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In this paper, we present a density-matrix formalism for treating second-order sum-frequency genera-
tion (SFG) and difference-frequency generation (DFG). The theory can treat both steady-state and
time-resolved SFG and DFG. However, only the steady-state SFG will be described in this paper. As a
practical application, we show how the theory can be applied to study the infrared-visible SFG. The
band-shape function of SFG is derived, which consists of both real and imaginary parts. The real part of
the SFG band-shape function is related to the infrared spectral band-shape function and the imaginary
part is related to the real part by Kramers-Kronig relations. The temperature effect on SFG is taken
into account in our expression of the SFG band-shape function. We show that for a vibrational mode to
be SFG active in infrared-visible SFG measurements, it has to be both infrared and Raman active.

PACS number(s): 42.65.—k

I. INTRODUCTION

The surfaces and the bulk of a medium generally have
different structural symmetries. Therefore, their optical
responses often obey different selection rules. According-
ly, optical probes could be made surface specific. This is
particularly obvious with second-order nonlinear optical
processes [1]. Infrared-visible sum-frequency generation
(SFG), as a surface vibrational spectroscopic technique,
has been demonstrated [2—7]. As pointed out by Bur-
stein and his co-workers [5—7], surface SFG is ideal for
probing surface or interface states of metals and semicon-
ductors. Using SFG, they were able to identify an inter-
face state resulting from the CaF2/Si(111) interface,
formed by epitaxial growth. They have also used SFG to
study surface states on Cu(110) and observed anisotropic
transitions consistent with the prediction from the aniso-
tropic surface structure of Cu(110). The recent experi-
ments on vibrational energy and coherence relaxations
observed on adsorbed molecular compounds constitute
an important tool to study the dynamical processes tak-
ing place between the adsorbates and the surfaces [8—13].
Former measurements of the vibrational relaxation life-
time, obtained from spectral analysis [14], were mislead-
ing because of the dominating contribution to the in-
frared linewidth of an adsorbate vibration provided by
the pure dephasing processes [15]. To circumvent this
difhculty, vibrational relaxation lifetimes have been deter-
mined by using the transient bleaching method in con-
junction with the sum-frequency generation [16]. While
measurements of population and relaxation rates have
first been performed in semiconductor surfaces by free-
induction decay and photon echo experiments to probe
the coherence of H adsorbed on Si(111) [17], it is just
quite recently that the first measurement of a vibrational

coherent transient of CO adsorbed on a metal surface of
Cu(111) has been realized [18]. This is because of the
higher time resolution needed for the metal surfaces. In
addition, it should be mentioned that the SFG spectrum
displays interferences which are induced by the cross
terms between the resonant and nonresonant contribu-
tions of the second-order susceptibility [19—21). These
interferences enable the determination of the relative am-
plitude and the phase of the resonant and nonresonant
parts. From the spectral analysis of these interferences
[18], the band center and the linewidth of the vibrational
resonance of the surface SFG spectrum of CO on Cu(111)
are consistent with the results obtained in reflection-
absorption infrared spectroscopy experiments [22].

Recently, infrared-visible SFG has been used by Chin
et al. [23] to obtain vibrational spectra of hydrogen on
diamond C(111). They found that from a fully relaxed
(1 X 1) surface, a single sharp peak of approximately 2830
cm ' was observed, which can be identified as the CH
stretch mode from H on-top sites and with the surface
freshly transformed from (2X1) to (1X1). However,
another peak at a higher frequency was detected, which is
attributed to H adsorbed on a metastable (1X1) struc-
ture. It appears that, although the general expression for
steady-state SFG is available [1], detailed expressions of
SFG, which treat infrared-visible SFG and provide the
band-shape functions of SFG for studying the tempera-
ture effect and selection rules for SFG, are needed. It is
the main purpose of this paper to provide this informa-
tion. In Sec. II, we present the general formalism re-
quired to describe the SFG process for molecules ad-
sorbed on surfaces and undergoing relaxation and de-
phasing processes. Then, in Sec. III, we give the theoreti-
cal descriptions of SFG and difference-frequency genera-
tion (DFG) in the steady-state regime and establish the
expressions of the second-order susceptibility for these
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processes. Section IV is dedicated to the determination
of the band-shape function of the SFG signal. The reso-
nant and nonresonant contributions are evaluated in the
framework of the adiabatic approximation for the ad-
sorbed system. Finally, in Sec. V, we give a general dis-
cussion of the results as well as some numerical calcula-
tions.

