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By using a modal approach, the distributed coupling of two inhomogeneous, transient waves with op-
posite angles of incidence into nonlinear waveguides is studied. We show that cross modulation and the
coherent interaction via a dynamic grating, nonlinearily induced by the excited counterpropagating
leaky waves, provide a longitudinal feedback. This feedback is the necessary prerequisite for bistability
to occur. We show that bistability may even appear when one incident beam is weak. Consequently,
modulation of the strong signal beam by a weak control pulse can be achieved. Furthermore, we demon-
strate that the symmetry of the input signal can be broken beyond a certain intensity and that set-reset
flip-flop operation with finite beams is feasible. We demonstrate that the mechanism responsible for this
flip-flop operation differs considerably from that acting in the plane-wave case. The optical nonlineari-
ties may be caused by either virtual or real carrier excitation, which models the behavior of semiconduc-
tors as well as nonlinear polymers or organic dyes well below or close to a resonance, respectively. For
real carrier excitation the interplay of carrier relaxation, diffusion, and the propagation of the excited
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fields is taken into account.

PACS number(s): 42.65.Pc, 42.50.Ne, 42.79.Gn

I. INTRODUCTION

The theoretical modeling of the optical response of
nonlinear planar resonators excited by a pulsed beam has
attracted considerable interest [1-10]. The modal
theory, formulated by Ulrich [11] for the linear situation
and extended the nonlinear case by other authors [5-10]
later on proves fairly versatile and provides a clear physi-
cal picture of the nature of the optical response [10].

Since the geometry of the resonator enters the modal
theory merely by the location and the linewidth of the
resonance [6-—10], the optical response of Fabry-Pérot
resonators with metallic or dielectric (Bragg) mirrors as
well as prism and grating couplers may be described by
that approach. Adopting this point of view, Fabry-Pérot
resonators with dielectric mirrors, operated under ob-
lique incidence as well as prism couplers, represent at-
tenuated total internal reflection (ATR) configurations.
The former variant is nothing other than a Bragg
waveguide where the guided leaky wave may be excited
directly from the air [12].

In contrast to plane-wave models, which predict opti-
cal bistability under appropriate conditions and for any
angle of incidence, mere switching occurs for oblique in-
cidence provided that the beam width is finite [6-8,10]
and the nonlinearity is local. The physical explanation is
rather straightforward if one studies the behavior of the
leaky waves that are excited near any resonance of the
configuration. In the plane-wave case these leaky waves
are excited everywhere aleng the structure and their am-
plitudes are correlated by definition in both directions,
providing an inherent longitudinal feedback, which is
necessary for optical bistability to occur.

The situation is different for an excitation with a finite
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beam where the information about the amplitude of the
excited leaky wave flows exclusively in the direction of
propagation. Thus the longitudinal feedback disappears
provided that the response of the nonlinear material is lo-
cal.

Keeping in mind the analogy between the different res-
onant devices, it is not surprising that the physics of
switching and bistability identified for Fabry-Pérot reso-
nators under oblique incidence coincides with that of a
nonlinear prism coupler extensively discussed by Stege-
man et al. [13] and Vitrant et al. [14]. There, it has been
shown that bistability may appear only if either the ma-
terial response is nonlocal (due to diffusion or thermal
effects) or an additional longitudinal feedback is intro-
duced by a weak counterpropagating wave. Particularly,
the counterpropagating wave was assumed to be excited
by reflection of the excited guided wave at the prism edge
[13]. Due to the small reflectivity, this feedback is rather
weak. Only when the detuning of the input field from the
ATR resonance is extremely large [13] is this feedback
sufficient to yield bistability. Since the detuning has to be
compensated for by the nonlinear susceptibility changes
in the waveguide a high switching power, as well as a
sufficiently large saturation level of the respective non-
linear process are required.

The other feedback mechanism discussed was nonlo-
cality of the nonlinear response of the material caused,
e.g., by diffusion [13,14]. It may produce optical bistabil-
ity when the diffusion length is comparable to the decay
length of the excited leaky wave, which corresponds to
the coupling length of the ATR configuration. This con-
dition is always met for thermal nonlinearities, but
thermal effects are considered to be too slow for optical
information processing. For carrier-induced nonlineari-
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ties, as, e.g., in semiconductors, there is a similar trade-
off because the diffusion length scales with the square
root of the relaxation time of the carriers. Hence large
diffusion lengths are always accompanied by slow relaxa-
tion and consequently a small repetition rate of the device
envisaged. However, by increasing the detuning [14] one
can compensate for a small diffusion length, provided
that the saturation value of the nonlinearity is large
enough.

