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Wave-field phase singularities: The sign principle
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Phase singularities (topological charges, dislocations, defects, vortices, etc.), which may be either posi-
tive or negative in sign, are found in many different types of wave fields. We show that on every zero
crossing of the real or imaginary part of the wave field, adjacent singularities must be of opposite sign.
We also show that this "sign principle, "which is unaffected by boundaries, leads to the surprising result
that for a given set of zero crossings, fixing the sign of any giuen singularity automatically fixes the signs
of all other singularities in the wave field. We show further how the sign of the ftrst singularity created
during the evolution of a wave field determines the sign of all subsequent singularities and that this first

singularity places additional constraints on the future development of the wave function. We show also
that the sign principle constrains how contours of equal phase may thread through the wave field from
one singularity to another. We illustrate these various principles using a computer simulation that gen-

erates a random Gaussian wave field.

PACS number(s): 42.55.—f, 42.60.Jf, 42.62.—b

I. INTRODUCTION

Phase singularities were introduced into optics (and
other wave fields) by Nye and Berry in an important
series of papers [1—7] that provide the theoretical foun-
dation for the study of these fascinating, ubiquitous ob-
jects. These singularities are points from which contours
of constant phase in the transverse x-y plane radiate out-
ward in a starlike fashion such that the phase y circulates
by 2n m over any closed path that encircles the singulari-
ty. Nye and Berry [1] developed, inter alia, the
model phase singularities F'+' =(x+iy)"=r" exp(+in 8)

A'"'exp(iy+). The sign of the singularity is positive
(F+ ) if the phase y+ = + n 8 circulates counterclockwise
and negative (F ) if the phase y = n9 circ—ulates
clockwise. Since the wave function must be everywhere
single valued, n is restricted to integer values. For the
same reason, at the point singularity itself the amplitude
A '"' =r" is forced to zero.

Appending the sign (+ or —) of the singularity to n

yields a quantity usually referred to as the topological
charge. One reason for this designation is that in free
space the phase singularities can only be created or des-

troyed in such a way that the total topological charge is
conserved [1,3]. Generally, this means that the phase
singularities are created as twins with topological charges
that have opposite signs but equal magnitudes. We will
find it convenient to refer to this topologically deter-
mined rule, which rejects the fact that the wave function
must be everywhere continuous, as the "twin" principle.
In the presence of boundaries where the wave field
changes abruptly, however, the twin principle no longer
necessarily holds and isolated singularities may be creat-
ed or destroyed at a boundary.

Phase singularities have recently been extensively stud-
ied in nonlinear optics and laser physics, where they arise
as the so-called spiral solutions to the complex

Ginzburg-Landau equation [8—20], while related singu-
larities have long been studied by condensed-matter phy-
sicists in material systems [21,22]. The phase singulari-
ties are also of the greatest importance in the linear
scattering of coherent waves from random media
[2,15,23 —27]. In a random Gaussian speckle pattern, for
example, the number density of singularities is so extraor-
dinarily high that on average each speckle spot is accom-
panied by a phase singularity [2,23 —26]. Important
correlations between these phase singularities have been
derived by Halperin in a fundamental paper that consid-
ers the statistical mechanics of topological defects [28].
The deterministic results we obtain here are later shown
to be in full accord with Halperin's statistical predictions.
We note that at present the tendency in optics is to use
the term "vortices" to describe the phase singularities
with their vortexlike phase circulation and so we adopt
this term.

At some fixed value of z, the transverse component of
the general wave function may be written
F(x,y)=fR, (x,y)+if& (x,y) This descr. iption is partic-
ularly apt for the far field, where the internal structure of
the wave field remains invariant under propagation and
simply expands uniformly on the surface of a large sphere
of radius z. Single valuedness of the wave function re-
quires the centers (singular points) of any vortices that
are present to lie at the intersections of the zero crossings
of f„,and f, [the set of points or continuous curves in
which f (x,y) =0]. As becomes apparent, the topology of
these zero crossings determines the structure of the vor-
tices and it will prove convenient to denote a zero cross-
ing of fR, (f, ) by Z„,(Z, ). Throughout this paper
these zero crossings will be one of our major concerns.

Although the twin principle is of the greatest impor-
tance, when a new vortex twin is born, this principle fails
to specify which twin is positive and which is negative.
We have discovered a principle that fills this gap, which
we call the sign principle.
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Sign principle .Adjacent vortices on any given zero
crossing off„,or f, must be of opposite sign.

a computer simulation that generates a random Gaussian
wave field [26,27].