II. GENERAL CONSIDERATIONS

It has been shown that the density matrix p(t) for a
system embedded in a heat bath can be expressed as [24]

(ip(t) i i
at

= ——L,p(t}—I'p(t}——[ V(t),p(t)]
+ZR

= ——L',p(t) ——L„(t)p(t), (2.1)

where LO=LO —i))11'. Here Lo denotes the Liouville
operator of the free system, I represents the damping
operator describing the interaction between the system
and the heat bath, and V(t) is the interaction between the
system and the radiation fields. In the dipole approxima-
tion, V(t) is given by

FIG. 1. Level scheme of the electronic and vibrational
configurations involved in the SFG process. The infrared beam
with frequency m&=co;, excites the vibrational states of the
ground electronic configuration while the electronic transition
is induced by the visible beam with frequency co&=co&.

V(t)= —p Ei(t) —p E&(t), (2.2)

—(i /A)L Ot
p(t) =e '0 (t), (2.3)

the dynamical evolution, previously given by Eq. (2.1),
becomes

a~(t) L„(t}o(t), — (2.4)

where the notation

where p is the dipole operator and E)(t) and E2(t) denote
the radiation fields. Also, L„(t) stands for its correspond-
ing Liouvillian. As usual, by making the substitution

P' '(t)=TrIp' '(t)p], (2.8)

where p' )(t)=exp{ (ilil)L—ot]cr(2)(t). We restrict our
description to systems having no diagonal matrix element
of the dipole moment. It should be noted that the above
results can be applied to both steady-state and transient
phenomena. For the steady-state case, the system is as-
sumed to be, at the initial time t;, in the Boltzmann equi-
librium distribution. On the other hand, for the transient
case of nonoverlapping laser pulses, o; is determined by
the preparation of the system by the pumping laser. No-
tice that

(i /s)Lot (i /s)Lor—

has been introduced. It follows that

(2 5) I
"' ~H'(t)Vik+c c ]

k I

(2.9)

o(t)=o, ——f d~L, (~) r((~),
l

(2.6)

where o; denotes the value of o(t) at t =t, As lon. g as
the radiation-matter interaction is weak enough, the solu-
tion can be expanded perturbatively. The contributions
to different orders are obtained straightforwardly. The
second-order term, of particular interest here, can be
written as

where the symbol c.c. stands for the complex conjugate
part and cok& for the diagonal matrix elements of the
l.iouvillian Lo, as long as kAl. Also, we have

o'ki'(t) = —
z f dv f dw'g [ Vkp(r) [L„(w')o'; ]pi

P

[LU(r )~']kp ~pl(+)]

(2.10)
T

(r( '(t)= — f d~, f driL„(~, }L„(ri)o; .
fi

(2 7) With the quantity

For the SFG process under investigation here, we are
concerned with the calculations of the second-order po-
larization

I

Vkp(T) =e "~ Vz~(r),

the density-matrix elements take the explicit form

(2.11)

+kl'(t}=—,f '«f '«'yy[ V~p(&)[ V~, (r')o;, i ~;~, V,i(r')]+ &~i(r)[~;k, V~(r') —V«(r')o', ~ ]]
l l p q

(2.12)
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if the matrix elements of the initial density matrix are not necessarily diagonal.
The results obtained in this section are general and can be applied to second-harmonic generation or sum- and

difference-frequency generation. In this paper, we shall focus on the treatment of steady-state SFG. But any other case
could be described along the same lines, if required.

III. THEORETICAL DESCRIPTION OF STEADY-STATE SFG AND DFG

In the following, we shall consider the model depicted in Fig. l. It involves two electronic configurations associated
with a vibrational structure made of a set of modes. The applied fields couple either states of different electronic
configurations or vibrational states of the same electronic configuration. Therefore, the corresponding field frequencies
are in the visible or the infrared frequency range, respectively.

