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Theory of two-photon entanglement in type-II optical parametric down-conversion
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The theory of the two-photon state generated by type-II optical parametric down-conversion is stud-

ied with emphasis on the space-time and polarization entanglement of the photons. Several experiments
are reviewed that demonstrate various aspects of the quantum nature of this state. The theory of a
different type of two-photon interferometer is presented.

PACS number(s): 42.50.Dv, 03.65.Bz, 42.65.Ky

I. INTRODUCTION

The study of the foundations of quantum mechanics
has recently attracted a great deal of attention because of
the development of experimental techniques to generate
quantum states of a particularly interesting kind called
completely entangled or Einstein-Podolsky-Rosen (EPR)
states. Entangled states are states of two or more parti-
cles that cannot be written as products of single-particle
states. EPR states are two-particle entangled states such
that the measurement of an observable of either particle
determines the value of that observable for the other par-
ticle with unit probability. The importance of these
states has been known since the earliest days of quantum
theory [1—3]. They play a particularly important role in
the study of the Einstein-Podolsky-Rosen paradox and in
the study of Bell inequalities [4,5].

A powerful tool for generating these states is optical
parametric down-conversion (OPDC). In OPDC, a
beam of radiation, called the pump, is incident on a
birefringent crystal. The pump is intense enough so that
nonlinear effects lead to the conversion of pump photons
into pairs of correlated photons. The down-conversion is
said to be of type I or type II, depending on whether the
photons in the pair have parallel or orthogonal polariza-
tion. The photons in a pair may come out in different
directions or they may come out in the same direction
(collinearly). The frequency and direction of the photons
is determined by the orientation of the crystal.

OPDC has been studied for many years [6—13]. In
this paper we shall review collinear type-II OPDC, pay-
ing particular attention to both the space-time and spec-
tral nature of the two-photon state and the nature of its
entanglement. We will then consider the passage of the
beams through linear optical devices and the detection of
the photons. This will lead us to a review of the recent
experiments performed using collinear type-II OPDC.

These experiments are especially interesting in that

they illustrate the production of entangled states that
show the entanglement of spin and space-time variables.
One example of the experimental consequence of this is
demonstrated in the beating experiment discussed in Sec.
VC. Another consequence of this is presented in Sec.
V D, where a different type of second-order interferome-
ter is discussed in which spatial interference with 100%
visibility and period of the pump wavelength occurs.

II. THE EFFECTIVE HAMILTONIAN
AND THE STATE VECTOR

where a k is the annihilation operator for the mode with
polarization j and wave number k. The dispersion rela-
tion inside the crystal is ~k~ =co zn &lc, n t, is t.he index of
refraction,

E k=i
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and V& is the quantization volume. The creation and an-
nihilation operators are normalized so that

In the interaction picture the effective Hamiltonian for
the optical parametric process of type II in a crystal
pumped by a laser beam is

H, =snit d r yE'+'E,' 'E,' '+H. c. , (1)

where V is the volume of the crystal illuminated by the
pump laser Ep, g is the nonlinear electric susceptibility
tensor, and H.c. means the Hermitian conjugate. The po-
larization of the electric 6eld E, corresponds to an ordi-
nary ray and E, to an extraordinary ray in the
birefringent crystal. The electric fields of the output
beams for polarization j=0,e are given by the quantized
6elds
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The pump field is assumed to be a classical plane wave
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lX

h (x)=
lX

(8)

and hkk =k„—k —k'. h (Lb, kk. ) determines the natural
spectral width of the two-photon state, as we shall see. If
L is infinite, then the integral over the length of the crys-
tal becomes a 5 function. In this case the conditions

cg k+N k
—cd&, k+k —

k&

both hold and the phase matching is said to be perfect.
The phase-matching conditions arise from the fact that
the OPDC process is a coherent process in which all
parts of the crystal contribute in phase. For finite L the
wave-number phase-matching condition is relaxed so that

~
b,

~
may vary over an interval of order 1/L.

The state ~%) is a linear superposition of the vacuum
state and a state containing two photons. In general, the

and E' ' is the Hermitian conjugate of quantum field
operator E'+'. The z direction is assumed to be parallel
to the pump beam and perpendicular to two of the faces
of the crystal. The Hamiltonian (1) can be derived from
the standard minimum coupling Hamiltonian for the
electromagnetic field interacting with a crystal under the
assumption that the wavelength of the electromagnetic
radiation is much longer than the size of the molecules
that compose the crystal. In writing this form of the
Hamiltonian we ignore the reflections from the crystal
surfaces and we make the rotating-wave approximation
Ã).