The present paper takes advantage of the idea to intro-
duce longitudinal feedback by a counterpropagating
wave. The operation speed of this mechanism is limited
only by the group velocity of the excited leaky waves and
has practically no inherent delay. Hence it seems to be
preferable for fast optical information processing. Never-
theless, the influence of undesired diffusion effects needs
to be estimated.

In contrast to [13], we assume that the backward prop-
agating wave is excited by an additional input beam,
launched into the guide with the opposite angle of in-
cidence with respect to the primary one. This scheme
provides an additional degree of freedom to control the
optical response of the system. Similar investigations
were carried out first by Haelterman [15,16], but restrict-
ed to the plane-wave approach and instantaneous Kerr
nonlinearities. As an interesting new effect symmetry
breaking was predicted for input waves with equal inten-
sities.

The primary aim of our paper is twofold, namely, to
study the various effects for finite beam width and to cov-
er both resonant and nonresonant nonlinearities. First,
we investigate whether bistability can be observed for
finite beam widths and transient excitation, taking exact-
ly into account the interaction of the two waves via
cross-phase modulation and a transient nonlinear grating.
The prerequisites for optical bistability to occur, as, e.g.,
the critical ratio between the amplitudes of both input
beams, are identified. Additionally, the influence of car-
rier diffusion is discussed. Since we are studying the tem-
poral dynamics of the response, the stability of the field
structures can be directly identified. Moreover, we show
that effects such as, e.g., filamentation, leading to the for-
mation of high transmission domains, play an important
role for finite beam widths.

Furthermore, we study how the output characterisitic
of one beam can be controlled by the counterpropagating
one. This interplay may offer opportunities for a definite
response control. Eventually, we investigate symmetry-
breaking effects for finite input beams with equal intensi-
ties.

It is commonly agreed that direct semiconductor ma-
terials are promising candidates for nonlinear optical de-
vices such as nonlinear waveguides [17] as well as planar
resonators (see, e.g., [18]). Two advantageous frequency
domains have been identified. One can use frequencies of
the optical field below half the fundamental band gap
where the nonlinearity is caused by virtual carrier excita-
tion. In this frequency domain the nonlinearity is ex-
tremely fast (quasi-instantaneous) and one- as well as
two-photon absorption processes can be avoided [17,19].
By contrast, for frequencies near the fundamental gap,
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the nonlinearity is due to real carrier excitation [18,20].
Hence the nonlinearity is some orders of magnitude
larger, but also some orders of magnitude slower. Addi-
tionally, considerable absorption losses occur. Conse-
quently, one prefers frequencies below half the gap if the
guided field is used as the signal and very short response
times are required. On the contrary, frequencies near the
gap can be employed if the reflected-transmitted signal is
exploited and low switching powers are desirable. In or-
der to cover these different situations our investigations
are carried out simultaneously for both types of non-
linearities.

Similar considerations hold also for other nonlinear
materials in which the nonlinearity is due to electronic
excitations, such as, e.g., nonlinear polymers or organic
dye molecules [21]. The main difference to the semicon-
ductor case is the negligible role of carrier diffusion. All
these materials exhibit saturable nonlinearities with a
finite response time when excited at resonance and in-
stantaneous nonlinearities in the nonresonant case [21].

The paper is organized as follows. In Sec. II we
present the basic equations of the modal theory by taking
into account cross modulation and the interaction via the
nonlinearity induced grating. In Sec. III the optical
response of our configuration is studied numerically for
various excitation conditions.

II. MODAL THEORY FOR DISTRIBUTED
COUPLING OF COUNTERPROPAGATING WAVES
INTO NONLINEAR WAVEGUIDES

A. Field equations

We consider an ATR configuration consisting of either
a prism-loaded waveguide or a Fabry-Pérot cavity with a
multilayer cladding under oblique incidence of the excit-
ing beam (Bragg waveguide) (see Fig. 1). In the latter
case guiding is provided by reflection at Bragg mirrors
rather than by total internal reflection. Since details of
the underlying modal approach are discussed elsewhere
[5-10], it shall suffice to give a concise derivation of the
resulting basic equations which describe the evolution of
the counterpropagating leaky waves as well as the non-
linear polarization. For the sake of convenience we re-
strict ourselves to one-dimensional beams and TE-
polarized fields.

