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Statistical and phase properties of the binomial states
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We investigate the nonclassical properties of the single-mode binomial states of the quantized
electromagnetic 6eld. We concentrate our analysis on the fact that the binomial states interpolate
between the coherent states and the number states, depending on the values of the parameters
involved. We discuss their statistical properties, such as squeezing (second and fourth order) and
sub-Poissonian character. We show how the transition between those two fundamentally diferent
states occurs, employing quasiprobability distributions in phase space, and we provide, at the same
time, an interesting picture for the origin of second-order quadrature squeezing. We also discuss the
phase properties of the binomial states using the Hermitian-phase-operator formalism.

PACS number(s): 42.50.Dv, 03.70.+k

I. INTRODUCTION

The binomial states of the quantized electromagnetic
field (denoted here as ip, M)), consist simply of a linear
combination of number states in) weighed by a binomial
distribution [1]. Some of their properties [1,2], methods
of generation [1—3], as well as their interaction with atoms

[4] have already been discussed in the literature. How-

ever, as far as we know, not enough attention has been
paid to the fact that they actually interpolate between
the "most classical" pure state allowed in quantum the-
ory (the coherent state in)) and the "less classical" one
(the number state in)). In our opinion, this interesting
feature places the binomial states in a unique situation,
justifying by itself a more careful examination of their
interpolation properties. This is going to be the main
purpose of this paper.

The binomial states are such that there is a maximum
of M photons present in the field, as well as a character-
istic probability p of having each photon occurring. By
continuously varying p (and also M), we are able to inter-
polate between the coherent state in) (n real), which is
formed in the limit p ~ 0 and M -+ oo (keeping pM = o.z

constant), and the number state iM), formed when p = 1.
Therefore, we would like to present a detailed study of
how some nonclassical properties of a field prepared in
a binomial state change as a function of the probabil-
ity p. The nonclassical properties we are going to focus
on are their squeezing properties (second- and fourth-
order squeezing), sub-Poissonian character, behavior of
the quasiprobability distributions, as well as their phase
properties. We also would like to emphasize mainly the
pictorial usefulness of the quasiprobabilities distributions
in phase space in the elucidation of nonclassical features
of light, as it is generally possible to establish a link be-
tween the various nonclassical eKects present in a quan-
tized field and its corresponding phase-space representa-
tions.

This paper is organized as follows. In Sec. II we

present a short review of the binomial states, discussing
some of their nonclassical features. In Sec. III we dis-
cuss their nonclassical (and interpolation) properties in
the light of the quasiprobability distributions in phase
space (Q and Wigner functions) [5]. In Sec. IV we inves-

tigate the phase properties of binomial states, using the
Pegg-Barnett Hermitian-phase-operator formalism [6,7].
We summarize our conclusions in Sec. V.

II. STATISTICAL PROPERTIES
OF BINOMIAL STATES

A. De6nition

The single-mode binomial states of the quantized elec-
tromagnetic field can be defined [1] as the following ex-
pansion in the number state basis in):

ip, M) = ) B„ in),
n=o

where

gM
- 1/2M.t nl — M n

n! (M - n)! " ('

This means that their photon number distribution P
i(mip, M) i

= iB i
is simply a binomial distribution,

i.e., there is a probability P of occurrence of m pho-
tons (each one with probability p), having M indepen-
dent ways of doing it. It is interesting to note that there is
a maximum permissible number of photons, which is just
M, in a field prepared in a binomial state, i.e., P = 0
form) M.