In Appendix A we calculate the state vector to first or-
der in the interaction, making the assumption that the
pump field is turned on adiabatically and that a steady
state is attained. To simplify the computations, we make
the additional assumptions that the cross section of the
laser beam is constant and large enough so that
diffraction effects can be ignored.

In the experiments to be discussed the crystal was
oriented so that the output beams were collinear with the
pump. In this case, we ignore the components of the
wave vectors perpendicular to the pump beam and write
k=ke„k'=k'e„e, =e„,and e, =e„. We drop the vec-
tor notation for the wave vectors. In this simplified case,
the wave function at the output surface of the crystal
may be written as a superposition of the vacuum and a
two-photon state

le&=lo&+yFkk. a„ka,'k. lo) . (6)
k, k'

The coefficient Fkk. is given by

Fkk' g(took +(ok +ek' rap )k( ~kk') ~

where g(to, k ) = I kk.L and I'k„. is defined in Appendix A
and is called the parametric gain index for perfect phase
matching. The only fact that we need to know about g is
that it is sufficiently slowly varying over the bandwidth of
the down-conversion process that it may be taken as a
constant. The time integral gives 2m5(ta, k+to, k

—to~),
which is the steady-state or frequency phase-matching
condition, and the integral over the length L of the crys-
tal is Lh (Lb, kk ), where

second term is much smaller than the first by 5—6 orders
of magnitude. Higher-order terms containing four, six,
etc. photons are negligible for continuous pumping with
power below 1 W. The two-photon part of the state is an
entangled state in frequency and wave number, but is not
entangled in polarization. In frequency space, the entan-
glement is a result of the frequency phase-matching con-
dition, which implies that the detection of a photon at
frequency u requires the other photon to have the fre-
quency ro —co. This is the origin of interesting experi-
ments aimed at illuminating the Einstein-Podolsky-Rosen
paradox. The frequency correlation has interesting
consequences for the temporal behavior of the photon
pair, as we shall see. The state is also entangled with
respect to the wave number since the function h defined
in (8) cannot be written as a product of a function of k
times a function of k'. In the general noncollinear case,
the wave-number entanglement has implications for the
spatial correlations of the photon pair [12]. In the col-
linear case, the spatial and temporal correlations are in-
distinguishable. The lack of entanglement in polarization
is a special feature of the collinear case and follows from
the symmetry of the state with respect to the frequency
and wave number. If we evaluate the two-photon state in
the coordinate representation we find

k, k'

It is only in the collinear case that the polarization states
can be factored out because the polarization vectors are
the same for all the k's.

III. THE TWO-PHOTON WAVE FUNCTION

In most experiments the two-photon correlation is the
quantity of primary interest. For completeness, the
single-photon wave function is discussed in Appendix B.
In order to measure the two-photon correlation consider
the simplified experiment shown in Fig. 1. The beam
splitter is assumed to be polarization dependent so that
the o ray is transmitted and the e ray is reflected.

The average coincidence counting rate is defined by

z, = lcm Jl;dr, ));dr—, (,elE', 'z2- E2+'z-', +'~e)

XS(T,—T~),

where the electric fields are defined in free space in analo-

gy with Eq. (2). The subscripts j= 1,2 mean that the field
is evaluated at the detector j at time T~. S(t) is the coin-
cidence window function, which is defined so that S= 1

for
~
t

~
(t„;„and goes to zero rapidly for

~
t

~
& t„,„Inthe.

experiments discussed below t, ;„ is large and so we may
take S=1. It is most convenient to perform the calcula-
tions in the Heisenberg picture in which the state vector
is the steady-state output at the face of the crystal.

With 4 given by (6), it is easy to see that

=
/
2 (t„t,)/',
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pump
beam

crystal BS D1 D= 1
(16)

D2

FIG. 1. A birefringent crystal converts the pump beam into a
pair of collinear down-converted beams. BS is a polarization-
dependent beam splitter which transmits the o ray and reflects
the e ray, D1 and D2 are photodetectors, and C is the coin-
cidence counter.

where t„=T,—s jc and s is the optical path length from
the surface of the crystal to the r detector r =1,2. We
take s, =s2=s to simplify the discussion. The function
A (ti, t2) is referred to as the turbo photo-n amplitude, or
for short the biphoton [12].