In this case, assuming that there is no coherence preexisting on the molecular system, its initial density matrix is di-
agonal and Eq. (2.12) becomes

ok('(t)= — f d7 f dr'gga; [Vk (r)[V (~')5 l
—V)(r')5 ]+V)(r)[V (r')5k —

Vk (r')5 ]] .
I I g p

(3.1)

From expression (3.1), it is quite easy to deduce the polarization required to evaluate the SFG signal. It takes the form
I

P' '(t)= —
2 g o,gge "'P(k f dr f dr'[ Vkp(r)[Vpg(r')5g& —Vgi(~')5gp]+ Vgp(r)[Vgp(r')5kg —Vkg(r')5gp]I+c. c.

(3.2)

As usually done in steady-state SHG [25], it will be con-
venient to specify the four different contributions to the
polarization induced in a SFG process. This can be done
by introducing

4
P' )(t) = y [P'; '(t)+C. C. ], and

P,"'(I)= [P"'(I)]" (3.5)

resonant terms are obtained for pulsed SHG [26,27].
From the previous expressions, it can easily be shown
that

where the various terms correspond to
p(2)(t) = [p( )(2)I] (3.6)

I

&g, k

X f dr f dr'Vkp(r)Vpg( 7'), '

I l

I

g, k, l

X f

deaf

dr'Vkg(r)Vg, (r'),
I I (3.4)

I

"'Ig(k f deaf dr'Vg((r)Vkg(r'),
I I

p( )(I)—

Notice that the same combinations of resonant and non-

p3'(t)= ger, e
g, k, l

I

g o, e"p, l f. dr f 1r'V 1(r)Vgp(~') .
R g~(

To evaluate P' )(t) in the general case, we shall express
the electric field in the form

E, (t) = [ C, (co, )e ' + C;( —a); )e ' ]X,(t) , (3.7)

p(2)(t )=p(2)(t )+p(2)( (3.9)

where 2;(t) denotes the pulse-shape function. For sim-
plicity, we shall use

2;(t)=e (3.8)

where T; =y, ' is the pulse duration and t denotes the
probing time chosen such that t ) t. Substituting Eqs.
(3.7) and (3.8) into the expression of the polarization
terms (3.4) and rejecting strongly nonresonant contribu-
tions yields

P (t )= — o.1 I pg @1(~1)
p 2 g iggPgk . ,

Tl gpk
—~~ l+P~

—
I, (coi+co2)t t ( Go

I co~ )f
[I k @2(~2)]e [I kp @2( ~2)]e

(~k ~1 ~2)+ Yl+ Y2 (~k ~1+~2)+Y)+3 2

(3.10)

and

(& )= — o
1 I pg @2(~2)

1,2 p 2 g iggl gkn gpk & L~&g
—~2/+f2

—i (coi+co2)t j (col cd2)f
[Pk @l(~()]e ' ' '

[Vk, @)(—~))]+. ',
I (~k ~1 ~2)+ Yl+1 2 (~k +~1 ~2)+ VI+3 2

(3.11)



50 THEORETICAL DESCRIPTION OF STEADY-STATE SUM-. . . 5137

Similarly, we obtain, for the other term,

P2 '(t )=P21(t )+P22(t ),
where

(3.12)

I {C0)—a)~)t i {a))+A@2)t

( ] 1 P @1( 1} [I k @2(N2)] [I k @2( N2)]

I} yl (Nk +Nl N2)+3 1+r2 (Nk +N]+N2}+rl+r2
(3.13)

and

0

(2] 1 Iggp'@2( N2} [Igkg @1(N])]e ' ' ' [@kg.@](—N])]e
P2 2(tp ) = 2 g O,ggIgpk

N2 +y2 ' Nk Nl+N2 +y]+y2 (Nk +N]+N2}+'Yl+'Y2
(3.14)

All the other contributions can be deduced by complex conjugation from Eqs. (3.S) and (3.6). It should be noted that
the expressions given by Eqs. (3.9)—(3.14) can be rearranged to get the result

p(2](t

—i (cod+a)~)t
1 &iggPgke

g p, k (Nk Nl N2)+r 1+Y2
2X. [V„, @](N]))[Igk, @2(N2)l [Vk, ]"](N])l[V„@2(N2))+

i (co' —co] }+y] i (co'g —co2)+ y2

1
cggIggk

fi gpk

i (CO~ QP~)t

[V„@](N]))[Vk, ]"2( N2))&

[i(N,', N])—+y]][i(N'kg Nl+—N2}+yl+r2]