From Eqs. (1) and (2) we can see that given any (finite)
M, if p = 0, ip, M) is reduced to the vacuum state iQ).
On the other hand, if p = 1, we obtain the number state
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~n = M). Moreover, in the limit p ~ 0 and M ~ oo, but
with pM = n2 constant (as we have already mentioned),
the binomial distribution turns into a Poisson distribu-
tion and ~p, M) becomes a coherent state ~o}. However,
the coherent states obtained are not the most general
ones, but only those having a real amplitude n =
It is interesting to see that by changing two parameters
(p and M) in a single (binomial) state, we obtain funda-
mentally difI'erent states of the electromagnetic field. We
would like to note that some of the points addressed in
this section have already been discussed in Ref. [1], but
because of their importance, it would be interesting to
emphasize them in our context. Our strategy in most of
this paper will be to keep M Gxed and then study the
modiGcations in the various properties of the binomial
state as we change p. As a Grst example, we examine
the overlap between the binomial states with the same
maximum photon number M, but different probabilities
p and q, i.e., ~p, M) and ]q, M}. Their scalar product is

given by

one would expect. We also have that the fluctuations in
photon number are

(An ) = p(1 —p)M,

where there is a quadratic dependence of the fluctuations
on p, with a maximum in M, and zeros in p = 0 (vacuum)
and p = 1 (number state

~
M) ) .

We are considering a single-mode electromagnetic field
(frequency ur), inside an optical cavity of volume V. The
quantized electric Geld can then be written as

E(z) = sin(kz) (a + a ),
eoV

sin(kz) E(M, p),
~pV

(9)

at t = 0, for instance.
First we would like to discuss the mean electric field in

a binomial state. Using the expressions in (4), we obtain

M

(p, M~q, M} = )
0

M ~J

where

E(M, p) = 2(pM)'/ ) B„B„
- M —n

(1 )i/2(1 )i/2

If p = q, because of the properties of the binomial coefE-
cients, we have that (p, M~q, M) = 1, i.e. , the states are
normalized. For other values of p and q, the states will
have a nonzero overlap (nonorthogonal), but if p = 0 and

q = 1, for instance, (0, M~1, M) = 0, as we would expect.

B. Electric field and squeezing

- 1/2

M) (" ), ipM —n), n&M
0, n&M

(4)

as well as the matrix elements

In order to discuss the electric Geld and the squeezing
properties of the single-mode binomial states, we need to
know the action of powers of the annhilation operator on
the states themselves:

We notice that in the extreme values of p = 0 (vacuum
state) and p = 1 (number state), the mean electric field
is zero. However, it is nonzero for intermediate values of
p having a maximum that depends on M. The larger M
is, the closer the maximum of p = 1 will be. This feature
can be better appreciated in Fig. 1, where we have plots
of the "dimensionless" mean electric field E(M, p), in Eq.
(10), as a function of p for different values of M. We can
also see in (9) that in the (simultaneous) limit p ~ 0,
M ~ oo, with pM = o. const, we obtain, for the mean
electric Geld,

sin(kz) 2a,
~pV

that is, a nonzero electric field characteristic of a coherent
state with (real) amplitude a.

10

M(

(p, Mip, M') = ) B„B„
n=p

where M& is the smaller of M and M'. Both results can
be found in Ref. [1].

For instance, we can immediately see that the mean
photon number n = (ata} in a binomial state is simply
given by

0 I

0.0 O. P, 0.4 0.6 0.8

This means that by varying the probability of emission
of "individual" photons p from 0 to 1 and keeping M
constant, the mean energy of the field is increased, as

FIG. 1. Dimensionless mean electric field of a single-mode
binomial state as a function of p for three different values of
M: (a) M=5, (b) M=50, and(c) M=100.
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i. Second-owlet equeesing 0.0

%e will now turn our attention to the quadrature op-
erators of the field, related to the electric and magnetic
field operators, but with the purpose of discussing the
phenomenon of squeezing [8]. The quadrature operators,
here denoted as I and Y, are defined as

—0.5

—1.0—
a+ at

)
2

a —atY=
2i

(i2)

A A

The quadrature operators do not commute, i.e., [X,Y] =
i/2, and as a consequence their variances obey the un-

certainty relation

(i3)