Suppose that for the collinear case, we have perfect
phase matching at the angular frequencies 0, and 0, . It
is shown in detail in Appendix C that

A(ti, t2)=U(t, +t2)u(t, t2), —

u (t) =e " II(t),

(12)

(13)

and
—iso (tl2)

U(t)=uoe (14)

where md =0,—0, . All the slowly varying quantities
and constants have been absorbed into vo. The function
Il(t), illustrated in Fig. 2, is the rectangular function
defined by

is the difference between the inverse group velocities of
the o and e rays at the frequencies 0, and O„respective-
ly. DL is the difference in the time needed for an o-ray
and e-ray wave packet to cross the crystal. A typical
value for a beta barium borate (BBO) crystal is D =0.2
psec/mm.

It is not difficult to understand the physics of (12). Be-
cause the two-photon state is entangled, the biphoton
does not factor into a function of t

&
times a function of

t2. The factor v describes the fact that the pair can be
created at any time. If the pump beam were taken to be a
wave packet rather than a plane wave, this term would
also become a wave packet with the coherence length of
the pump with the consequence that there would be a dis-
tribution of pump frequencies and wave numbers. Since
u (t) is nonzero only for positive t when D )0, the o ray
arrives at the first detector after the e ray arrives at the
second detector, t, & t2. This may be understood with the
help of the Feynman diagram in Fig. 3. The pair is creat-
ed at the same time and at the same point inside the crys-
tal. The wave packets travel through the crystal at u,
and u, . For D & 0, the e-polarized photon exits the crys-
tal first and, since the detectors are at an equal distance
from the crystal, reaches the detector first.

The experimental verification of the form (15) is re-
viewed in Sec. V A.

The discussion so far has emphasized the natural band-
widths of the output beams. In most experiments
narrow-band frequency filters are placed in front of the
detectors. To take this into account, the fields (11) must
be written as

=gf, (toi, &~ )Eqttjge
k

II(t)= f" dvh( vDL)e-
27r

1
DL &t &0

DL
0 otherwise,

where

(15)

where the filters are peaked at 0, j=1,2 and Ek is
defined by (2) with the index of refraction equal to one.
Referring to the calculation in Appendix C, we can still
write Eqs. (11)—(13) with the replacement of II(t) by
III(t) where

IIt(t)= f" dvf, (v)f~(v)h( vDL)e '" .—(18)
277

Except for the narrowest bandwidths (of order 1 nm), the

ct
0 ray
e ray

1/DL

DL

FIG. 2. Plot of II(t) for the case D & 0.

FIG. 3. The photon pair is created at 3 inside the crystal
( —I. &z &0). The rays exits the crystal at z =0. The case that
u, & u, (D )0) is illustrated.
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FIG. 4. Sketch of the function IIf(t) for two values of the
filter bandwidth no. As oo increases, the natural width DL be-
comes the dominant factor and the shape becomes more rec-
tangular.

FIG. 5. The transformation of the beam by linear optical ele-
ments. BS ia a 50-50 polarization-independent beam splitter.

The linear transformation between the input and
detected destruction operators may be written as

ajk aok
(22)0 a~k

filters may be taken to be Gaussian. Then

—v /oof(v) =f&(v)f2(v) =foe

where

(19)

If this is substituted into the free fields, for detector j, we
get

E'+'=gkE k [D'„'(k)aok+D'„'(k)a, k ]e

(23)

2
CTp

1 1

2 2

and o . is bandwidth fj. Using (19},the integral in (18)
can be evaluated in terms of error functions

IIf(t)=fo[erf(oot/2) —erf[(oat DL)/2]] l2D—L .

(21)

IV. LINEAR OPTICAL TRANSFORMATION
OF THE BIPHOTON

Experimental studies using OPDC require the manipu-
lation of the beams using linear optical devices (see Fig.
5). In the case of type-II OPDC these include phase
plates, polarizers, and beam splitters. In order to treat
these systematically, it is convenient to use the Heisen-
berg picture and include them in the detector fields. In
a11 the experiments discussed below the beam splitters are
not polarization dependent and have equal transmission
and reQection coefficients. Suppose that there are polar-
izers in front of the detectors. Let e& and e2 be the polar-
ization vector transmitted through the analyzers in front
of detectors 1 and 2, respectively, and let e& and e2 be the
orthogonal polarization vectors.