+ [I @2(N2}l[i k @1(—Nl}le

[i(N;, N2}+—r2)[i(Nk, +Nl N2)+—y 1+r2]
(3.15)

Similarly, the second contribution can be reorganized into the form

i (co&+ap&)t

P(2]( )
1 ~ iggl pk

, , k (Nk +N]+N2)+ Y 1+'Y2

[I kg @2( N2)1[i gp @](—Nl }) [Vkg @1( Nl) l[Pgp @2( N2})+
i (cogp+N])+y] i (cog +co2)+y2

1 [Pk @2(N2) l[i „@](—Nl)]e+
2 X crcggPpk

, , k [](N +Nl}+r]][](Nk +N] N2}+ Y]+y2]

—i (co) —a)2)t

+.[I k @1(N]))li „@2( N2)]e

[1 (Ngp+N2)+y2][l (Nkp Nl+N2)+ Yl+r2]
(3.16)

Notice that the terms such as exp[+i(co]+co2)t ) contribute to SFG, while the terms such as expI ki(co, —co2)t I con-
tribute to DFG.

For infrared-visible SFG, co& denotes the infrared frequency, while co2 denotes the visible frequency. Therefore, for
the particular combination expI i (co]+co—2)t ], only one term of P(] ](t } contributes and none of [P(] ](t )]'. This po-
larization term reduces to

P' '(co +co tp)=—' —i (cg)+ co~)t

2 +iggI gk

p k ] (Nkg Nl N2)+rl+y22X. [I pg @1(N])][Pkp @2(N2) l I Pkp @1(N]}]II pg @2(N2}]+
] ( copg co 1 )+r 1 ] (copg co2)+r2

(3.17)

Similarly, among the terms of P(2 '(t ) and [P(2 '(t )]', only one term contributes to the same combination and it arises
from [P2 '(t )]'.Again, this contribution takes the form

—l(co]+c02)t

[P' '(co +co '
tp ) ]

=2 ~iggI kpe

ki (co'k —co] —co2}+y]+y2
[I gk @2(N2}][Ipg @1(N])l [Iggk @l(N])][Ppg '@2(N2)]+

i (copg
—co])+y] l (co g co2)+r2

(3.18)

The second terms in the square bracket of Eqs. (3.17) and (3.18) are less important because they are off resonance. In
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the present case, states [Ip ) ] and [ lg ) ] belong to the same electronic configuration, which is the ground electronic
configuration, and states [ lk ) ] belong to the excited electronic configuration. In the adiabatic approximation [28], we

have

Ig& Igv&, lid&~lgU'&,

The polarization terms result in the form

(3.19)

P' '( co + to2& t )=—

and similarly

[P'2 '( to 1+co2, t ) ]
' =

t {Cg) +CO )tl 2 p
2 + + igugvt gueug

e u u' u (eugu Oi ~2)+yl+y2

[I gv'gu @1(~1)][peugu' @2(~2)] Ii .ug. @1(~i )][V g. 'g. 'tu2(~o2)]
X +

l (cog g iol )+y 1 1 (Ngu'gu N2)+ Y2

—i {col+cu2)t
2 + + +igvgu j eugu'~

~1 ~2)+ Yl+y2

[)M,... @1(~»][V,-. @2(~2)] tu,... @1(~i)][V,... @2(~2)l
X +

1 (cog„. , —co, )+y, l (cog„g co )2+ y 2

(3.20)

(3.21)

We shall introduce the components of the second-order susceptibility defined by

Pk '(t, ) =QQXIjk(tol+~o2)~1;(oil )&2, (to2)e
J

where E„, represents the ith component of field n and

+ijk(~1+2) +l,ijk(~1+~2)+X2,ijk(~1+~2)

if the contributions are given by

0 (k) (i) ( ') .(i) ~ ( ')I gv'gu I eugu' J Peugu' I gu'gv J
Xl, ijk ~l ~2

iol ~2)+3 1+Y2 (~ ' ~1)+3 1 (~ ' ~2)+3 2

(3.22)

(3.23)

(3.24)

and similarly

2 + + igvgvPeugu'cr (k)
+2,ij k 1 2 fi, „„„i(Q)g„,„—all —Co2)+yl+y2

pg„gv (i )jjg„e„(j) pg„u (1)pgv gu (j)+
i (cog, g,

—col)+y, i (cog„g, —co2)+y2
(3.25)

Here higher-order terms have been neglected. Also, the notation jgg„„(i) has been introduced, where i denotes the ith
component of pg„,„.

