transition to the lower eZ] term
follows via the T point (u transition).

The corresponding reaction probabilities are

Pa =2Ptg(l_Ptg)(l_Pp2)Pp1 ’
P,=2P,,(1—P,)(1—P,)P,,

where P, =exp(—28,), P, =P}, P,=(1—tanhd,)/2

Ao (s7)

01a) (g0t (), 4d ]

TR ——
10

01 1
collision energy (eV)

Ao (s7)
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are the probabilities of the corresponding transitions (for
single passing). The probabilities P, and P, are deter-
mined by the squares of the transition amplitudes, corre-
sponding to two possible ways of the reaction. The total
transition probability contains also the product of these
amplitudes (interference term). It is proportional to the
cosine of the energy-dependent phase difference Aa,
which is large in the frame of the Wentzel-Kramers-
Brillouin approximation. Thus the interference term os-
cillates quickly [24(b)] and disappears after averaging
over the small macroscopic range of acceptable momenta
(and/or angles), which is necessary to compare the theory
with experiment. So one can write the total transition
probability as P =P, + P,.

The transfer rates for reactions (15)-(17) are given in
Figs. 6(a)-6(c). The analogous two-step process is also

Ao (s7)
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FIG. 7. (a) Rates for direct muon transfer (with decreasing n) from deuterium to tritium as functions of ¢ for different » indicated
on curves. (b) Rates for direct muon transfer (with decreasing n) from protium to deuterium as functions of ¢ for different » indicated
on curves. (c) Rates for direct muon transfer (with decreasing 7) from protium to tritium as functions of € for different » indicated on

curves.
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possible for the following direct muon transfer reactions:

(du), +t—(tu),_,+d , (18)
(pp), +d—(dp), _+p, (19)
(pu), +t—(tp), _+p . (20)

The corresponding rates are presented in Figs. 7(a)-7(c),
respectively. As follows now from Fig. 5, the “asym-
metric” Coulomb deexcitation process, e.g., the reaction

(du), +t—(dp), _+t, (21)

which is suppressed as a direct process because
ImR,, ~2ImR,;, may be realized as a three-step process

10 S+ T T T

(du), +t—(tu),+d , (22)
(tu), +d—(tu),_,+d , (23)
(tp), —+d—(du), .+t , (24)

which is realized via branch points R, for Eq. (22) and
R, for Eq. (24) of the P series as well as via the *“gerade”
branch point R,, for Eq. (23) of the T series. Two extra P
transitions do not suppress the cross section due to the
low values of the Massey parameter for the P transition,
so P, ~1/2.

The rates for the “asymmetric”’ Coulomb deexcitation
are shown in Figs. 8(a)-8(c).
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FIG. 8. (a) Rates for asymmetric Coulomb deexcitation of du in collision with tritium as functions of € for different » indicated on
curves. (b) Rates for asymmetric Coulomb deexcitation of pu in collision with deuterium as function of ¢ for different » indicated on
curves. (c) Rates for asymmetric Coulomb deexcitation of pu in collision with tritium as function of ¢ for different n indicated on

curves.
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IV. RESULTS AND DISCUSSION

The present calculation of the g,; parameter includes
an inverse muon transfer in contrast with the previous
ones. However, the quantum number n above which the
inverse process is allowed depends on collision energy,
i.e., it is allowed for € greater than the resonant defect for
a given n. The larger the n the smaller the resonance de-
fect and, hence, the threshold for quasiresonant inverse
charge exchange. In the D-T mixture for n ~ 10 the pro-
cess can proceed above a threshold energy €~0.5 eV,
which increases with decreasing n.

Figure 9 illustrates the energy dependence of minimal
n =, for which an inverse charge exchange is still possi-
ble.

Let us consider the influence of the inverse charge ex-
change on the population of the state n of muonic deu-
terium. Let N(d—t) and N(t—d) be the numbers of
the corresponding muon transfers (in a unit of time and
unit of volume). Then

N(d—t)=Md—t)¢c,Ny, ,
N(t—d)=Mt—d)pc;N,, ,
where N;, and N,, are the densities of the du and tu
atoms in the state in question n. Since Coulomb capture
rates of muon by deuterium and tritium are equal, the
following equation is satisfied:

ctNdy.=chtp . (25)
Then the change of the number of muonic deuterium
atoms, caused by the quasiresonant change exchange, is
determined by the difference of the corresponding rates,

N(d—»t)-N(t—»d)=[K(d—»t)—)»(t—»d)](ﬁc,Nd# .

While the collision energy is higher than the resonance
defect, the rates of the direct and inverse charge ex-
change are almost equal, so these processes practically do
not influence the population of the higher levels n >#

TABLE VI. Parameter g, for the D-T mixture as a function of tritium concentration c, calculated for different densities ¢ of the

mixture for e=0.04, eV (a), 2 eV (b), 3 eV (c), and 4 eV (d).