This very general principle is unaffected by the presence
of boundaries and appears to be applicable to all types of
wave fields.

As a simple application of the sign principle consider a
segment of ZR, that contains two adjacent vortices
( A)(B) with signs (+ )( —). If a vortex twin is created
between ( A ) and (B), the sign principle requires the
configuration ( A )( —)(+ )(B) and forbids the
configuration ( A)(+ )( —)(B).The twin principle, in con-
trast, allows either configuration. We note that the twin

principle is a statement about the wave function at a sin-

gle point (the point where vortices are created) and is
thus a local principle, while the sign principle establishes
relationships between the wave function at different
points and is thus a global principle. Accordingly, the
sign principle cannot be deduced from the twin principle.
On the other hand, most applications of the twin princi-
ple do immediately follow from the sign principle.

The sign principle has many far reaching implications,
some of which we develop in the following sections. In
Sec. II we use simple two-color maps to describe the real
and imaginary parts of the wave function, and for a given
set of zero crossings, we deduce the following three pro-
positions.

(i) The sign of any single vortex in a wave field au-
tomatically fixes the signs of all other vortices in the wave
field.

(ii) If the sign of any vortex in a wave field is changed,
then the signs of all other vortices must also be changed.

(iii) The sign of the first vortex created during the evo-
lution of a wave field will fix the signs of all future genera-
tions of vortices.

We call these three propositions the three corollaries of
the sign principle.

Following the elucidation of the three corollaries, we

give in Sec. III a proof of the sign principle itself. We
start by considering in Sec. IIIA a wave field that con-
tains only first-order zeros. We relax this restriction in
Sec. IIIB and show how to apply the sign principle to
wave fields with higher-order zeros. We also show in this
section how the sign principle may be used to analyze
ambiguous situations in order to determine the topologi-
cal charge of unusual singularities. In Sec. III C we in-
troduce an important extension of the sign principle that
permits its application to wave fields containing isolated
zero crossings and we show how the future evolution of a
wave field will be strongly constrained by the very first
vortices that are created. In Sec. IV we show that the
sign principle also strongly constrains how the equiphases
in a wave field may thread from one vortex to another
and we present three "phase rules" that summarize these
constraints. In Sec. V we briefly discuss possible exten-
sions of the research and we compare the (deterministic)
sign principle with Halperin s calculations of the statisti-
cal correlations of vortices [28]. Throughout, we illus-
trate and test the various propositions using the results of

II. THE THREE COROLLARIES
OF THE SIGN PRINCIPLE

As we are interested in physically real wave functions,
we assume that both fR, and f, are regular, single-
valued functions of the spatial coordinates x and y. Frac-
tals and other interesting monstrosities are therefore ex-
cluded. Returning to the basic description of a (linear)
vortex F+ =x kiy, we imagine standing on the zero cross-
ing offR, (the y axis) while orienting ourselves such that
the +x axis is to our right. If we always adopt this con-
vention, then f„,always increases to our right and de-
creases to our left. For the positive vortex F+, when we
stand on the zero crossing of f, , the x axis, f, in-

creases to our front and decreases to our back, while for
the negative vortex F, f, decreases to our front and
increases to our back. Thus the sign of a vortex is deter-
mined by the directions of increase (or decrease) of fR,
and f, and this remains true also for the general wave
function.

As an aid in determining in which direction fR, or ft
increases or decreases in the general case, we prepare a
two-dimensional, two-color map for each of these func-
tions. In coloring these maps we adopt the convention
that the positive regions of a function are colored white
and the negative regions are colored black. Examples of
maps of fR, and f& for a random wave field obtained
from our computer simulation [26,27] are shown in Fig.
1. The boundaries between the white and black regions
on these maps are the zero crossings ZR, and Z, . As
before, we imagine standing at the origin of a local coor-
dinate system with +xi„,&

to our right and +yi„,i to our
front. By our convention, when we stand on ZR, we al-
ways orient ourselves such that white is to our right, so
that BfR, /Bx„„)& 0 and BfR, /By&„,) =0. The sign of a
vortex is determined by the (coordinate-independent) sign
of the Jacobian B(fR„ft )/B(x&„,&, By&„,&) [26,28]. Thus,
within our convention the sign of a vortex is the sign of
~fr /4'i-. i.