As fundamental dynamic variables, describing the evo-
lution of the fields in the system, we use the amplitudes of
the leaky waves at the film-substrate interface, referred to
as a transmitted field [9]. The reflected field can be easily
calculated by a linear relationship from the transmitted
field [6,9]. By taking the Fourier transform of the
transmitted (E,) and the incident (E;;) field as well as of
the nonlinear polarization (Py; ) with respect to the coor-
dinate parallel to the interfaces (z) and the time and ap-
proximating the linear transmission function near the res-
onance by a Lorentzian, we may write for one Fourier
component of the transmitted field
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E(Bw)= E, (Bw)

-
Biw)—B?
2
Lo@ fNLg(x)ﬁNL(x,B,w)dx ,

(1

where B,(w) is the complex resonance, g(x) the non-
resonant part of the Green’s function, and 7 the transfer
coefficient of the configuration (for details see [9,10]).
Note that the field at any point in the configuration is
given by

E(x;B,0)=f(x)E,B,0), )

with f(x) being the mode profile. Provided that the
modulus of the resonance angle is large compared to the
angular width of the resonances, we may separate the
field, applying to f==f,(w) resonances, and designate
them as the forward and backward propagating fields, re-
spectively. Hence we may restrict ourselves to two dis-
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FIG. 1. Geometry of the ATR-like configurations under
study: (a) the leaky Bragg waveguide and (b) the prism-loaded
waveguide.

tinct domains in Fourier space and split (1) into two
equations for the respective directions

E/Bw)= 7

- T f/b
FXPET: E{*B,0)

—pow” [ g IP{
X(x,B,w)dx |, (3)

where 7=7/28,. In expanding B, near the central fre-
quency o, into a Taylor series up to first order and apply-
ing the inverse Fourier transform, we end up with two
differential equations for the amplitudes of the forward
and the backward propagating wave, which are slowly
varying in time
.1 9 d

i——ti—+p,

S tia, E/"%(z,t)+ Fuqm}
[

X fNLg(x)P{,/Lb(x,z,t)dx=7’-‘E£,/b(z,t). @)

Here v, is the group velocity of the leaky wave,
Bo=B,(w,), and the + sign applies to the forward propa-
gating wave.

For the nonlinear polarization we may write

Py (x,2,)=eo¥nL(X,2,8)f (x) Ef(z,t)+ EX(z,1)] . (5)

We separate rapidly oscillating terms from the fields and
the polarization as, e.g.,

Ef(z,)=E/(z,t)e'® , E¥Nz,t)=Elz,t)e B, (6)

where B=kn, sin|gp| (ky=w,/c) denotes the modulus of
the mean propagation constant of the incident beams
(determined by their angles of incidence ). Now E/(z,1)
and E®(z,t) vary slowly in space (z) and time (¢).

For any nonlinear susceptibility that depends on the
field intensity we may identify two major contributions.

(i) One is connected with a slowly varying term in-
duced by the total guided intensity (self- and cross modu-
lation). It represents the incoherent interaction of both
fields and leads to a nonlinear shift of the resonances.

(ii) A second, coherent, term arises from the interfer-
ence of forward and backward propagating fields (non-
linearly induced grating) leading to energy exchange be-
tween both fields.

In the framework of the modal theory we may separate
the nonlinear susceptibility as

XNL(%,2, ) =R () [ Xo(z,0) + X1 (2,00e 2P+ x _ (z,1)e 2P
(7)

where Y, and Y., represent slowly varying envelopes
with respect to z and ¢. Y, are the amplitudes of a non-
linearly induced grating that couples both waves. Since
we consider intensity-driven nonlinearities, ¥(x) is mainly
determined by the transverse intensity distribution
| £ (x)|? of the leaky waves and, provided that carriers are
excited, by diffusion. Obviously, it depends on the kind
of the nonlinearity and has to be specified later on. By
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using (4)—(7) we are now in the position to introduce the
slowly varying nonlinear polarizations in the forward and
the backward direction as

Py (x,2,t)=eof ()X(x)[ Xo(2, ) E/ (2,1)
Elz,0)], (8a)
eof ()X (X)) Xolx, 1)E(2,1)

+x_,(z,t)E; Nz,0)], (8b)

+x,(z,1)

Py (x,z,0)=

which give, with (4), the coupled field equations

iai‘l“la +(ReBy,—B)+i ImB, | E/(z,1)
+koXlXo(z, VE/ (2,6)+ x,(z,NE(2,0)]=FE ] (2,1) ,
(9a)
Li—t— +(ReBy—pB)+iImpB, |E b(z,1)
vy Ot oz