¢ (LHD) 0.1 0.5 1 1.2 ¢ (LHD) 0.1 0.5 1 1.2
(a) €=0.04 eV (c) e=3 eV
0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000
0.0010 0.9601 0.9451 0.9408 0.9398 0.0010 0.9990 0.9975 0.9967 0.9965
0.0100 0.8348 0.7766 0.7609 0.7576 0.0100 0.9899 0.9752 0.9679 0.9658
0.0200 0.7573 0.6789 0.6586 0.6546 0.0200 0.9801 0.9514 0.9375 0.9335
0.0400 0.6366 0.5378 0.5141 0.5095 0.0400 0.9611 0.9071 0.8814 0.8742
0.0600 0.5412 0.4356 0.4117 0.4072 0.0600 0.9429 0.8664 0.8308 0.8209
0.0800 0.4637 0.3582 0.3355 0.3312 0.0800 0.9255 0.8289 0.7849 0.7728
0.1000 0.3998 0.2982 0.2771 0.2732 0.1000 0.9089 0.7944 0.7433 0.7293
0.2000 0.2055 0.1354 0.1227 0.1204 0.2000 0.8354 0.6555 0.5819 0.5626
0.3000 0.1161 0.0709 0.0633 0.0619 0.3000 0.7749 0.5560 0.4726 0.4516
0.4000 0.0702 0.0406 0.0359 0.0351 0.4000 0.7244 0.4817 0.3948 0.3734
0.5000 0.0447 0.0249 0.0218 0.0213 0.5000 0.6817 0.4243 0.3370 0.3161
0.6000 0.0296 0.0160 0.0139 0.0136 0.6000 0.6452 0.3789 0.2928 0.2727
0.7000 0.0203 0.0107 0.0093 0.0090 0.7000 0.6136 0.3422 0.2581 0.2389
0.8000 0.0143 0.0074 0.0064 0.0062 0.8000 0.5862 0.3120 0.2303 0.2120
0.9000 0.0104 0.0052 0.0045 0.0044 0.9000 0.5621 0.2869 0.2077 0.1902
1.0000 0.0076 0.0038 0.0033 0.0032 1.0000 0.5410 0.2656 0.1890 0.1723
(b) e=2 eV (d) e=4 eV
0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000
0.0010 0.9976 0.9958 0.9949 0.9946 0.0010 0.9990 0.9976 0.9969 0.9968
0.0100 0.9760 0.9589 0.9506 0.9482 0.0100 0.9906 0.9769 0.9702 0.9683
0.0200 0.9530 0.9202 0.9046 0.9002 0.0200 0.9813 0.9548 0.9420 0.9383
0.0400 0.9092 0.8495 0.8217 0.8140 0.0400 0.9634 0.9132 0.8895 0.8828
0.0600 0.8685 0.7866 0.7494 0.7391 0.0600 0.9463 0.8748 0.8418 0.8326
0.0800 0.8304 0.7302 0.6858 0.6736 0.0800 0.9298 0.8394 0.7983 0.7870
0.1000 0.7949 0.6796 0.6296 0.6161 0.1000 0.9140 0.8065 0.7585 0.7454
0.2000 0.6477 0.4899 0.4281 0.4121 0.2000 0.8436 0.6724 0.6020 0.5835
0.3000 0.5386 0.3687 0.3072 0.2920 0.3000 0.7849 0.5746 0.4938 0.4732
0.4000 0.4554 0.2866 0.2297 0.2160 0.4000 0.7353 0.5005 0.4153 0.3942
0.5000 0.3904 0.2287 0.1773 0.1653 0.5000 0.6929 0.4425 0.3563 0.3354
0.6000 0.3388 0.1864 0.1404 0.1299 0.6000 0.6562 0.3962 0.3105 0.2903
0.7000 0.2971 0.1546 0.1136 0.1044 0.7000 0.6242 0.3583 0.2743 0.2549
0.8000 0.2629 0.1302 0.0936 0.0855 0.8000 0.5961 0.3270 0.2451 0.2265
0.9000 0.2344 0.1111 0.0783 0.0712 0.9000 0.5712 0.3006 0.2211 0.2033
1.0000 0.2106 0.0958 0.0663 0.0601 1.0000 0.5490 0.2782 0.2010 0.1841
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FIG. 9. Energy dependence of minimal principal quantum
number 7 for which the inverse quasiresonant muon transfer is
possible.
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FIG. 10. (a) Parameter g, for D-T mixture as function of tri-
tium concentration ¢, calculated for € =0.04 (solid lines) and 1
eV (dashed lines) and different target densities (in LHD units),
indicated on the curves. (b) Parameter ¢, for D-T mixture as a
function of tritium concentration ¢, calculated for e=2 (solid
lines) and 3 eV (dashed lines) and different target densities (in
LHD units), indicated on the curves.