(b)

FIG. 1. Maps of (a) f„,and (b) f, for a random Gnassian
wave field. Positive regions of the functions are colored white
and negative regions are colored black. The zero crossings of
these maps and their associated vortices are shown in Fig. 6.
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In the highly unlikely event that one or both of our
maps contain isolated points at which two apparently
different white regions just contact one another, ambigui-
ties in how we are to orient ourselves, and thus ambigui-
ties in the values of the local derivatives, may arise.
These ambiguities may be resolved by introducing a
small, continuous, local perturbation of the wave func-
tion that slightly raises or lowers the function at the con-
tact point. Such a perturbation preserves, of course, the
topology of the wave field. If we raise the wave function,
then we join the two regions together to produce a single
white region, while if we lower the wave function, we
separate the two regions. Having eliminated all ambigui-
ties in this way we complete our analysis and at the end
relax the perturbation back to zero. Continuity, together
with the fact that our perturbation of the wave function
is completely local, guarantees the same end result no
matter which route we choose for eliminating the contact
point. Thus, for a given topology of Z„,and Z, the
signs of the vortices are completely determined by the
relative colorings of our maps.

We now show that the converse of the above is also
true and that given ZR, and Z&, the sign of any single
vortex automatically determines the relative colorings of
all regions on both maps and thus the signs of all ather
vortices. We begin by noting the obvious point that our
map of fa„for example, must change color every time
we cross a ZR, and must not change color if we do not
cross a ZR, . Accordingly, given the color of any small
finite region, the colors of all other regions in the map are
uniquely determined by the requirement that the wave
function be everywhere single valued (uniquely colored).
Maps for which contradictory colorings arise via different
paths correspond to wave functions that are not single
valued and need therefore be discarded as unphysical. All
of the above is also obviously true for the map of f,

We will now assume here and throughout the
remainder of this paper that the only information about
the wave field available to us a priori is a zero crossing
map showing all the ZR, and Z& . At a given intersec-
tion of Z«and Z&~ on our zero crossing map, if we
know the sign of the vortex that is present at this inter-
section, we know the relative local colorings of the (una-
vailable) maps of fz, and f& . For example, if we arbi
trarily decide that one side of Za, on the f„,map is
colored white (black), then the sign of our vortex deter-
mines which side of Z& on the f& map must also be
colored white (black). But as just discussed, once we
have fixed the coloring of a small finite region on the map
offa, and on the map off~, we have fixed the colorings
everywhere and thus the signs of all vortices in the wave
field. Accordingly, we obtain the first corollary of the
sign principle: (i) The sign of any single vortex in a given
zero crossing map uniquely determines the signs of all
other vortices. Further, if we switch the color of a region
containing a vortex on only one of our maps, thereby
switching the sign of that vortex, the requirement that
the wave function be everywhere single valued forces us
to switch the colors of all other regions of that same map
and this in turn changes the signs of all other vortices.

Accordingly, we have the second corollary of the sign
principle: (ii) Changing the sign of any single vortex in a
wave field automatically changes the signs of all other
vortices in the wave field. Finally, if we add new zero
crossings to our maps, then the colors of all new regions
created are already predetermined, as are the signs of all
new vortices. We thus obtain the third important corol-
lary of the sign principle: (iii) The sign of the first vortex
created will determine the signs of all subsequent vortices
that may be created.

III. THE SIGN PRINCIPLE

A. First-order zeros

(a) r
I
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FIG. 2. f, as a function of arc length /R, along Z„,. (a) Ad-
jacent zero crossings of f, have slopes with the same sign,
causing the wave function to be multivalued (vertical dashed
line). (b) Adjacent zero crossings of f, have slopes with oppo-
site signs, as required for a single-valued function.

We turn now to a proof of the sign principle. For sim-
plicity, we start with the assumption that both ZR, and

Z, do not contain any self-intersections. Formally, this
is equivalent to assuming that both f„,and f, are "suit-
ably" regular at level zero [29], so that both ZR, and Z,
are everywhere smooth, continuous, and differentiable.
Our assumption requires that all vortices be first-order
zeros since, as we show in Sec. III B where we relax this
assumption, higher-order zeros necessarily give rise to
self-intersections.