Second-order (or ordinary) squeezing occurs if any of the
quadratures present a reduction in their second-order mo-
ments below the vacuum level, i.e., either (b,xz} ( 1/4
or (b.Y ) ( 1/4. It is convenient to define a second-order
squeezing index as

(» (b,X ) —1/4
1 4

(14)

If S ( 0 (S„(0), there will be (ordinary or second-

order) squeezing in the X (Y) quadrature.
For the binomial state, the squeezing indices are given

by

i « i i i i i i I i «««« I » i « i i c i I « i i i » i i I i i i i i i « i

5.o o.a o.4 o.6 o.e i.o

FIG. 2. Index of second-order squeezing S of a binomial
state as a function of p for three different values of M (as in
Fig. 1).

the concept of higher-order squeezing has been intro-
duced [9]. This corresponds to a generalization of the
concept of squeezing as discussed above. A field is con-
sidered to be Nth-order squeezed if the Nth-order mo-
ment of the quadrature operator (b,x ) is smaller than
its value in a completely coherent state of the field. The
Nth moment of b,x can be written as [9]

and

M —2

S( ) = 2pM+2p[M(M —1)] / ) B„B
m=0

M —1

4 M )-BMB
=o )

M —2

+gN/2(N 1))) (17)

where for even N we use the notation N(") = N(N—
1) (N —r + 1). Due to the fact that all the normally
ordered moments (:EX:)vanish for a coherent state,
the field is squeezed to order N if

S„)= 2pM —2p[M(M —1)] / ) B„B„.(16) (QX ) (g / (N 1)

A

In this case squeezing exists for the X quadrature and

thus we produced a plot of S( ) as a function of p for
difFerent values of M, which can be appreciated in Fig.
2. We note that the binomial state is squeezed within
a considerable range of values of p, with a maximum of
squeezing (minimum of S ) that depends on M. There is
obviously no squeezing when p = 0 (vacuum) and when

p ~ 1 (number state). We recall that the binomial states
are not minim»m uncertainty states, except in the coher-
ent state limit (M -+ oo), which also includes the vacuum
state as a special case. The second-order squeezing prop-
erties will be discussed in more detail in Sec. III, using
the quasiprobability distributions in phase space.

K J'out th-owlet squeezing

which means that the squeezing condition can be written

N/2 1(zl)—
1=0

Here we are going to consider only the fourth-order
squeezing, i.e., the fourth-order moments of the quadra-
ture operator X, (b,x4}. In this case, the condition for
the verification of fourth-order squeezing is just (AX4) (
3/16 and the fourth-order moment of X is given by

(6X ) = (X }—4(X )(X) +6(X )(X) —3(X) .

(2o)

In order to study the noise properties of higher-order
moments of the quadratures in nonclassical states of light

If we now use Eqs. (4), we obtain, for the various
expectation values,
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(X) = (pM)'~'(p, M]p, M —1), (21)

(X ) = —(1 + 2pM + 2p[M(M —1)] ~ (p, M[p, M —2) },4
(22)

(X ) = (6p— M(M —1)'i (p, M —l[p, M —2) + 6(pM)' (p, M[p, M —1)
8

+2p [M(M —1)(M —2)] (p, M[p, M —3)),

(X ) = —(3 + 12pM + 6p M(M —1) + 12p[M(M —1))' (p, M[p, M —2)
16

+8p M[(M —1)(M —2)] i (p, M —1[p, M —3)

+2p [M(M —1)(M —2)(M —3)]'i (p, M)p, M —4)j. (24)

These results, used in conjunction with (5), yield a rather
long expression for (20), and it would be again suitable
to perform a numerical evaluation. We can also define,
as we did for the second-order (ordinary) squeezing, an

index of fourth-order squeezing S

(4) (AX') —3/16
3/16

(25)

In Fig. 3 we have a plot of S~ as a function p for dif-
ferent values of M. We note that the fourth-order squeez-
ing increases with p up to a maximum degree, which is
considerably larger than the maximum of second-order
squeezing (see Fig. 2), and then is progressively lost as
pm 1.

p(1 —p)M —pM
pM

(27)

This means that binomial states are intrinsically sub-
Poissonian, for any value of p, except in the coherent
state limit (also including the vacuum state), and this
fact does not depend on M. The extreme case is the
number state, i.e. , when p = 1.