+koX[Xo(z DE z,0)+ X _ (2,0 E](2,0)]=FE} (2,1) ,

(9b)

where the defined as

effective  susceptibility is
v=ko [ g(x

)f (x)X(x)dx

B. Nonlinear susceptibility

1. Resonant excitation of carriers

The simplest model that contains the most prominent
effects, such as saturation of the nonlinearity, a finite car-
rier relaxation time, and diffusion of carriers, is a two-
level system with diffusion added [20]:

2 2
Tl-a~—L2 9 —L}— 9

o o i, +1 [xni(x,2,1)

+axn(X,2,t)—X]IE (x,2,t)?=0 .  (10)

Here T, is the relaxation time of the carriers and L, their
diffusion length. Y stands for the saturation value of the
nonlinear susceptibility and a reflects the strength of car-
rier excitation by an optical field. This model is exact for
the case of excitations in dye molecules. But it can also
be regarded as a good approximation for semiconductors
[20] or polymers excited slightly below their gap energy,
if one assumes a linear relationship between the number
of excited carriers and the induced susceptibility changes.
The actual diffusion length of the material defines two
different regimes. If the diffusion length is much less
than the thickness of the guide, diffusion is negligible and
X(x) is determined by the intensity of the guided wave as

X(x)=xlf(x)?, (11a)

where we have neglected the minor effect of saturation.
For strong diffusion, occurring, e.g., in semiconductors
(L;~10 pm), ¥(x) is smeared out by diffusion, which
gives
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")|%dx'=const , (11b)

~X+ f M
where [ is the thickness of the nonlinear material.

Note that (10) implies a scaling of the susceptibility
with its saturation value ¥. We included ¥ into Y(x) to fix
the upper bound of the normalized slowly varying en-
velopes to unity.

Inserting (6), (7), and (11) into the equation of motion
of the susceptibility (10), we obtain, for the incoherent
contribution,

2
T aXo;tz,t) B 38 )(;z()zc,t) ez )
+alxolz,t)— D[ E/(z,0)]>+ |Eb(z,1)|*]
+ay,(z,)E/ ( DE[(z,1)
tax_,(z,0E/(z,0E! (z,0)=0 (12a)
and for coherent contribution (nonlinear grating)
r, axgtz,t) 12 azglz(?t) L axgzz,t)
+[14+(2BL,)*x (z,1)
+alxolz)—11E/(z,0E" (z,1)
+ax,(z0[|E/(z,t) *+|Elz,0)|*]=0 .  (12b)

Since the absorptive contributions to nonlinearity are al-
ready included in Y, Y, represents a real quantity and

_1=xT holds.

The major effect caused by diffusion consists in bleach-
ing the induced grating },. Phenomenologically it can
be described by a reduced effective recombination time
Te=T,/[1+(2BL,)*] of the carriers that induce the
grating. It is determined by the ratio of the diffusion
length and the period of the induced grating. In what
follows we assume that Y, x; vary slowly and neglect all
derivatives with respect to z (slowly varying envelope ap-
proximation). This assumption holds if the diffusion
length of the carriers is small compared to the decay
length of the excited leaky waves and is well justified for
semiconductor materials such as Al,Ga, _,As [22].

2. Nonresonant excitation

Provided that the mean frequency of the incident pulse
is far from any material resonance, the susceptibility may
be described by a simple Kerr model

YnL(%,2,8)=alE (x,z,1)|? (13)

where a is the Kerr constant. Here we have to assume

that Y(x)=~alf(x)]?/|a] and obtain
Yo (z,t)=$a|[iEfz ) {2+1E” 20?1, (14a)
Xi(z, |a|E (z,t) E (z t) (14b)
where Y, isrealand y = )(f. In conclusion, we have de-

rived the complete set of equations governing the evolu-
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tion of the optical fields (9) and the excitation in the non-
linear material (12) or (14).