We first note that as we move along any continuous
segment of ZR, we never encounter a point at which we
suddenly need to turn around in order to keep white to
our right. It was to ensure this result that we first elim-
inated all self-intersections. Making our way along ZR„
we carefully record the value of f, as a function of our
position along the contour. We denote the resulting func-
tion by f& (IR, ) in order to emphasize that it is a one
dimensional function of the arc length I„,along ZR, .
Plotting this function we observe (Fig. 2) that its slope
df& IdlR, =Bf& IBy&„,~

always alternates in sign from
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one of its zero crossings to the next. This is a direct
consequence of the requirement that f&

must be every-

where single valued. Since the sign of a vortex is deter-
mined by the sign of Bf, /By&„,&, we have established
that adjacent vortices on any (and therefore every} Za,
must alternate in sign. Repeating the whole chain of ar-
gument given above while everywhere replacing "right"
with "left" and fR, with f& establishes that also adja-
cent vortices on every Z& must alternate in sign. We
thus arrive at the general rule, which we call the sign
principle: Adjacent vortices on any zero crossing must
alternate in sign. Starting at any vortex whose sign is

known, this rule lets us rapidly skim along ZR, or Z&

(or when convenient cross back and forth between con-
tours} labeling vortices alternately plus or minus as we

go. In Sec. III B we show how to apply the sign principle
to wave fields containing higher-order zeros and in Sec.
III C we extend the sign principle to the case of (usually

closed) ZR, and Z, contours that are isolated from all

other contours on our maps. With these extensions, the
sign principle then provides a simple algorithm for the
practical implementation of corollaries (i) and (iii).

We note that the above arguments are unaffected by
boundaries that may abruptly terminate a zero crossing,
so that unlike the twin principle, the sign principle holds
also in the presence of boundaries. The reason for this
important difference between the two principles is that
boundaries may make the wave function discontinuous,
but never multivalued.

B. Higher-order zeros

If our wave field contains higher-order zeros, say,
F'+'=[(x —xp)+i(y —yp)] =~r —

rp~ exp(+2i8), which
corresponds to a doubly degenerate vortex with topologi-
cal charge +2, then we have self-intersections for both
ZR, and Z, . Here e=arctan[(y —yp)/(x —xp)], and
both fR, =(x —xp) —(y —yp) and f& =2(x —xp)(y
—yp) correspond to saddle points that just touch
the x-y plane at the vortex center xp, yp(rp). Since
self-intersections imply that two white regions on our
map touch at a single point (a contact point), they must
be eliminated. As before, we accomplish this by adding a
local perturbation to the wave function, replacing
f (x,y), for example, by f (x,y)+a exp{ —[(x—xp)
+(y —yp) ]/w ]. We may turn the perturbation con-
tinuously on and off by varying c, while by
adjusting w we can make the perturbation as local as we
wish. As shown in Fig. 3, such a small perturbation splits
a self-intersecting contour into two self-avoiding con-
tours, the details of which depend upon the sign of c,. For
either choice of sign, since we have eliminated the self-

intersections we may freely apply the sign principle to the
perturbed wave field. Having done this we collapse c
back to zero with the assurance that by continuity and
the locality of the perturbation, our results for vortex
signs cannot depend upon whether we initially chose c to
be positive or negative. Zeros of arbitrary (finite) higher
order may all be easily handled in this same fashion. But
as is obvious from the example in Fig. 3, the degeneracy
of a vortex is ultimately not important, and in applying
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FIG. 3. Application of the sign principle to a higher-order
zero. (a) Zero crossings ZR, ( ) and Z&m ( ) of a doubly

degenerate vortex with topological charge +2 centered at
xo,yo. Both ZR, and Z& have a self-intersection at the vortex
center that introduces apparent ambiguities in the determina-
tion of the signs of vortices A and B using the sign principle. (b)
and (c) The self-intersections are turned into avoided crossings

by the introduction of a small local perturbation s. (b) s & 0. (c)
c (0. For both choices of c the degeneracy is lifted, the central
vortex splits into two separated positive vortices (0) with topo-
logical charges +1, and the sign principle determines that vor-

tices A and B are both negative (0). (d) The wave field after the
perturbation c is relaxed back to zero. This illustrates that the
sign principle may be applied to degenerate vortices using only
their sign without regard to the magnitude of their topological
charge.

the sign principle to degenerate vortices we need not
bother to actually split self-intersections and may instead
simply use the sign of the vortex without regard to its de-
generacy.

