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Dynamics of light transmission in two-dimensional nonlinear optical superlattices
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A set of coupled-mode equations is developed to describe the multiwave diffraction of light in two-
dimensional nonlinear superlattices, and is solved by numerical methods. At low incident intensities, the
solution is time-independent and shows that bistable behavior may appear in the incident-diffracted rela-
tions. With an increasing incident intensity, the solution becomes unstable and eventually turns chaotic
through the route of intermittance. The threshold intensity for chaos varies with the index-modulation

strengths of the superlattice. If the relaxation time of the Kerr-form nonlinearity exceeds the transmis-
sion time, only stable solutions are obtained.

PACS number(s): 42.50.Ne, 42.25.Fx

I. INTRODUCTION

An optical system with an output as a nonlinear func-
tion of some parameter will exhibit bistability in the pres-
ence of a positive feedback. Ordinarily, such an optical
system will also exhibit unstable or even chaotic behavior
under suitable conditions. The Fabry-Perot etalons filled
with nonlinear index media and the hybrid bistable de-
vices are two examples [1].

In recent years, one-dimensional (1D}nonlinear optical
superlattices, i.e., nonlinear media with 1D periodic vari-
ations in their refractive indices, have been investigated
for bistable behavior [2—8]. It has been demonstrated
that when the incident intensity is high enough, the
transmission becomes unstable and the chaotic behavior
appears [9—12].These phenomena are related to the tran-
sition between a forbidden transmission state and an al-
lowed transmission state. In the presence of gap solitons,
the propagating wave located in the forbidden gap is
brought into the allowed band of the transmission spec-
trum in a dispersive way [6,12,13] through the Kerr-form
dielectric nonlinearity. The changed transmission state
will in turn affect the excitation of gap solitons. This
kind of interaction may reach a stable state, which can
give a bistable behavior, or it may not reach a stable
state, in which case instabilities such as chaos will be ex-
hibited [9,11,12].

Recent work by the present authors [14] revealed that
in the multiwave diffraction of light in a two-dimensional
(2D) nonlinear superlattice (a nonlinear dielectric medi-
uxn with its refractive index modulated in two dimen-
sions), the incident-diffracted relations may exhibit bi-
stable behavior. Compared with the dispersive mecha-
nism in 1D superlattices, the bistability in 2D cases is es-
tablished by a different mechanism. It is related to the
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transition between a low transmission state and a high
transmission state in the allowed band, and is not mediat-
ed by gap solitons. This transition is not of a dispersive
nature but results from the change of index-modulation
strengths [14] of the 2D superlattice. The distinction be-
tween this kind of bistable mechanism and the dispersive
mechanism is clearly stated in Refs. [14] and [15]. In the
allowed band, when the index-modulation strengths
change, the intensity of each diffracted wave will oscillate
between low and high transmission states. Through the
Kerr-form nonlinearity, the interference in the transmis-
sion field will perturb the index-modulation strengths.
Hence a positive feedback is formed. This bistable mech-
anism, named the index-modulation mechanism, was
demonstrated experimentally in our later work in which a
photorefractive sample was used to construct the 2D
nonlinear superlattice [15]. Unstable phenomena such as
self-pulsing were observed in that experiment. In this pa-
per, to supplement our previous work, based on the phys-
ical pictures already provided, we investigate the dynam-
ics of light transmission and unstable behavior in a 2D
nonlinear superlattice from a detailed numerical ap-
proach.

The 2D nonlinear superlattice we consider here is a
Kerr-form nonlinear medium with the linear term of its
dielectric constant modulated periodically in two dimen-
sions. Its periodicity is expressed by the vectors H„and
H in reciprocal space. The incident wave vector satisfies
the exact Bragg condition that four reciprocal points are
located on the Ewald sphere. Thus four diffracted waves
are excited in the medium (see Fig. 1}. The four waves
are coupled with one another not only by the Bragg reso-
nance, but also by the Kerr-form dielectric nonlinearity.
In Sec. II we develop a set of first order partial
differential equations in a way similar to the coupled-
mode theory to describe the dynamics of light transmis-
sion in this 2D superlattice. The relaxation of the dielec-
tric nonlinearity is considered. In Sec. III we use numeri-
cal methods to solve the equations and obtain both time-
independent and time-dependent solutions. In Sec. IV
the results are discussed.