If Q = 0, as in the case of a coherent state, the field
is called Poissonian. If Q ) 0 (Q ( 0), it is called
super(sub)-Poissonian, respectively. A signature of non-
classical behavior, for instance, would be a distribution
narrower than a Poissonian, i.e., when Q ( 0. In the case
of the binomial states, Mandel's Q parameter is simply
given by

8. Mandel's Q parameter

Another important quantity to characterize nonclassi-
cal behavior is Mandel's Q parameter [10], which in its
normalized form is de6ned as

III. QUASIPROBABILITIY DISTRIBUTIONS

A. De6nitions

0.0

—0.5

—1.0

(An2) —(n)
(n)

(26) The formulation of quantum mechanics in phase space
[5) has been particularly useful in quantum optics. The
so-called quasiprobability distributions in the coherent
state basis have been providing not only an alternative
way of calculating quantum mechanical expectation val-
ues (e.g. , correlation functions), but also useful pictures
and explanations of nonclassical features of light Gelds

[11-13].
If a field is prepared in a quantum state described by

p, we can define an infinite number of (s-parametrized)
quasiprobability distributions in phase space as [14]

—1.5
0 ' 0

() ()

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ) I I I I I I I I I

0.2 0.4 0.6 0.8 1.0

P))I;s) =, ja'(CM;8) exp()II' —)I'C,

where the quantum characteristic function is

(28)

FIG. 3. Index of fourth-order squeezing S of a binomial
state as a function of p for three different values of M (as in
Fig. 1).

C((; s) = Tr[D(()p]exp(s[([ /2).

Here P = x +i,y, with (x, y) being the c numbers cor-
responding to the quadratures (X,Y), respectively, and
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P(P;s) = —) (-1)", ,+, (& klpl»k)
A:=0

(30)

where IP, k) = D(P)lk) are the so-called displaced num-
ber states. The expression above is suitable for straight-
forward numerical evaluation, if one wants to avoid a
phase-space integration, which sometimes can be quite
tedious. If we take a = —1, for instance, Eq. (30) is
reduced to the familiar expression for the Q function

Q(P) = -(Plpl&). (31)

B. The Q and Wigner functions of a binomial state

If we now insert p = lp, M)(p, MI [see Eq. (1)] into
Eq. (31), we obtain the Q function of the binomial state,
which can be written as

ex&(- I&I'])

M")- (M — )"n=o-

i/z p~
2

(32)

We also want an expression for the Wigner function of a
binomial state. By taking s = 0 in Eq. (30), we obtain a
series representation for the Wigner function

(33)

Now we simply insert Eq. (1) into (33), which yields

oo M

~(P) = —).). M, P(1 —p)
k=0 n=O ™ x ~(P) .

(34)

D(() = exp(aat —n'a) is Glauber's displacement opera-
tor. For particular values of 8 we obtain the well-known
distributions, e.g. , for 8 = 0 we have the Wigner func-
tion, and for s = —1 the (Husimi) Q function. The latter
is positive definite at any point of the phase space for
any quantum state. However, not all Q functions can be
associated with a density operator, among other prob-
lems. The former, on the other hand, may assume nega-
tive values for some states and this is generally regarded
as a signature of nonclassical effects. Therefore, both
of them cannot be considered true probability distribu-
tions and hence the name quasiprobabilities. These two
functions are the most convenient for our purposes. How-
ever, instead of the phase-space integration method [see
Eq. (28)], we would like to use the series representation
of quasiprobabilities [15]. It is possible to write any s-
parametrized quasiprobability distribution as an infinite
series [15]

In the expression above, the matrix elements g„i,(P) =
(nlDlk) are given by [13]:

y ~(p) = t

exp( —III'/2)&" "&~ "(I&l')

(35)
e»(-I&l'/2)(&")" "~". "(I~l')

ifn& k,

where Z„(IPI ) are the generalized Laguerre polynomials.
Both the Q function in Eq. (32) and the Wigner function
in Eq. (34) are in an appropriate form for numerical
evaluation.