The sign principle may also prove useful in resolving
ambiguous situations. Suppose we have f„,=x —y and

f, =y. Does this correspond to a vortex entered on the
origin, and if so, what is the vortex sign and what is its
topological charge? As shown in Fig. 4, we once again
turn the self-intersection of Z„,into an avoided crossing.
If we do this by making c & 0, ZR, and Z& do not inter-
sect at all, and so there is certainly no vortex at the ori-
gin. On the other hand, if we make e. &0 we end up with
a closely spaced positive-negative vortex pair (topological
charge +1) symmetrically disposed about the origin. In
either case we may now freely apply the sign principle to
the perturbed wave field. When we collapse c back down
to zero the vortex pair created for c. (0 self-anihilates, so
that for either choice of sign for e we conclude that our
original wave function did not contain a vortex at the ori-
gin, but rather some other sort of phase discontinuity.
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)ky icy {c)

FIG. 4. Resolution of an ambiguous phase discontinuity using the sign principle. (a) A self-intersection of ZR, ( ) also inter-
sects Z& { ) at the origin. From the form of the wave function, vortex A is positive (0) and vortex B is negative (o). Since there
is no possible sign for the phase discontinuity at the origin that can satisfy the sign principle, this discontinuity cannot correspond to
a vortex (b.) and (c) A small local perturbation s applied to fR, turns the self-intersection of Z„,into an avoided crossing, thereby fa-
cilitating application of the sign principle. (b) c)0. ZR, and Z& do not intersect, confirming that there is no vortex at the origin.
(c) c, &0. A positive-negative vortex pair is created, which self-annihilates when c is relaxed back to zero, again confirming that the
original wave function does not contain a vortex at the origin.

C. The extended sign principle

We now extend the sign principle to include also the
case of noncontacting, apparently isolated zero crossings,
an example of which is shown in Fig. 5. In Fig. 5(a) we
show a single isolated positive vortex, labeled A. As al-
ready discussed, because of the presence of boundaries
the twin principle cannot be invoked and the creation of
a single vortex is permitted [14]. In Fig. 5(b) we add a
second set of intersecting zero crossings and create a
second vortex, labeled B Althou. gh corollaries (i) and (iii)
ensure us that the sign of vortex B is predetermined, since
there is no common zero crossing contour that connects
vortex A to vortex B, the sign principle in its present
form cannot be used to find the sign of vortex B. We
could, of course, work out the relative colorings of maps
of fR, and fi in order to find the sign of vortex 8, but
there is an easier method. We extend the sign principle
by introducing a continuous distortion of any one of the
contours containing vortex A, say, ZR„until we cross a
Z& contour containing vortex B. Having done this we

apply the sign principle in the usual way, finding thereby

that the sign of vortex B is positive. This is illustrated in
Fig. 5(c). After fixing the sign of vortex 8 we undo the
distortion of ZR, and return to our original zero crossing
map. We emphasize that it is quite irrelevant whether or
not the wave field actually evolves to the configuration
shown in Fig. 5(c). Since this configuration maintains the
topology of ZR, and is generated continuously from the
initial state by a completely local perturbation, it and the
initial state must have the same vortex structure (map
colorings). Of course, any other contour distortion that
meets these requirements will also yield the same final re-
sult. We illustrate this procedure further in Fig. 6, which
is taken from our computer simulations for a random
Gaussian wave field [26,27]. We note that since our simu-
lation provides us with complete maps of ZR, and Z,
together with the signs of all vortices, we have been able
to directly verify the sign principle in hundreds of specific
cases, including dozens of instances that require the ex-
tended principle involving contour distortions. Worth
emphasizing is that in performing contour distortions it
is best to avoid introducing intersections of ZR, (Zi )

contours with other ZR, (Zi ) contours (i.e., self-

IItiiijjiil/[I!, '!'I

FIG. 5. Extending the sign principle. (a) A single positive (0) vortex A is created at a boundary [ZR, ( ), Z, ( )]. (b) A
second vortex B appears whose zero crossing contours do not overlap the contours of vortex A so that the sign principle cannot be
applied directly. (c) Distortion ( ———) of the ZR, contour of vortex A that permits the sign principle to be applied to vortex B.
The signs of the virtual vortices (+ or —) created by this distortion follow immediately from the sign principle and the sign of vortex
8 is now easily seen to be positive.
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FIG. 6. (a) Zero crossing map of the random Gaussian wave
field shown in Fig. 1 [ZR, ( ),Zi ( )]. Starting at posi-
tive vortex A, the sign principle is used to determine vortex
signs along the two paths A-B and A-B', with ~ denoting posi-
tive vortices and o negative vortices. (b) The sign of vortex C is
determined to be negative using the extended sign principle
(———). The virtual vortices created by the contour exten-
sions also obey the sign principle and are labeled + or —.As
required, all three contour extensions yields the same sign for
vortex C.

intersections). In Fig. 7 we provide examples that illus-
trate ways of doing this that should suf6ce to handle any
zero crossing map we may encounter. Finally, we note
that the extended sign principle is truly global in scope,
since starting at any given point in the wave field it can
reach out to eoery other point in the wave field.