1050-2947/94/50(6)/5197(8)/$06. 00 50 5197 1994 The American Physical Society



5198 BIN XU AND NAI-BEN MING 50

Ewald sphere H g

fH

(a) (b) (c)

H

FIG. 1. Four-wave diffraction model in a two-dimensional nonlinear optical superlattice. (a) Bragg condition with four reciprocal
points located on the Ewald sphere. k& is the incident wave vector; kz, k3, and k4 are wave vectors of the other three diffracted waves.
(b) Schematic diagram of four-wave diffraction in real space. (c) Four index-modulation strengths Ml M2 M3 and M4, as Fourier
components of the periodic refractive index along reciprocal vectors H„Hy H +Hy and H —Hy, respectively.

II. COUPLED-MODE EQUATIONS

Waves propagating in periodic structures take the
Bloch-wave formalism. In this model of four-wave
diffraction, the light field in the 2D superlattice can be
expressed as

where e, is the mean linear dielectric constant of the
medium and satisfies po«o«„=(k„/co) (k„=~k, ~

=
~kz~

The intensity-dependent dielectric nonlinearity can be
described by the nonlinear polarization term

i(k .r — t)

i=1
PNL( r, t ) = «05n ( r, t )E(r, t ) . (4)

4

i=1

where k& is the incident wave vector [see Fig. 1(a}]. k,
( =k, +H, , i =2, 3,4) are the wave vectors of the other
diffracted waves. H; are the reciprocal vectors located on
the Ewald sphere. E, (i =1,2, 3,4) are the envelopes of
the diffracted waves varying with space and time.

The equation governing the light field is derived from
Maxwell's equations in nonlinear media,

V X [V X E(r, t) ]+po«0«(r }
' = —

po
8 E(r, t)

t}t dt

«(r) is the linear term of the medium's dielectric constant
and is periodic in two dimensions. Thus it can be ex-
panded into the Fourier series along the reciprocal vec-
tors, which are linear combinations of the unit reciprocal
vectors H„and H„. Among these Fourier components,
only the ones with their reciprocal vectors located on the
Ewald sphere participate in the transmission process, be-
cause it is these reciprocal vectors that make couplings
between each two of the diffracted waves. The other
components in the Fourier expansion can be ignored.
There are four such "effective" reciprocal vectors here, as
shown in Fig. 1(c): H„, H, H„+H, and H„—H .
Their corresponding "effective" Fourier components,
denoted by M„M2, M3, and M4, respectively, are then
the "index-modulation strengths" of this 20 optical su-
perlattice [14]. Thus, the periodic «(r) can always be
written in the form

Here, the nonlinear refractive index 5n(r, t) takes the
Kerr form. Considering the relaxation of the nonlineari-

ty [9,16], we assume that 5n(r, t ) obeys the following De-

bye relaxation equation:

+5n(r, t }=a~E(r, t ) ~

B5n (r, t)
at

5n(r, t ) =5n +o5n, c (oHs„r)+5nzc s(oH» r)

+5n3cos[(H„+H ) r]

+5n4cos[(H„—H ) r] . (6)

Assuming the diffracted waves are polarized in the Z
direction, and considering the geometry of the transmis-
sion shown in Fig. 1(b), we write the envelopes of the
diffracted waves as

E, =E, (x, t)k (i =1,2, 3,4) .

where v is the relaxation time of the dielectric nonlineari-

ty, and coefficient a characterizes the Kerr-form non-
linearity,

Because the nonlinear refractive index is determined by
the intensity of the light field, which consists of four
diffracted waves, it has a well-defined spatial distribution.
The nonlinear refractive index affects the transmission
process by perturbing the index-modulation strengths. It
can be expressed as

«(r)/«, = 1+M,cos(H„r)+M2cos(H r)

+M3cos[(H„+H ).r]

+M4cos[(H„—H ).r], (3)

By applying the slowly varying envelope approximation
and putting Eqs. (1), (3), (6), and (7) into Eq. (2), assuming