C. Normalized equations

It is convenient to employ an appropriate normaliza-
tion in order to minimize the number of free parameters
and to cover different physical situations by using the de-
cay length of the leaky wave

1

L= , (15a)
Imp,
the lifetime of the leaky wave
9
= 1 ﬂ :.L__ , (15b)
ImB, do |2 v,
and the effective susceptibility
21 2
=0 [ g(x)f (xRAx)dx (15¢)
Xe ImB, a8 X ’

Now the dimensionless quantities Z =z/L, T=t/T,,
g, =«E/’*, and u}=(x/ImB,)E{/" are introduced
[5-10] where k=V'a for resonant and k=V[a] for non-
resonant nonlinearities hold, respectively. We obtain, for
the fields,

i%"‘i%‘*‘A‘f‘i‘f‘Xegxo(Z,T) up(Z,T)
+XeiX1(Z, Tuy(Z, T)=uMZ,T), (16a)
i il LA XX Z D) (2, T)
T 3z
XX H(Z, Tup(Z,T)=uiNZ,T), (16b)

where A=(Ref;—B)/ImpB, is the detuning of the in-
cident field from the ATR resonance characterized by the
complex propagation constant 3, of the leaky wave.
For resonant nonlinear susceptibilities [see (12)], nor-
malization results in
o Z,T)
T, Xo
oT
X[lup(Z,T)*+|u,(Z,T)I?]

+X:(Z, D} (Z, Thuy(Z,T)

+Xo(Z, T+ [xo(Z,T)— 1]

+x1(Z,Duy(Z,Thug(Z,T)=0, (17a)
W (Z,T) 1
RT+§X1(Z’T)
+ [XO(Zy T)_ 1 ]uf(Z’ T)u;(Z, T)
+x1(Z, T |up(Z, T)*+|uy(Z,T)[*1=0, (17b)

where Ty =T,/T, is the normalized relaxation time.
Note that the lifetime of the nonlinearily induced grating
is diminished due to diffusion by a factor of
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6=T./T;<1. For the Kerr nonlinearity [see (14)] we
obtain

XolZ, T)=up(Z,T)|*+|u,(Z,T)|*,
X(Z,D=up(Z,Tu(Z,T) .

(18a)
(18b)

III. NUMERICAL RESULTS

In what follows, we solve the basic system of equations
numerically for different excitation conditions. We use
the explicit scheme [23], which is based on an integration
of the partial differential equations along their charac-
teristic lines. Effects such as nonlinearily induced switch-
ing delay, optical bistability, symmetry breaking, modula-
tion and flip-flop operation are discussed. Both input
fields are assumed to be Gaussian in space and time as

2

_—Wﬁ (19)

u}“/b(Z, T)= Ay, exp

To compare the respective response characteristic we
have performed the calculations for resonant (carrier-
induced) as well as nonresonant (Kerr) nonlinearities.
Since carrier-induced effects are discussed less in the
literature, most figures are related to that case.

A. Nonlinearily induced switching delay for one input beam

First we investigate the optical response without a
backward propagating input beam. As reported in
[6-8,10,13,14] we found that switching rather than bista-
bility occurs as far as no nonlocality (e.g., by diffusion) is
introduced. Bistability sets in when the diffusion length
of the carriers exceeds a certain threshold value. For our
configuration that threshold was found to be approxi-
mately 40% of the decay length L of the leaky wave.
Even in semiconductors it is difficult to meet this require-
ment in an ATR-like configuration, where L is about 100
pm and the ambipolar diffusion length for carriers, e.g.,
in GaAs, is below 10 um [22]. However, an interesting
retardation effect arises, provided that carriers are excit-
ed and a critical bias amplitude is applied. The dynamics
of the switching process is depicted in Fig. 2. The system
is biased with an extremely long pulse and two control
pulses are launched into the waveguides. The bias ampli-
tude equals the amplitude where the system switches un-
der stationary conditions. The most striking feature is a
strong retardation effect in the excitation of the nonlinear
leaky wave when the input amplitude approaches its crit-
ical value. It is evident from Fig. 2 that the relaxation
time of the nonlinearity (T =2) as well as the decay
time of the leaky wave (T, =1) are approximately two or-
ders of magnitude less than the buildup or decay times of
the nonlinear leaky wave. Hence this delay may be re-
garded as an inherently nonlinear effect. It introduces a
considerable amount of hysteresis into the switching
characteristics for short pulse excitation which may even
be confused with optical bistability [9]. On the other
hand, this nonlinear delay may have a stabilizing effect
on optical bistability if a small amount of additional lon-
gitudinal feedback is provided.
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FIG. 2. Temporal evolution of the intensity
of the excited leaky wave when a pulse se-
quence is applied as the input and a resonant
nonlinearity is assumed. Diffusion is neglect-
ed. The bias amplitude is 4 =2.1373, which

Total Intensity

corresponds to the respective critical input in-
tensity. The parameters are A=6, y.;= — 10,
T=2, W=10,and T,=2.