We now illustrate how the first vortex created during
the evolution of a wave field already, via the single princi-
ple, strongly constrains the possible future evolution of
the wave field. In Fig. 8(a) we show a zero crossing map
containing two vortices A and B. Fixing a priori the sign
of vortex A as positive, the extended sign principle fixes
also vortex B as positive. We now introduce another set
of intersecting zero crossings to this map, as in Fig. 8(b),
and we ask what is the sign of vortex C, the new vortex
created at the intersection? In order to answer this ques-
tion we again apply the extended sign principle. Starting
from the contours that house vortex A we conclude that
vortex C must be negative, but using the contours that
house vortex 8 leads us to the opposite conclusion that
vortex C must be positive. Since there is nothing in Fig.
8 that voids the sign principle, we are forced to conclude
that the new contours introduced in Fig. 8(b) are impossi-
ble, i.e., the wave field cannot evolve from Fig. 8(a) to Fig.
8(b). In light of the random, seemingly arbitrary zero

FIG. 7. Application of the extended sign principle to isolat-

ed, enclosed vortices [Z„,( ),Zi ( )]. (a) Vortex A is

positive (0) and vortex B is negative (0). The signs of vortices C
and D are to be determined using the extended sign principle.
(b) and (c) Examples of contour extensions that permit the sign
of vortex C to be determined as negative and the sign of vortex
D as positive. The virtual vortices created by the contour exten-
sions in (b) are labeled + or —.The reader may enjoy labeling
the virtual vortices created in (c).

crossings in Fig. 6, from which we might be tempted to
infer that "anything goes, " the conclusion that Fig. 8(b)
does not "go" is rather unexpected. The correctness of
this conclusion is confirmed by preparing colored maps of
fR, and f, for Fig. 8(b) and observing that if vortices A

and 8 have the same sign, then there is no possible color-
ing of these maps that does not require contradictory
colors for some region. Accordingly, Fig. 8(b) corre-
sponds to a wave function that is not single valued and is
forbidden. [In Figs. 8(c) and 8(d) we use the sign princi-
ple to show that it is the new ZR, contour which is "ille-
gal. "] As the number of vortices increases, the number of
constraints on possible forms of the wave function grows
rapidly, so we may conclude that to a large extent the
vortices determine much of the structure of a wave field.
This result is in accord with our previous conclusions
based upon very difFerent arguments that employed the
sampling theorem [25].

IV. PHASES: RULES AND CQNJKCTURES

Since the phase of the wave is qr =arctan( f, /f R, ), the
zero crossing contour Z& is also a contour of constant
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FIG. 8. Evolution of a wave field is con-
strained by its vortices [ZR, ( ),Z,
( }]. (a) Positive (~) vortex A is created
first. The extended sign principle fixes as also
positive the sign of vortex 8, which is created
next. (b) New ZR, and Zj evolve creating
vortex C. Starting from vortex A the extended
sign principles fixes the sign of vortex C as pos-
itive, while starting from vortex 8 the sign of
vortex C is found to be negative. This contra-
diction implies that at least one of the newly
evolved zero crossings corresponds to a mul-

tivalued wave function and is "illegal. " (c) and
{d) The newly introduced zero crossings are
tested for legality using contour distortions
{———). (c) Test of the new ZR, . Since the
virtual vortices that appear violate the sign

principle (two adjacent vortices are negative)
the new ZR, is illegal and must be discarded.
{d) Test of the new Z& . The virtual vortices
that appear obey the sign principle. The new

Z, is legal and may be retained.

phase y=O or m. and ZR, is a contour of constant phase
q&=fr/2 or 3!r/2. As already discussed, we may always
locally distort the wave field in order to temporarily elim-
inate zeros of order higher than one, and since for vor-
tices which are first-order zeros the phase always changes
discontinuously by m on any line passing through the vor-
tex center, it will be convenient to sometimes use reduced
phases qr =ip(mod fr}. We thus have that Zl is a re-
duced equiphase with y*=O and ZR, is a reduced equi-
phase with q' =fr/2.