In the infrared-visible SFG, the frequency co& is chosen to be in the infrared frequency range, so that co&-—cog, , In
this case, the second-order term in Eqs. (3.24) and (3.25) is negligible and we get, for the first contribution,

&e,.p,.(k)le,.&&e,.lj2„(j)le,.&&e,.Ip„(t)le. &

+l,ijk(~1+~2) 2 2 rf ~igugu . g . i
(3.26)fi, „„„[i(tO', „g„tO, CO2)+y—, +—y2][i (cOgv g„—CO1)+y, ]

and for the second contribution,

(e,.Ip„(k)le,. & & e,.Ip„(i)le„&& e,.Ip„(j)le,.&

X2, 1jk( 1 2) 2 g X Igugu
e uu', u I i (~gu'eu ~1 ~2) 'Y

1 'Y2]l. ( gu'gu 1) yl ]
(3.27)

(3.28)

where Og„and B,„denote the vibrational wave functions of the ground and excited electronic states. Because the field
frequency co2 is not in resonance with the electronic transition, we can use the Placzek approximation [28]. We obtain

&e,„la, (k,j)le„,)(e,. Ip„(i)le,„&
&'i', ,',k(~ 1+~2) =

and for the second contribution

(e,.l~„(k,j)le,„,&&e,. Ii „(i)le„&
&2ijk(~1+~2) , g+ ggu' (3.29)
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Xij k ( ~1+~2 } $ y ~ igVgV

V, V

Therefore the second-order susceptibility for the SFG process can be written in the form

&e l~, (k,j)le,„,)&e,„,lj„(i)le )

i(co ~
—co )+I „„+yi (3.30)

where I „,denotes the vibrational dephasing constant,
and we have

p„(k)p„(j)
a, (k j)=—

X';,'k(~i+~2)

2l=
g XX~igVgV

v, v' 1

Ba (k,j) Bp~(i)
aQ, aQ,0 0

kg, (j)p,g(k)
"(k J}=x& '+ +N~g CO~ F02

It should be noted that

a (k,j)=a, (k,j)+aug(k, j)

(3.31} 1&e,.IQ Ie,.&I'
X

[i(co „.„—co, )+I' „., +y&]
(3.34)

Equation (3.34) indicates that for a vibrational mode to
be observed in infrared-visible SFG (i.e., SFG active),
that particular mode has to be both infrared and Raman
active, that is,

pg, (k)p, ,g(j) pg, (j)p,g(k)
irt Ci)eg COi CO2 COvg +COi+ C02

(3.32)

and

a
%0

'dQi 0
(3.35)

which is the conventional optical polarizability. Expand-
ing ag(k, j) and pgg(i) in terms of vibrational coordinates
Qi, we get

Bag(k, j) 40.
L

(3.36)

jggg(i}=egg(i)+y Qi+. . . ,
(0) aj „()

Qi 0

Bag(k, j)
ag(k, j)=ag' '(k, j)+g Q, +. . . .

Qr 0

(3.33)

From these expansions, the second-order susceptibility
takes the form

Therefore, the infrared-visible SFG can be used to deter-
mine Raman scattering cross section and infrared absorp-
tion cross section and vice versa.