and may be neglected in principle. For n <7 the reso-
nance defect is higher than the collision energy and in-
verse charge exchange is forbidden, which makes the re-
lation (25) invalid. For this reason the processes of the
inverse charge exchange with the deexcitation begin to
influence the population of the lower states. At the same
time, for lower states the rates of such processes are small
compared with those of radiative and Auger deexcita-
tions as well as quasiresonant direct charge exchange.
However, all deexcitation and transfer processes, indicat-
ed in Fig. 1, are taken into account in our calculations of
9is-

The gq,, values were obtained by solving the system of
kinetic equations with the initial conditions correspond-
ing to the populations ¢, =1 and g; .1,=0. The data for
g, as a function of the concentration of heavier hydro-
gen isotope c; and density ¢ in LHD units are shown, for
the D-T mixture, in Tables VI. Such dependence of g
for all mixtures of hydrogen isotopes is presented in Figs.
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FIG. 11. (a) Parameter q,, for the H-D mixture as a function
of deuterium concentration ¢, calculated for £€=0.04 (solid
lines) and 1 eV (dashed lines) and different target densities (in
LHD units), indicated on the curves. (b) Parameter g, for the
H-D mixture as a function of deuterium concentration c, calcu-
lated for 2 (solid lines) and 3 eV (dashed lines) and different tar-
get densities (in LHD units), indicated in the curves.
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10-12 for different ¢ and e.

As follows from the comparison of experimental data
[8] and our g, results [see Figs. 13(a) and 13(b)] the col-
lision energy of excited muonic deuterium in the D-T
mixture stay within a range 2<e=<3 eV which corre-
sponds to 7#=4. Thus, the decisive stage of the cascade
begins from n=4 where the electron screening and
molecular binding effects, as well as the above mentioned
effect of electron transfer, are not as important as for
highly excited muonic hydrogen. Therefore, the results
obtained are reliable enough. Nevertheless, the role of
electron screening for higher states is very important
both for direct (see Ref. [7]) and inverse muon transfer.

Our conclusion about the high collision energy of the
excited muonic deuterium is in agreement with some oth-
er available experimental data [25], where fast muonic
atoms (with the kinetic energies from several eV to
several tens of eV) in the ground state have been ob-
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FIG. 12. (a) Parameter q,, for the H-T mixture as a function
of tritium concentration ¢, calculated for €=0.04 (solid lines)
and 1 eV (dashed lines) and different target densities (in LHD
units), indicated on the curves. (b) Parameter q,; for the H-T
mixture as a function of tritium concentration ¢, calculated for
€=1 (solid lines) and 2 eV (dashed lines) and different target
densities (in LHD units), indicated in the curves.
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FIG. 13. (a) Comparison of experimental data on g, [8]
(solid lines) for the D-T mixture with the theoretical ones
(dashed line), calculated for ¢=0.1 (upper curve) and 1.2 (lower
curve) LHD and e=2 eV. As follows from such comparison ex-
perimental corridor owing to error bounds practically hides the
density dependence predicted theoretically. (b) Comparison of
experimental g, with theoretical ones calculated for e=3 eV.
The notations are the same as in (a).

served. High collision energy of excited muonic hydro-
gen could be explained by small elastic cross sections
(which are responsible for the deceleration of excited
muonic atoms by elastic collisions) owing to the
Ramsauer-Townsend effect, which cannot be excluded.
An alternative explanation could be owing to possible ac-
celeration of muonic hydrogen during cascade deexcita-
tion (e.g., because of the Coulomb deexcitation). So far,
however, both experimental and theoretical data on elas-
tic cross sections for excited muonic hydrogen are still
absent. As for the H-D mixture, the preliminary experi-
mental data on g, (obtained for c¢;=0.2 and LHD) are
compared with our calculations in Fig. 14. In fact, the
resonance defect in the H-D mixture is larger than in the
D-T one, so for e~3 eV, #=7, which leads to somewhat
lower g, values. At the same time, the experimental re-
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sult can be explained assuming collision energy 5 <e <6
eV, which corresponds to =5 and 4, respectively. Ac-
cording to our calculations, Coulomb deexcitation has a
weak influence on g,,. This process, however, may be of
importance as a source of the acceleration of muonic pro-
tium. One should note that Coulomb deexcitation cross
section for the H-D system is much higher than for the
D-T one [see Figs. 8(a) and 8(b)], which may lead to
higher collision energies for the former system. At the
same time, further experimental investigation of g, in
the H-D mixture is necessary.

In conclusion, we would like to underline that muon
transfer from muonic hydrogen to helium nuclei is ir-
reversible due to Coulomb repulsion between the muonic
helium ion and hydrogen nucleus. Available experimen-
tal data [26,27] are in agreement with our calculations for
deuterium-helium mixture [28].

Note added in proof. After this paper had been accept-
ed for publication, new data on g, for the H-D mixture
became available [P. Ackerbauer et al., PSI Nucl. Part.
Phys. Newsl. 53 (1993)]. The new data agree with our
calculations for e~6 eV, in accordance with our con-
clusions.
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