200 250 300 350

B. Optical bistability
induced by a counterpropagating input beam

In order to introduce a longitudinal feedback into the
system, which is necessary to obtain optical bistability,
we have launched an additional weak stationary input
beam with an opposite angle of incidence (backward
beam). The pulse sequence is applied only to the forward
input. The results for a Kerr nonlinearity are depicted in
Fig. 3. The bistable character of the response for both
counterpropagating leaky waves can be clearly recog-
nized. Note that the intensity of the backward input
wave may be as small as about 10% of that of the for-
ward input (compare Fig. 5). We found numerically that
this represents some lower threshold for the detuning
considered. For resonant nonlinearities this threshold is
slightly higher (approximately 15%).

By increasing the detuning, the threshold for the back-

400 450

ward beam can be reduced further. For instance, we
found a threshold as low as 1% for a detuning of A=15
for a resonant nonlinearity with Y= —20. Note, how-
ever, that the maximum detuning achievable in a given
configuration is always limited by the saturation value of
the nonlinearity.

The major difference between the two types of non-
linearity consists in the appearance of fluctuations in the
high transmission state for the Kerr nonlinearity. The
physical explanation of these oscillations can be found by
looking to the field structures. In the Kerr case the guid-
ed field tends to form domains of different mean direction
of propagation which propagate across the beam in the
direction of the stronger wave (see Fig. 4). The formation
of such structures is suppressed if the nonlinearity con-
tains a memory effect which smears out the domain boun-
daries.

Diffusion plays only a secondary role for the situation

Total Intensity

Transmitted (Forward)
Transmitted (Backward) ———
Input (Forward) [x0.2] - - -
Input (Backward) [x0.2]

|
|
|
|
|
|

FIG. 3. Temporal evolution of the intensity
of the excited leaky waves when a pulse se-
quence is used as the input in the forward
direction and additional feedback is provided
by a weak stationary beam in the backward
direction for a Kerr nonlinearity. The parame-
ters are A=—3, x.s=10, W=10, T,=20,
A+ =0.57,and A _=0.23.
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500
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FIG. 4. Temporal evolution of the spatial intensity distribu-
tions of the forward and backward waves, respectively, in the
case of Kerr nonlinearity (see Fig. 3). The time domain was
selected to demonstrate the intensity fluctuations of the fields.

studied here. We found numerically that strong
diffusion, i.e., a complete lack of any induced grating, in-
creases the relative amount of power needed in the back-
ward beam from approximately 10% to 20% of the for-
ward beam at a detuning of A=6. Note that the induced
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grating likewise disappears if the two input beams are in-
coherent. This is of particular interest for optical signal
processing since independent sources may be used for sig-
nal and pump beams. The results obtained for strong
diffusion can therefore be straightforwardly generalized
to this case. Hence optical bistability, evoked by in-
coherent counterpropagating beams, may be anticipated.

The reverse situation, namely, that a strong constant
field in the forward direction is modulated by a weak sig-
nal sequence in the backward direction, is of particular
interest for signal processing because it might offer the
opportunity to trigger a strong signal beam by a weak
pulsed control beam. This effect can be clearly identified
from Fig. 5 for a resonant nonlinearity. Note that the
evolution of the excited guided waves is very similar to
that obtained in the case of a constant input in the back-
ward direction (compare with Fig. 3).

C. Symmetry breaking

Now we investigate the distributed coupling of two
pulsed beams with opposite angles of incidence, but equal
amplitudes, into the waveguide. Recently, it has been
shown for the plane-wave case that the amplitudes of the
counterpropagating leaky waves can become different
beyond a certain input intensity (symmetry breaking)
[15,16]. Furthermore, it turned out that beyond this bi-
furcation point, only the asymmetric solutions are stable.
The aim of our investigation is to find out whether simi-
lar effects can be identified if the beam width is finite.