This function, which is sketched in Fig. 4, peaks at
t =DL/2 and has a width on the order of DL+8/tro. If
we take L=0.5 nm, D=0.2 psec/nm and convert the
bandwidth in angular frequency tro to the full width at
half maximum (FWHM) in wavelength in nanometers,
hA, , we get ooDL =EX,/4. Thus, if EA, ))16 nm, the
shape of IIf becomes approximately the same as the II.
In the opposite case of a narrow filter, EA, «16 nm, the
shape of the biphoton is determined by the filter. Note
that the result is unchanged if only a single filter of band-
width no is used.

where the matrix elements are 1abeled by the detector
number and the polarization index at the crystal. It will
be convenient to replace the k dependence in D by
(i/c)d IdT

In general, D will be a product of the matrices of
several devices so that D =M„, . . . , M &, where the M
matrices connect the input and output polarizations of
the devices as shown in Fig. 5.

For example, if D is independent of k,

A (t), t }2=v(t) +tq}[ D)", DP'u(t) t2)—
+D",,'D'„'tt( t, +t~) j . — (24)

e
—i(kg/2)

P(k) i(kz/2)
0

0
i (kg/2) (25)

where (Z —g}/2 and (Z+g)/2 are the optical path
lengths of, respectively, the 0-polarized input beam and
the e-polarized input beam in the phase plate. R'J'(P) is a

The form of (24) shows that the polarization part of the
wave function is entangled by the beam splitter and the
detection scheme. This may be seen as follows. The
beam splitter allows each polarized beam to be transmit-
ted or reflected. This means that

~
o ) ~

e )
~(~o)&+~o)2)(~e)&+~e)2)/2, where 1 and 2 refer to
the transmitted and reflected beams. The polarizers in
front of the detectors convert this state into the product
state (~e„o),+)e2,o)2)(~e„e),+~e2, e)2)/2. The detec-
tion scheme projects only the cases in which one photon
goes to each detector and so fina11y we have the entangled
state ( ~e, ,o ), (e2, e )2+ ~e2, o )2(e„e), )/2.

As a second example, we consider the case in which
M1 in Fig. 5 is a phase plate oriented so that its fast and
slow axes are parallel to the 0 axis and e axis. In this
case, D'J'(P, k) =R'J'(P)P(k ), where the phase plate ma-
trix is written as
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(26a)

and

D(2i(y k ) i(kZ/2)

—i(kg//2)c s+ i(k(/2)sin

i( kg/2)singe i( kg/2 )cosp

(26b)

The minus sign in the first column of (26b) is required so
that the coordinate system for the reflected beam is right
handed. In this case,

T

A(t„t2)= . D'&," Pt, D' 'le $2,cdt i cdf 2

Xv(t, +t2)u(t, —t2)
T

+D(2i y
id D(') ~

id
' cdt " ' cdt1 2

Xv(t, +t2)u( t, +t2) '— (27)

or, introducing d'J'(P) =D'1'($, 0),

zA(t„t2)=v t, +t,

X dI,"(iI),)dI, '($2)u t, t2+~—
r

+dI, '($2)dI", ($i )u t, +t2+ ~ —. (28)

If g is positive, then the e ray travels along the slow axis
of the phase plate and is delayed relative to the o ray. In
the first term in large curly brackets the o ray goes to
detector 1. The center of the biphoton is shifted from
t, t2=DL/2—to the earlier relative time DL/2 —g/C.
In the second term where the o ray goes to detector 2, the
center is shifted from t&

—t2= —DL/2 to the later rela-
tive time DL/2+(le If—we choose. (=DLc/2, the
two terms completely overlap in time.

V. REVIEW OF THE EXPERIMENTS

A. Experimental veri6cation of the H shape
of the biphoton and two-photon anticorrelation

We consider collinear degenerate beams passing
through a system like the one illustrated in Fig. 5. The
only optical element is M1, a phase plate oriented paral-

two-dimensional rotation matrix that rotates the output
axes of P into the axes of the analyzer e and e'. Let the
detector polarizers make angles iIi, and $2 relative to the
output axes of the phase plate; then

4~2)cos~ — t [ ~~ )sin~
D(1)(~ k) i(kZ/2

I[kg/2)Sin~ i[k0/2) Os+

—cos$2sing, u ( t,—+ t2+ r) ] . (29)

In this expression T =Z/c and r=g/c, where Z and g
are defined following Eq. (28). Setting $, =$2=m. /4, the
counting rate becomes

R, (v) =2Ro[1—p(2r)/2],

where

R, =N J("„dtlu(t)l

p(T)=2N Jl
"

dt Re[u(t —T)u( t)]/R—o

=2f" dt II(t —T)II( —t) JI "„«III(t)l' .