Now, the phase of an optical wave may be easily shift-
ed by passing the wave through a uniform thickness glass
plate. Equivalent uniform phase shifters exist for other
wave fields. Accordingly, any equiphase in a wave field

may always be turned into a zero crossing. But simply
shifting the phase of the wave does not change the zeros
of amplitude, so the positions of the vortex centers
remain unchanged. As mentioned, the sign of a vortex
may be conveniently calculated from the sign of the Jaco-
bian j}(fR„f!)/B(x,y} evaluated at the vortex center
[26,28,30]. Direct calculation verifies that this Jacobian
is, as expected, also invariant to a uniform phase shift, so
we are led to the first phase rule.

(i) Adjacent vortices on any (and therefore every} re-
duced equiphase in a wave field must of opposite sign.

Since every vortex has a unique sign, we obtain the
second phase rule.

(ii) No equiphase can begin and end on the same vor-
tex.

From (i) and (ii} follows the third phase rule.
(iii) All equiphases that begin at a vortex must end on

vortices of opposite sign or continue on to the boundaries
of the wave field.

Just like the sign principle from which they derive, these
phase rules may be directly applied to degenerate vortices
(higher-order zeros) using only the sign of the vortex
without regard to the magnitude of its topological
charge. It is thus apparent that the vortices are very
much analogous to electric charges and the equiphases to
electric-field lines. This is in full accord with our previ-
ous results for model multivortex wave functions [25].
The phase rules, however, are very general and are in-

dependent of analogies or models. We emphasize that
these rules do not prohibit closed equiphases elsewhere in
the wave field.

If there are only two vortices present and these have
opposite signs, then all the equiphases of the first vortex
that do not reach the wave-field boundary must end on
the second vortex. When there are many vortices with
different signs, however, different equiphases that begin
on a given vortex can, and often will, end on different
vortices. We will refer to two vortices that are threaded
by one or more reduced equiphases as being "connected. "
A vortex that is connected to more than one neighbor
will be described as "multiconnected" and sets of vortices
in which each member of the set is connected to all other
members of the set will be referred to as "interconnect-
ed." After examining how the equiphases thread from
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vortex to vortex in a random Gaussian wave field we are
led to the following two conjectures: (i) the weak phase
conjecture and (ii) the strong phase conjecture.

(i) All vortices in a random Gaussian wave field are
multiconnected with probability approaching one.

(ii) All vortices in a random Gaussian wave field are in-

terconnected with probability approaching one.

t

f

it

The strong phase conjecture implies that starting at any
given vortex in the wave field, any other vortex in the
wave field may always be reached by moving along some
reduced equiphase.

We note that unlike the sign principle, which refers to
what happens along a line (zero crossing) and whose
proof was therefore reducible to a simple statement about
the behavior of regular functions in one dimension, the
proofs of these phase conjectures represent truly tmo-

dimensional problems. Unfortunately, as emphasized by
Adler [29], problems in the geometry (topology} of ran-
dom fields that cannot be reduced to one dimension are
rarely solved.

V. DISCUSSION

(a)

FIG. 9. Vector field ("spin") representation of the order pa-
rameter. The x component of a (unit) vector equals

fR, I(fR, +f& }'~,they component equals f, /(f„,+f, )'

and the angle that the vector makes with the x axis is the value

of the order parameter (phase) at the point x,y. (a) Positive vor-

tex x +iy. The vectors "flow" radially outward (positively) from

the vortex center. (b) Negative vortex x —iy. The vectors flow

inward (negatively) along the y axis and outward (positively)

along the x axis. The negative vortex is thus not a simple "sink"
for the positive vortex "source. "

Vortices are normally described as being found at the
intersections of the zero crossings of the real and imagi-
nary parts of the field. We have seen, however, that these
zero crossings are arbitrary and may be replaced by any
pair of equiphases that dier in phase by n/2 But eve. n
this latter restriction is unnecessary, since at the intersec-
tion of any two equiphases the wave function becomes
multivalued unless the amplitude goes to zero. Accord-
ingly, the most general statement about vortices is that
they are located at the intersections of any two equi-
phases.