In the stationary, plane-wave case the system of equa-
tions (15)-(17) reduces to algebraic relations for the
respective leaky wave intensities I/, =|u/,|* as func-
tions of the input intensities I/, =|uf},|% In the Kerr
case [see (15) and (16)] we obtain

If,=I | A+i +Xeil Ly s +21,,0)1%, (20)

whereas a nonlinearity caused by real carrier excitation

FIG. 5. Modulation of a strong stationary
beam in the forward direction by a weak pulse
sequence applied in the backward direction for
a carrier-induced nonlinearity. The parameters
are A=6, y.gs=—10, T=2, W=10, T,=20,
A,.=1.6,and 4 _=0.5.
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FIG. 6. Intensity of the guided wave versus the input intensi-
ty both in the forward direction for a stationary plane-wave ex-
citation (Ty— o and W ). The input intensity is the same
in both directions. The parameters are A=6 and y.;= — 10.
The results are shown for negligible diffusion (§=1) and for the
case that diffusion reduces the induced grating by 40% (§=0.6).

(15) and (16) leads to

2
I +(1+8),, +8I}+1F)

1+(1+8) U, +1,)+8UIF+1I})

I =I;, [A+i+Xeg

>

2n

where 6 <1 denotes the reduction of the induced grating
strength by diffusion. Note that for strong diffusion, i.e.,
8=0, the squared term on the right-hand side becomes
completely equal for the forward and the backward direc-
tion, resulting in a complete symmetry between both
fields. Hence we may conclude that symmetry breaking
will require at least a weak induced grating and, conse-
quently, a diffusion length of the excited carriers that
does not exceed the grating period considerably. On the

other hand, it is possible to increase the period length of
the induced grating by a suitable reduction of the angles
of incidence and thus restore the possibility for symmetry
breaking. Additionally, we may conclude that the coher-
ence of the two incoming beams with respect to each oth-
er is essential to obtain symmetry breaking. Solutions of
(21) are shown in Fig. 6. Symmetry breaking occurs in
the high transmission state beyond a certain input inten-
sity (bifurcation point). Qualitatively similar curves are
obtained for the Kerr case. As reported in [15,16], for
the Kerr nonlinearity the asymmetric solutions proved to
be stable, whereas the symmetric ones become unstable
beyond the bifurcation point.

To discuss the influence of diffusion in more detail we
have added the results for §=0.6. The bifurcation point
shifts to a higher intensity and the separation between
both asymmetric branches is reduced. If the diffusion
strength increases further, bifurcation disappears com-
pletely. For the present detuning (A=6) bifurcation
occurs only provided that §>0.5. Note that this limit
reduces if the detuning is increased.

Under pulsed beam excitation, the situation gets more
involved. We find symmetry breaking with respect to the
total intensities of the leaky waves for both types of non-
linearity. The respective response curves to a symmetric
input pulse sequence are depicted in Fig. 7 for resonant
nonlinearities. When comparing with the plane-wave re-
sults, the appearance of a stable, apparently symmetric
branch (with equal total output intensities in the forward
and the backward direction) seems to be surprising. But,
when looking at the respective spatial field distributions
(see Fig. 8), it is evident that the situation encountered
for finite beams differs considerably from the symmetric
plane-wave state, which is characterized by equal, guided
wave intensities in both directions at any point along the
distributed coupler. Both leaky waves exhibit an asym-
metric intensity distribution and are mirror images of
each other. Hence the state with equal total intensities
proves to consist of two domains, in each of which a
different asymmetric branch of the plane-wave output
dominates. Since the longitudinal profiles are mirror im-

FIG. 7. Temporal evolution of the intensity
of the forward propagating guided wave for
equal input pulse sequences in both directions
for large detuning and a resonant nonlinearity.
The parameters are A=6, Y= — 10, W =10,
T=2,T,=20,and A ipjs= A _pias = 1.14.
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FIG. 8. Longitudinal intensity distribution
of the guided fields in the forward direction
corresponding to the different branches in Fig.
7.
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ages, the total transmitted power is equal in both chan-
nels. We suppose a cooperative effect between the two
beams to be the reason for the appearance of a two-
domain structure: Each beam creates a region of op-
timum excitation for the other one. As a result, this kind
of structure proves to be extremely stable.

On the “asymmetric” branches one domain dominates,
resulting in different total intensities in the forward and
backward directions. We may conclude that the stability
of all states involved in Fig. 7 is consistent with the re-
sults of the plane-wave model [15,16] because they are re-
lated to the asymmetric branches occurring there. Note
that this symmetry breaking can also be considered as
another type of multistability, which is related to the for-
mation of domains in the longitudinal pattern of the ex-
cited guided waves with different ratios of transmission in
the forward and backward directions.

If we reduce the detuning (Fig. 9) without changing the

width of the exciting beam, it turns out that the states
containing only a single domain (i.e., asymmetric states)
are no longer stable, though their decay is extremely slow
compared to the linear-response times of the system. The
ratio of the decay time with respect to the linear-response
may exceed even two orders of magnitude.