(30)

N is an overall constant that is related to the absolute
coincidence counting rate. When ~=0, p=0 since there
is no temporal overlap of the two parts of the biphoton
Il(t) and II( t) —The. counting rate vanishes when
r =DL /2 and p(2r) =2. In this case the two parts of the
biphoton are overlapped completely. As ~ is varied the
shape of p(2r) is a triangular-shaped notch. This is
shown in Fig. 6, taken from the experiment reported in
[14]. In this experiment, since BBO is a negative uniaxial
crystal D &0, M1 is composed of a number of quartz
phase plates oriented so that they introduce a phase delay
in the e ray relative to the o ray by the amount
( n~, n~, )L—

~ /c, where the q subscript indicates the
quartz. L is varied by varying the number of plates.
When the delay equals DL/2 we get complete overlap
and zero counting rate. Note that it is the di6'erence in
the inverse of the phase velocities that appears here,
while inside the down-conversion cyrstal it is the
difFerence in the inverse of the group velocity that occurs.
The reason for this is that the phase-matching condition
inside the crystal causes the term containing the inverse
of the phase velocities to vanish.

If we now insert filters in front of the detectors, then in
Eq. (32) we replace II by IIf. The experimental result is
shown in Fig. 7 from [15].
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FIG. 6. The solid line is a theoretical fit to the data for the
coincidence counting rates reported in [14]. The upper data are
the counting rate for a single detector, which is simply constant.

lel to the o and e axes. Equation (A15) may be written as

A(t„t2)= —,'v(ti+t2 —T)

X [cosp, sinp2u(t, —t2+T)
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To see this, start wtih the polarization state (33), which
the quarter wave plate transforms into the state

I@'&=« ls &sin++ lf &cos+)( i ls—&cos++ If &»n+),

(39)

where Is & and
If & are the states with polarization along

the slow and fast axes of the quarter wave plate. At the
beam splitter [16]

Is & ( Is &, + Is &2),
1

If & (If &
—If & ),

(40)

which is the coincidence rate for a state with polarization

(38)

FIG. 7. The coincidence counting rate for two sets of filters
with FWHMS of 3.4 and 9.0 nm. The solid curves are Gaussian
fits.

where the subscripts refer to the transmitted and
reflected beams. Substituting these expressions into (39)
leads to the state

B. Two-photon entanglement in type-II OPDC

Suppose a quarter wave plate rotated through an angle 4
is now inserted into the beam to convert the beams from
linear to elliptically polarized beams (M2 in Fig. 5). In
the notation of (26)

D' '(pj, k ) =R'J'(pj )P(k)R(%), (34)

where R(%') is the two-dimensional rotation that rotates
the o-e axes into the fast and slow axes of the quarter
wave plate and P(k) and R'J'(P ) are defined in Sec. IV.
The angles P t and $2 are defined with respect to the axes
of the quarter wave plate. We can ignore the part of the
wave function corresponding to both photons going to
one detector since we project those terms to zero with
our detection scheme. For a quarter wave plate we take
ic g /2 =n /4 independent of k; then

R, =RoIsin (P, —Pz)cos (2%')

+cos2( 41+42 )sln2( 2 Ir ) I (35)

If +—:0, the o polarization and e polarization are phase
shifted relative to one another. This phase shift is small
and does not affect the counting rate and we get the re-
sult

R, =rosin (P, —Pz) (36)

for the coincidence of two linearly polarized rays. If
9'=m/4, Eq. (35) becomes

R, =Rocos (Pt+Pz), (37)

The experimental setup is the same as in Sec. V A with
the phase shifter M

&
set so that we get complete overlap

of the two parts of the biphoton (the p=2 case). In this
case, because the two terms in (29) have the same spatial
form, we can think of the state of system after leaving the
phase plate M1 as having the polarization wave function

(33)

+(ls &, If &2
—

If &, ls &2)i—,'cos2% . (41)

C. Two-photon quantum beats
between orthogonally polarized photons

We now consider collinear nondegenerate beams pass-
ing through a system like the one illustrated in Fig. 5.