In infrared-visible SFG measurements, the picosecond
laser pulses are commonly used. The contribution of the
laser pulse width in this case may not be negligible, as can
be seen from Eq. (3.34). In other words, the observed
linewidth can be contributed from I' „g„and y, . In par-
ticular, if the temperature effect is negligible (see Sec. IV)
and Qi is harmonic, then Eq. (3.34) reduces to

Ba (k,j)

(2)
Qia

X;jk(~i+~Z) =
~ X

I COg

l&e,oIQ le, &I'
Q

—ei, —i(I, 0+yi)
(3.37)

X,",-k(~i+~2}=X
~g &go ~r & ~g &go

where

(3.38}

Ba (k,j)
aQ, 0

&iMgg(i)

dQi 0
(3.39}

In fact, Eq. (3.37} shows that if various vibrational bands
do not overlap, the SFG band shape is approximately re-
lated to that of infrared spectra. The restriction to non-
overlaping bands comes from the fact that a (k,j) in-
volves a summation over the excited electronic
configurations. For this reason, this equation has been
used by Shen and his co-workers in analyzing their SFG
data [2—4,23] in the form

It should be noted that in Eq. (3.38), the pulse-width con-
tribution y &

' has been ignored.

IV. BAND-SHAPE FUNCTIONS
IN SFG EXPERIMENTS

Due to the fact that, in infrared-visible experiments,
the SFG active mode interacts with either local modes or
phonon modes, or both, the observed SFG band shape
cannot be described by a single Lorentzian. In this sec-
tion, we shall evaluate explicitly the band-shape function
obtained in a sum-frequency generation experiment. For
this purpose, we define the SFG band-shape function
9', (co&) for the 1th mode by
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I & e,.I Q I e,. & I'
~l(~1) ggaigvgu

I (~gv'gv ~I )+ ~gv'gv
(4.1)

x' a'
2 agf 2 0

where I „.„=I .. .+y,
Boltzmann distribution

—F /kTgt!

and o.
;g, , represents the ~ HmL+— Ql+. . . 4&, =U, q1,

ag2 / / /

(4.8)

lg VgV Z
Z=ge (4.2) where the notation

If we introduce the real and the imaginary parts, noted
ReI 9'i(co, )] and ImI Vi(co, )], respectively, we have

U, =(v/+ ,' )fico—i—
1

co't

aaML

ag,

2

0

(4.9)

9I(co', )=ReI Pi(cv, )]+i ImI Vi(co, ) I,
where

(4 3) has been introduced, as well as

a'HM,
CO

—
CO +I ! (4.10)

1&e,.IQ Ie,.&I'
ReI9'I(co, )] =ger, g„„lg„„

(cog„g,
—co!) +I g„g„

(4.4)
Imt 9'1(mI) I

=QO Igugu(C/11
—

Cogu. gu )

I & e,.IQ Ie,. &
'

2 2
(~gv'gv ~1) + ~gu'gv

Here Re(91(co, )] is the infrared band-shape function in

the long pulse limit, or, equivalently, in the limit y&
—+0,

and ImI9'1(col) j is related to Re[PI(col)] by the usual
Kramers-Kronig relations.

In infrared-visible SFG measurements, the frequency
of an observed SFG mode is usually much higher than
the frequencies of local modes and phonon modes. In
this case, the adiabatic approximation can be used to
separate the "system" modes from the "bath" modes
I'29 —37].

This adiabatic approximation theory will be applied to
treat the SFG band-shape function. Note that the Ham-
iltonian operator of the total system consisting of in-
tramolecular vibration, the SFG active mode H~, heat
bath vibrations HL, and interaction between these two
motions HM& is given by

To the lower order in HML, the expression of U, can be
V(

written as

H~L
U, = ( v I + —,

'
)111coI—

o

(., +-,')w a'H, '

agi o

(4.11)

H„=HL +HML (0)+ U„, (4.12)

and

(4.13)

Substituting Eq. (4.11) into Eq. (4.12) yields

H, =HI + (vl + —,
' )Aevi+ V, z

where the notation

(4.14)

and will play the role of a potential energy for the motion
of the low-frequency modes.