M;, n; &(1, we get the following coupled first-order par-

tial differential equations governing the envelopes of the
diffracted waves:
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FIG. 2. Bistable behavior in the incident-diffracted relations obtained by time-independent numerical solution. The parameters
are M, =3.0, Mq =6.5, M, =M4 =0.1, and b =0.02. I;„ is measured in units of IO, with aiEO i2= 6 X 10
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the superlattice. We also define b ( =r/T, ) to be the ratio
of the relaxation time of the Kerr-form nonlinearity to
the transmission time. To obtain suScient high
diffraction efficiency, the product M; and the dimension-
less constant k, l must be of the order of 1. In addition,
the nonlinear index perturbation 5n; should be compara-
ble to M, , requiring the dimensionless constant a!Eo! to
be of the same order of magnitude as M;. Here Eo is
used to normalize the envelopes E; of the diffracted
waves. Since M,. is typical on the order of 10, so
should be 5n;. Thus in the following numerical computa-
tions, we assume, as an example, k„I =3 X 103 and

a!Eo! =6X10 . With M, and n; measured in units of
10 and E, in units of Eo, all the parameters appearing
in the numerical computations are dimensionless and on
the order of 1.

We notice that the first-order hyperbolic partial
differential equations in Eq. (8) have the characteristics of
straight lines. When using the standard finite-difference
method to integrate the equations, we adopted the
forward-backward (FB) finite difference form [17]. The
grid size on the g —ri plane must be small enough so that

convergence is achieved. With the boundary conditions
and initial conditions, the envelopes of the diffracted
waves at their exit boundaries are obtained. The numeri-
cal solution may be time-independent or time-dependent,
and we present these two situations separately.

A. Time-independent solution

From the numerical results, we find that for low-
incident amplitudes E;„(also measured in units of Eo),
the solution will always evolve to a steady-state. From
this stable solution, we can obtain the relationship be-
tween the incident intensity and the diffracted intensities.
These functions of the diffracted versus incident intensi-
ties are nonlinear, as we have pointed out in Sec. II.
However, what is of most concern here is whether bi-
stable solutions can be obtained as expected. We have
found that if the parameters of the superlattice such as
the index-modulation strengths are suitably arranged,
this bistable behavior is not diScult to obtain. Figure 2
shows bistability in the incident-diffracted relations. The
bivalued region is obtained by changing the initial condi-
tions. In single-valued regions, the steady solution is not
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in Fig. 4. The incident intensity is I;„=1.65 .
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afFected by changing the initial condition, whereas in the
bivalued region, two solutions are achieved by having
difFerent initial conditions. To illustrate how the intensi-
ty jumps happen when changing the incident intensity
slightly near the bistable domain, we plot in Fig. 3, for
example, the variation of the intensity I, with time at
three difFerent incident intensities in the vicinity of a bist-
able jurnp. We can see that when I;„exceeds a critical
value, the solution evolves in a difFerent route and thus
leads to a discontinuity in the difFracted intensity. This
jump is always connected to the bivalued feature in our
numerical computations, which is typical for bistable
behavior.

As we mentioned in the Introduction, the bistability
exhibited here corresponds to the transition between a
1ow and a high transmission state in the allowed band
[18]. This is indicated in Fig. 2. We can see that the two
transmitted waves I, and I2 jump in opposite directions.
As the theoretical results show in Ref. [14], this behavior
is connected only to oscillations in the allowed band, be-

b
cause no transmitted waves are permitted in the te sop

and. The perturbed index-modulation strengths and the
transmission field are interacting with each other. Our
results show that this kind of interaction can converge to
a steady state only at low-incident intensities. When the
incident power is high enough, the interaction is not
stable and the solution will be time-dependent.

B. Unstable and chaotic solutions
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nd that the numerical solution does not settle down to a

fixed value but will keep oscillating with time. We plot in
ig. 4 this periodic self-pulsing. behavior of the difFracted

waves. The pulsation period is on the order of the
transmission time T„. At higher incident intensities, the

umerical results reveal that this instability will eventual-
ly develop into chaos, as is illustrated in Fig. 5.

The route through which this nonlinear system enters
chaos is intermittence [19]. The details are shown in Fig.

FIG. 6. Route of intermittence through which the system
enters chaos, with M, =2.7, M2=4. 0, M3=M4=0. 1, and
b =0.02.

6. With increasing incident intensity, the regular period-
ic self-pulsing becomes interrupted by irregular motions
with statistically distributed periods. The average num-
ber of these intermittence bursts increases with the in-
cident intensity until the condition becomes completely
chaotic. It should be pointed out that in 1D optical su-
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perlattices, similar unstable behavior, such as self-pulsing
and chaos, was also observed [9], but the route through
which the system enters chaos is period-doubling bifurca-
tions (see Ref. [11]}.