Now we would like to discuss changes occurring in the
quasiprobabilities as we vary the "parameters" p and M.
We are going to use the Q function as a first way of
illustrating the transition from the vacuum state IO) (p =
0) to the number state IM) (p = 1), for instance. In Fig.
4 there is a plot of the Q function of a binomial state
for different values of p, with M = 5. When p = 0,
we note the well-known Gaussian characteristic of the
vacuum state [Fig. 4(a)]. By increasing the probability of
having individual photons to p = 0.5, the state acquires
a positive "coherent" amplitude, which corresponds to a
gain of energy in the field, as can be seen in Fig. 4(b). By
further increasing the probability to p = 0.9, we clearly
see a deformation in the Q function toward P = 0 [Fig.
4(c)], and finally, when p = 1, the Q function representing
the number state IM = 5) is formed [Fig. 4(d)]. We can
now understand the "shaping" of a coherent state, under
the phase-space point of view, that occurs in the limit

p ~ 0 and M -+ oo, with pM constant. For instance, by
taking, just as an approximation, the (finite) values of
M = 1000 and p = 0.01, we have a Q function, shown in
Fig. 5, that resembles the Q function of a coherent state
with coherent amplitude a = AM = v 10, as expected.

Another interesting aspect that also deserves exam-
ination is the quadrature squeezing. In phase space,
squeezing manifests itself as an actual deformation of
the quasiprobabilties. We verified that the contours are
progressively "compressed" as the distribution is shifted

(p increased), until a maximum of squeezing is reached.
This can be considered a turning point &om which a num-
ber state starts being formed and squeezing is increas-
ingly lost. In Fig. 6 we have a plot of the contours of the
Q function of two particular binomial states, with p = 0.2
and p = 0.82 (both having M = 50). For p = 0.2, the
contours are not very diferent from those of the vacuum
state, although they show a small deformation. However,
when p = 0.82, we clearly notice a "compression" of them
along the x direction, which corresponds to squeezing in
the X quadrature.

The Wigner function also can be used to trace the non-
classical behavior of light fields, in a similar way as we
have already done using the Q function. In Fig. 7 we have
plots of the Wigner function of a binomial state [from nu-
merical evaluation of Eq. (34)] for different values of p
and M = 1. The case p = 0 has been excluded because
the corresponding Wigner function is just a Gaussian cen-
tered in the origin, as in Fig. 4(a). In Fig. 7(a) we have
the Wigner function for p = O.l. A small displacement
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IV. PHHASE PROPERTIES
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then to obtain expressions
'

ns 6 for the
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8

) exp(in8 ) ln).l'-'=("
) ~. -,

S

lb) = ) b„exp(in@) ln), (4O)
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P(8) = —(I+ 2 ) I I „c„nc((n —n') I]II,
n&n'

(43) 0.3

after taking the limit s m oo. «Z 0.2
gk

B. Phase properties of binomial states

I I I I I I1
0.0

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0.2 On4 0.6 0.8 1.0

FIG. 8. Variance of the phase operator of a binomial state
as a function of p for M = 1.