Then we consider the Schrodinger equation for the
low-frequency motion. Its Hamiltonian in the UIth in-

tramolecular vibrational state can be expressed as

H =HM+HL+HML,

where

H = —— +—coQ0 A 8 1
M 2 ag& 2 I I

(4.5)

(4.6)

Hm,
V. ,L=HML, (0),

2co I

(v/+-,')Ir a'HM,
'

2~I aQI o

0

(4.15)

Next we expand HMI in terms of Ql to get

~&Mz. 1
HML HML(0)+

a Q/+ 2 Ql +
agl o 2 agi' o

=a+ pa, q;+. . . .

is introduced. We shall let Iq; ] represent the vibrational

coordinates of the heat bath modes. Suppose that

ag,' o

(4.7) Again, substituting Eq. (4.16) into Eq. (4.15) yields

To solve the Schrodinger equation for H, we shall use the
adiabatic approximation. To this end, we separate the in-
tramolecular vibration of high-frequency from low-

frequency local or phonon modes. On the basis of the
adiabatic approximation, we first solve the Schrodinger
equation for the intramolecular vibration

1

2'�(

2

0

( vl + ,' )gaia (v, + —,
' )A'—

+ + Qa/q +. . .
2COI 2',

(4.17)
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If HL is given by

H~o =y 8 1
2+

Bq;
(4.18)

In general, the term (BHgtL lBQi)o will aff'ect the vibra-

tional frequencies of the heat bath modes. In this paper,
this effect will be ignored.

Now we are ready to calculate V, (co, ). Notice that

the solution of Eq. (4.13}can be expressed as

E„„=(vi+,')fi —+co,+g(n, +—,')fur,
COI

&e,„lg,le,„.&=&+„,lg, l+„,&g, &x., „ Ix, . „.&, (4.»)

where the initial conditions are now given by

and

0 1 HML
ML i gg

Ra;—(vi+ —,') g +. . .
SCD; Ni

(4.19)

(4.20)

aigugv
=

tI~uln, (4.26)

where P„„denotes the Boltzmann factor of the ith low-
Uin ~

frequency mode. Here we have neglected the tempera-
ture effect due to the intramolecular vibrational mode. If
we introduce the integral representation

where q and hq; stand for

( vi +—,
' }iria,.

q =q;+Lq;, hq; =
2C0 COI

(4.21)

i ( or„. „—t'ai)+I'g„„

—[i(co „, „—a)))+I „, „jtdte
0

(4.27)

That is, hq; denotes the normal coordinate displacement
induced by Hgtr . It should be noted that a; describes the
spectral shift of the intramolecular vibration due to the
heat bath efFect. In the adiabatic approximation, we have

and substitute Eqs. (4.25) —(4.27) into Eq. (4.1), we obtain

evl, n @ul+Ul, n (4.22) (4.28)

Let us consider a particular case. We will assume, for ex-
ample, that HMI can be written in the form

1
HstL =

—,'giga;Q;+ 3i Qi g b,&q;q, +
3, Qi Xb;q +

l i(j '
l

where vI'= vI + 1 if we retain only the resonant modes and

(4.23) Xe
—it [(n.+1/2)co. —(n +1/2)co ]

(4.29)

HML

ag,
1 1 1=—ga;q;+ —gb;Jq;q +—Q gib,.q, +. . . ,

Therefore, the previous quantities can be evaluated ex-
plicitly to give

HML (0)=0,
T

In Eq. (4.28), for simplicity an average I has been intro-
duced for I'g„.g„. Also, 9 (t) has been evaluated in previ-
ous papers [36,37] and is given by

9 (t)=exp[ —S [(2n +1) (n +1—)e ' —n e ' ]],
(4.30)

2
HML

gb;q, +. . . . —
~gi 0

(4.24)
where S =(vi+1/2) gaia l8cotco and n denotes the pho-
non distribution n =[exp(irido IkT) 1] '. It follow—s
that

Vi(co, )=l&@„lgilC, &l f dt expI —[i (roi )+roI —]t—gS [(2n +1)—(n +1)e "' ne ' ]—],
0 1

(4.31)

where cot is the frequency of the intramolecular mode and coi denotes the infrared optical frequency. Equation (4.31) can
be simplified by introducing an average frequency co for the frequencies of the bath co-. Then we have

The real and imaginary parts of Pi(co&) are given by

I +i [(coi —co, )+co(m —p)]
(4.32}
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and

m!p.'I'+ [(~, ~, )+g(m —p)]'
(4.33)

I
m =Op =0

Here the notation S =g S. has been introduced and we have

2

(cot —co, )+co(m —p)

I +[(co(—co, )+co(m —p)]
(4.34)

(4.35)

It should be noted that the coupling constant S is related to a =b /3, which in turn is related to the anharmonic
effect (8 V/BQ&Bq ), V being the potential function. Finally, it should be mentioned that the magnitude of a deter-
s~ines the relative importance of the q mode in the SFG band-shape function.