In the region of the periodic self-pulsing, the pulsation
frequency also increases with the incident intensity. We
plot in Fig. 7 the relationship between the pulsation
period and the intensity I;„,and find that this relation is
approximately in a linear form.

The threshold in the incident intensity at which the
system enters periodic self-pulsing or chaos is strongly
dependent on the structural parameters, i.e, the index-
modulation strengths. For example, for M

&

=2.7,
M2=4. 0, and M3=M4=0. 1, the numerical solution
shows that the incident intensity for the onset of periodic
self-pulsing is I;„=0.56 and for the onset of chaos is
I;„=1.56, while for M, =3.0, M2 =6.5, and

M3 M4 0. 1, the two critical incident intensities for
periodic self-pulsing and chaos are 0.64 and 2.25, respec-
tively. We also notice (see Fig. 7) that, for the two sets of
index-modulation strengths in (a} and (b), the slopes of
the pulsation period versus incident intensity are
different.

The instabilities we have discussed above are in the re-
gion b =~/T„&&1. However, if ~ is large enough to be
comparable to T„, we find that instabilities such as
periodic self-pulsing or chaos are diminished. Instead,
only time-independent solutions are obtained for any in-
cident intensity. This situation is illustrated by the exam-
ple of Fig. 8. The sluggish nonlinearity cannot provide
instantaneous feedback and the pulses are washed out.
This behavior is similar to that reported in a 1D superlat-
tice (see Ref. [9]).

IV. DISCUSSION AND CONCLUSION

We have presented the numerical results showing the
dynamics of light transmission in a 2D nonlinear super-
lattice, including stable and unstable cases. Similar
behavior has also been investigated in 1D nonlinear su-
perlattices [9,11]. However, the physical mechanisms
operating in these two kinds of systems are not the same.
As we have mentioned above, the perturbed index-
modulation strengths play a key role in establishing bista-
bility and unstable behavior in a 2D superlattice. That is
to say, for a given cw radiation, the way in which the sys-
tem works is dependent on the arrangement of the index-
modulation strengths. The values of these parameters
wi11 determine whether the feedback is positive or nega-
tive. Based on the physical picture of the relationship be-
tween the transmission field and the index-modulation
strengths that we have constructed in Ref. [14], the
diffracted intensities are oscillatory functions of the
index-modulation strengths. Thus, when the perturba-
tions to these parameters, brought by the interference
field via Kerr-form nonlinearity, are first enhanced with a
small increase of the incident radiation, there is an organ-
ized trend in changing the energy distribution among the
four diffracted waves. Radiation is increased in some
diffracted directions and decreased in the others. Again
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M3=M4=0. 1, and I;„=1.65 . The stable solution is obtained

instead of the unstable solution with a small b of 0.02 in Fig. 5.

via Kerr-form nonlinearity, there also appears a trend in
the changes of the perturbations in the index-modulation
strengths. This trend may favor the original trend in
changing the field, or it may not, corresponding to posi-
tive feedback or negative feedback. Because of the oscil-
latory dependence of the transmission field on the index-
modulation strengths, the positive feedback cannot last
and will stop to change its sign at the peaks or valleys of
the oscillations, leading to pulsed output of the diffracted
waves with time in both stable and unstable numerical
solutions. In the stable condition, the pulsation damps to
zero, leaving the feedback negative, whereas for unstable
conditions, such as periodic self-pulsing and chaos, the
feedback is positive and is only interrupted by points at
which it is negative. For bistable behavior of the stable
solution, the jump should correspond to a range in which
the feedback can always stay positive. It is obvious that
the time-evolution of the feedback is determined by the
values of the index-modulation strengths. We can divide
M „Mz, M3, and M4 space into stable regions and unsta-
ble regions. Further quantitative analysis of this space
remains to be made and is not covered by this paper.
This division also depends on the incident power. As
high-strength light transmission in a 2D superlattice
causes the index-modulation strengths to variate over a
broader range, the stable regions in M;-space thus be-
come smaller. The system can be located in unstable
states by increasing the incident intensity.

As an application of this mechanism in 2D superlat-
tices, for example, if the superlattice s periodic refractive
index is introduced by the acousto-optic effect, then the
index-modulation strengths will be determined by the
acoustic field. At a fixed incident power, this system can
work in a bistable state, a periodic self-pulsing state, or a
chaotic state with different acoustic fields, and the period-
ic self-pulsing frequency can be controlled by the strength
of the acoustic field.
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