The binomial states in Eq. {1)are in fact partial phase
states, provided that we have b„= B„ if n & M, b = 0
if n ) M, and p = 0. So we immediately have, from
(41), that the mean phase in a binomial state is always
zero, independently of p and M. If we insert the coef-
ficients Rom Eq. {2) into (42), we have the variance of
the phase operator in a binomial state. The upper limit
in the sum is M, because the B 's are zero for n & M.
In Fig. 8 we have the variance as a function of p, in the
case of having M = 1. We see that for both p = 0 and
p = 1 the variance assumes the value of m /3, which is
the characteristic value of the variance for a state with
randomly distributed phase [7]. The variance decreases,
having a minimum at p = 0.5, and then there is a (sym-
metrical) increase up to p = 1. This can be compared to
the behavior of the mean photon number variance in Eq.
(7). As we would expect from the uncertainty relation
phase photon number, an increase in the dispersion of
one implies in a decrease in the dispersion of the other.
For larger values of M, however, a sharper decrease of
the variance is verified. This means, as we would expect,
that by increasing the maximum number of photons in
the field (M), its phase becomes better defined for almost
any p, excluding, naturally, the cases p = 0 and p = 1.

We also would like to show what happens with the
phase probability distribution as we vary p. Therefore a
three-dimensional plot is required, where we can simulta-
neously appreciate the modifications in the distribution
as a function of both p and 0. This is shown in Fig.
9, after a numerical evaluation of Eq. (43), and using
the value M = 1. We notice that for both the vacuum
case p = 0 and the number state case p = 1, the phase
is uniformly distributed, with probability equal to 1/27r.
For intermediate values of p, however, a peak, centered
at 0 = 0 starts being shaped, meaning that the phase
becomes better defined around a mean value. This is
in complete agreement with the phase-space pictures al-

FIG. 9. Phase probability distribution of a binomial state
as a function of p and 0 for M = 1.

ready discussed in Sec. II (see, for instance, Fig. 4). As
the Q function is shifted from the origin (as p goes from
0 to 1), there is a better definition of phase, up to a min-
imum value for its dispersion (variance). Then, as the
number state starts being "formed, " there is again a loss
in that sharpness, bringing up, eventually, a situation of
randomly distributed phase.

V. CONCLUSIONS

We have studied the nonclassical statistical properties
of the binomial states of the electromagnetic field. One
of their more striking features is that they can be ac-
tually continuously "tuned" from the vacuum state ~0)
to the number state ~M) by changing the probability of
"emission" of individual photons {p) from p = 0 to p = 1,
respectively, in a maximum total number of independent
photon emissions M. We also have that in the limit p m 0
and p -+ oo, but keeping pM constant, the binomial state
becomes a coherent state ~n = i/pM). These interpola-
tion properties have represented the core of our analysis.
We have shown that diferent nonclassical properties are
sensitive in a diferent way to variations in p. For in-
stance, quadrature squeezing (second and fourth order)
is relatively intense in the binomial states, there existing
a maximum of squeezing that depends on M (see Figs.
2 and 3). On the other hand, the sub-Poissonian degree,
characterized by Mandel's Q parameter, decreases mono-
tonically with p, being, at the same time, independent of
M (the parameter is simply given by Q = —p).

A very clear way of verifying the changes in the field as
we vary p and M, as we have shown in Sec. III, is through
the quasiprobability distributions in phase space. The
increase in the mean energy of the field, as p increases,
corresponds first to a shift in the distribution (see, for in-
stance, the changes in the Q function in Fig. 4). At the
same time we have a growth in the quadrature squeez-
ing, which can be interpreted as an actual compression
of the distribution. This eKect is actually connected to
the progressive elongation of the distribution necessary
to construct a ringlike structure corresponding to a num-
ber state. The transition towards a coherent state in
suitable limits is also transparent under the phase-space
point of view (see Fig. 5). We also established a link
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between the quasiprobability representations and the ac-
tual phase properties of the field. In other words, it
is possible to obtain a qualitative picture of the phase
properties of the field using the quasiprobabilities and
this is in agreement with a more precise treatment us-
ing the Hermitian-phase-operator formalism. These ex-
amples are additional evidence that the quasiprobability

distributions are valuable tools for understanding subtle
aspects of nonclassical behavior in light fields.
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