V. DISCUSSIONS

It is well known that the output of SFG measurements is proportional to the absolute square of the nonlinear suscep-
tibility y' k(co&+F2). In other words, the observed SFG intensity band-shape function 7& (co, ) is given by

7) ( co, ) = Im [ 9', ( co, ) ] +Re [ 9', (a), ) ]

X X
[S(n+1)] [Sn ]~

m =Op =0 ~ fpf

For example, for the case given by Eqs. (4.33) and (4.34), we find

(U, +1) fi
cps( )

— ~ —2s(2n + 1)
2r

I'+[(co,—co, )+co(m —p)]'

(5.1)

" [S(n+1)] [Sn]~ (~i ~i)+~(m —P)

o =o m'p' I +[(co,—co, )+co(m —p)]
(5.2)

Equation (5.2) could be used to perform numerical calcu-
lations. In this case, the influence of a number of physi-
cal parameters, such as anharmonicity, electronic and vi-

brational dephasing, reduced displacement, as well as

temperature effects on the band-shape function 9'& (co&),

could be discussed. Also, it will be of interest to compare
the band-shape functions of infrared spectra and SFG.

For the moment, we just want to emphasize the role of
the average surface phonon frequency on the band-shape

0

&D

Q

0
V
C

U

1800
I

2000

O), (cm ')

2200

110 210 310 410 S10

FIG. 2. We represent the variations of the band-shape func-
tion 9& (co&) with the infrared field frequency co&. The cases of
various average phonon frequencies of the bath co are con-
sidered. The values of the parameters introduced for the nu-

merical simulation are co&=2000 cm ', T=200 cm ', I =100
cm ', and S =0.1.The peak heights are normalized.

co(cm )

FIG. 3. Dependence of the band-shape function 2& ~~, ) with

co. The other values of the parameters are identical to the ones

introduced in Fig. 2. The infrared field frequency has been tak-

en as col =co&.
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when increasing the average surface phonon frequency.
This is because the nonradiative process induced by the
coupling between the high-frequency mode and the pho-
non modes of the surface is more eScient for low co. In
addition, we show in Fig. 4 the peak shift (co&,„—cot ) as
a function of co. Here cu&,„corresponds to the frequency
of the maximum of 9't (co&). While for large co the peak is
centered on the frequency of the vibrational mode I, for
decreasing values of co it increases and then decreases to
negative values. This is very similar to what is observed
in the case of a discrete state coupled to a quasicontinu-
um. A simple examination of the analytical expression of
the band-shape function also shows a drastic reduction of
the SFG signal with an increase of the anharmonicity;
this is also true if we increase the vibrational dephasing.
However, all these variations will be better discussed in
the future, in relation to experimental results.

FIG. 4. We represent the peak shift (co&,„—col ) of the max-

imum of 9I (co&) as a function of the average phonon frequency

co. The other values are identical to the ones of Fig. 3.

function. Of course, from the frequency dependence of
the band-shape function, a resonant variation of the SFG
signal centered in the vicinity of the molecular vibration-
al mode cot can be expected The .maximum of Pt (co&) is
shifted to frequencies lower than cot and this shift in-
creases for decreasing values of the average surface pho-
non frequencies co, as can be seen from Fig. 2. While in
this picture the peak heights have been normalized, in
Fig. 3 we have drawn the peak height of 9'& (co, =cot ) as a
function of co. We note that the SFG process is increased

VI. CONCLUSION

In the present work, we have developed a theoretical
description of sum- and difference-frequency generation
applied to molecules adsorbed on surfaces, with a partic-
ular emphasis on infrared-visible sum-frequency genera-
tion. While the theory can treat both steady-state and
time-resolved regimes, for the sake of convenience, only
the steady-state case has been studied extensively here.
We have shown that for a vibrational mode to participate
in an infrared-visible sum-frequency generation process,
it has to be both infrared and Raman active. As previ-
ously done for second-harmonic generation, the time
dependence could be described similarly.
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