Although our major interest has been (polarized} ran-
dom optical waves, the results described here are relevant
to all regular (scalar) wave fields, such as sound waves,
electron waves, neutron waves, etc. Our results should
also prove applicable to any continuous, two-
dimensional, two-component order parameter that con-
tains topological singularities. This wide class of order
parameters describes many difFerent thin-film material
systems [21,22,28]. Here the zero crossings are either
those of the real and imaginary parts of the order param-
eter in a complex representation or of its x and y com-
ponents in a vector representation. In optics one de-
scribes the vortices in terms of their equiphases, but in
condensed-matter physics one conventionally uses a field
of unit vectors ("spins"} in which the orientations of the
vectors describe the spatial dependence of the order pa-
rameter (phase). In Fig. 9 we display this representation.
The vector field for the simple positive vortex x +iy may
be seen to be intuitively satisfying, but this is no
longer the case for the simple negative vortex x —iy
[21]. In multivortex wave fields more complex vortex
morphologies such as F(x,y) = (a R, +bR, x +cR,y}
+i(at +bt x+c& y) are the rule rather than the ex-
ception ( —~ & a, b, c & oo) [25,26] and the corresponding
rather coxnplicated vector fields become even less intui-
tive and harder to interpret. Accordingly, it appears that

the vector field representation of the order parameter
may not provide a useful alternative for deriving the sign
principle and the other general propositions developed
here. Nonetheless, since the vector field is widely used in
condensed-matter physics, we generalize our results also
to this representation. Defining a reduced order parame-
ter (equivalent to the reduced phase p*}by removing the
heads of the arrows in Fig. 9, we have, for any two-
dimensional system described by a continuous two-
component order parameter, the following proposition.

Proposition Adjac.ent vortices on any (and therefore
every) contour of constant reduced order parameter must
alternate in sign.

We may speculate that results that are analogous to this
proposition, which includes both the sign principle and
the phase rules, may exist also in dimensions that are
higher than two and for order parameters that have more
than two components, and we would suggest that a
search for such extensions may prove rewarding.

When applicable, the sign principle implies that the
contribution of vortex signs to the system's entropy is
negligible (kz ln2, where kz is Boltzmann's constant, in-

stead of N„kit ln2, where N„is the number of vortices), so
that vortex statistics, thermodynamics, phase transitions,
etc. may all be strongly modified by this new principle.
We note in this regard that Halperin, in his important pa-
per on the statistical mechanics of topological defects
[28] to which we referred earlier, has presented a funda-
mental calculation of the ensemble average topological
charge correlation function for a random, two-
dimensional Gaussian wave field. Halperin finds that
positive vortices tend to be surrounded by negative vor-
tices and vice versa. This finding is, of course, in full ac-
cord with the sign principle, which provides a determinis-
tic basis for these statistical correlations. We note that
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our measurements of the vortex topological charge corre-
lation function, which will be reported on separately [31],
are in substantial agreement with Halperin's calculations,
thereby confirming not only the applicability of these cal-
culations, but also the importance of the sign principle in
determining the statistical mechanics of vortices.

For two-dimensional wave fields, the sign principle and
its corollaries, together with the phase rules and their
conjectures, imply that the vortices form a set that in a
real sense is highly ordered. This set, which extends
throughout the whole wave field, clearly determines
much if not all of the wave-field structure [8,10,14,16,26].
The existence of so much hidden order in a random
Gaussian wave field, for example, is quite surprising,
since one normally thinks of this wave field as being com-
posed of independent coherence areas (regions of nearly
constant amplitude and phase). This point of view is

clearly untenable as far as the vortices are concerned. In
a separate paper we describe our studies on Gaussian
speckle patterns that confirm some dozen different corre-
lations between vortices predicted by the sign principle
[31]. Since the vortices and their interconnected equi-
phases determine both the locations and the sizes of the
regions of slowly varying phase normally associated with
speckle spots, the independence of these spots is now also

called into question. It appears likely that our current
picture of random wave fields will need to be reexamined.

In their pioneering work, Nye and Berry suggested
that the arrangement of vortices in a wave field could
serve as a useful means for classifying nontrivial wave-
field structures [1—7]. In solid-state physics, for example,
many properties of a crystal are already revealed simply
by stating the crystal class. In order to actually carry out
Nye and Berry's proposal for wave-field classification,
however, one needs to know all the different possible in-

terconnections between vortices. The results given here
may provide a useful start in this direction.

We end with an unanswered question. In multiple-
scattering media when the photon-scattering mean free
path becomes of order the wavelength of light, many
strong correlations of the intensity in widely different re-
gions of the wave field set in and ultimately the wave be-
comes localized [32—35]. What happens to the vortices?
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