On the other hand, it is possible to restore multistabili-
ty -also in the case of small detuning by reducing the
width of the exciting beams. We demonstrate this effect
for a beam width of W =2 (see Fig. 9). Obviously, nar-
rower beams favor a one-domain structure of the excited
fields. (But, nevertheless, the two-domain structure al-
ways remains stable.) This result differs in some respect
from those found for usual optical bistability (see Sec.
III B), where wide beams are preferred. On the other
hand, it may present a considerable advantage for possi-
ble applications because it allows one to reduce the size of
a device as well as the total power needed for excitation.

10 7 T " 3
W=10: Forward Beam _—

Backward Beam e

g | W= 2: Forward Beam [x5] ——— |

Total Transmitted Intensity

Backward Beam [x5] ------

FIG. 9. Temporal evolution of the intensity
_ of the forward propagating guided wave for
equal input pulse sequences in both directions
and small detuning. Carrier-induced nonlinear-
ity was assumed. The beam widths considered
were W =10 (full lines) and W =2 (broken
lines), respectively. Other parameters are
A=3, xg=-—10, T=2, T,=20, and
T A tbias= A —pias =0.8.
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1 FIG. 10. Demonstration of the set-reset
flip-flop operation with stationary signal input
beams of equal intensity. Pulsed control
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beams into opposite directions are added sub-

Total Transmitted Intensity

sequently and a resonant nonlinearity was
used. The parameters are A=4, y.q= —10,
T =27 W= 10, TO =20y A +bias A —bias =O75:

and 4y, =0.4.
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D. Set-reset flip-flop operation

Our previous investigations have shown that one can
switch the output intensity in one direction, say forward,
between two well-defined states by adding or subtracting
a weak control pulse in the backward direction, provided
that an appropriate detuning has been chosen. The ques-
tion arises whether it is possible to implement that
switching operation by only adding and not subtracting
control pulses. This would fit much better to experimen-
tal conditions because it turns out difficult to create a
“negative” control pulse. This idea was first proposed by
Haelterman [15,16], but studied for a plane-wave input
only. His suggestion relies on the effect of symmetry
breaking in the high-transmission state of the symmetri-
cally excited coupler. One launches two stationary waves
with equal amplitudes above the bifurcation point into
the waveguide. Then one adds a weak control pulse in
one direction, which drives the system to the asymmetric
branch (high transmission in one direction, low transmis-
sion in the other one). Since the asymmetric branches are
stable, the system sustains this state. After adding a weak
control pulse in the other direction, the system switches
to the second asymmetric branch with the reversed
transmission characteristic (set-reset flip-flop operation).
It is of particular interest whether this behavior survives
if finite beams are used rather than plane waves. The re-
sults of our numerical simulations are depicted in Fig. 10
for a resonant nonlinearity, but appear to be similar for a
Kerr nonlinearity. They show that flip-flop operation can
also be achieved with finite beams.

Since the state with equal total power in both direc-
tions is stable, a certain minimum of power is needed in
the switching pulses. The conditions to be met are the
same as for symmetry breaking, discussed in Sec. IIIC.

2000

Especially the need for an induced grating and for coher-
ence of both input beams has to be stressed.

IV. CONCLUSIONS

We have shown that optical bistability may occur in
ATR-like configurations excited by finite beams if longi-
tudinal feedback is provided by a counterpropagating in-
put beam. It turned out that it suffices that this beam has
an intensity one order of magnitude less than the primary
one. Furthermore, we found that a strong signal beam
may be modulated by a weak control pulse sequence. If
one launches two beams with equal intensities into the
waveguide, symmetry breaking may occur in the output
channels beyond a certain bifurcation intensity. It has
been shown that both the asymmetric and the symmetric
branches are stable if we regard symmetry with respect to
the total transmitted intensities. The longitudinal beam
profiles, related to the symmetric branch characterized by
equal total transmitted intensities in both directions, are
asymmetric with respect to the local intensity. Hence
their stability does not contrast to the plane-wave results.
Eventually, symmetry breaking was exploited to achieve
flip-flop operation between both transmission directions.
All investigations were carried out for nonlinearities
caused by virtual (Kerr nonlinearity) or real carrier exci-
tation in direct semiconductors, where it turned out that
only quantitative differences of the response characteris-
tic exist.
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