900

750—
Vl

i 4 4 a 7 v T
0
CD

450
CD

300
O
O

150

I

~ ei+Og 90
~ 8 i+ 82 0'
+ 0$ e)=90

Z I i a 4 zZSZ

0
0 60 120 180 240 300 360

(des)

FIG. 8. The coincidence counting rate for the case %=@/4.
If the sum of the angles is fixed at 90' or 0', there is a zero or a
maximum in the counting rate. If the difference between the an-
gles is fixed at 90, there is a sinusoidal oscillation with a period
of m /2 and 100% visibility.

For 4'=n. /4, we get (38) by introducing the right- and
left-hand polarized states. More generally we can project
(41) onto the detector states with the analyzers e, and ez
to get the counting rate (35).

Figure 8 shows data from the experiment reported in
Ref. [17]. The data are consistent with Eq. (37).

Using Eq. (41), it is easy to see that IC'& is a product
state when 0'=a/8; otherwise it is an entangled state. It
is an EPR state if O'=0 or n /4 and is a linear superposi-
tion of two EPR states for all other %"s (0 ~%' (n /2).
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M1 is a phase plate oriented parallel to the o and e axes.
M3 is a filter whose bandpass is centered at A, , and M4 is

a filter centered at A.2. The widths of the filters are chosen
so that the overlap of their spectral ranges is negligible;
therefore, we may assume that only one wavelength
reaches each detector. The crystal is oriented so that for
that perfect phase matching is satisfied approximately for
pairs (A, , o;A~e) and (Az, o;k;,e). The analyzers in front
of the detectors are oriented at an angles P, and (t)z rela-

tive to the o axis. The calculation of A(t~, t2) is dis-

cussed in Appendix C 3. Equation (A1S) may be written
as

A (t ), tp)= —,'v(t)+ tq —T)

X [cosg)sing~u(t, t~+r)—
—cos(()&sing, u *( t, +—t2+r)] . (42)

In this expression T =Z/c and r=g/c, where Z and g
are defined following Eq. (28). When g is small compared
to the length of the wave packet, and P, =/~=a. /4, the
counting rate is given by

Cod(1 1p)
R R psinC

(43)

where the phase is the result of the relative delay due to
the phase plates in the o and e-ray rays. The joint entan-
glement is crucial to the interference between the two
amplitudes.

The delay ~ is varied by changing the length of the
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with rod =2mc(1/A, ,
—I/A2) and rp=DL/2. The

minimum occurs when the two terms in curly brackets in
(42) completely overlap, which is when r=rp recall tha. t

~p is the average of the time difference it takes o-ray and
e-ray wave packets to cross the crystal.

The state generating the amplitude (42) is entangled
jointly in polarization and wavelength. In a simplified
picture, we have, for the wave function just before it
enters the beam splitter,

phase plate in the manner described above in Sec. V A.
Data are shown in Fig. 9 from the experiment reported in

[18].
Finally we note that the single-detector counting rate

shows no modulation when either the polarizer in front
of the detector is rotated or there is a change in the rela-
tive time delay of the two polarization beams. This is
shown in the upper part of Fig. 9. In Eq. (42), if we keep
v. fixed and vary the orientation of the polarizers, then we

get interference effects similar to those discussed in Sec.
V A. This demonstrates both space-time and spin entan-
glement in one experimental configuration. It is only in
the collinear case that the states

~
o ) and

~
e ) are indepen-

dent of k.

D. A difFerent type of second-order interferometer

gl1mp
beam

crypt:~l M1 M2 F1 D1

We have discussed the theory and the experimental ob-
servations of two-photon polarization correlation, two-
photon anti-correlation, and two-photon quantum beat-
ing. These are all examples of biphoton interference
effects. In this section we discuss another type of two-
photon interference in which the oscillation is at the sum
frequency co, the pump frequency.

Two types of experiments have been reported that
show this effect. In the first type [19—21], each member
of the photon pair is first sent through a balanced mach-
Zehnder interferometer before entering an unbalance in-

terferometer. The first interferometer causes both pho-
tons to traverse either the long or the short path through
the second interferometer. In the second type of experi-
ment [22—26] each member of the photon pair is sent
through an interferometer with a long and short path,
denoted by I. and S, respectively. The biphoton can then
be written schematically as A (L,L)+ A (L,S)
+ A (S,L)+ A (S,S). In order to see the quantum in-
terference (visibilities greater than S0%) it is necessary to
cutoff the middle two terms. This is by using the coin-
cidence window. As we shall see, for the experiment de-
scribed below, the cancellation of the unwanted ampli-
tudes is effected by exploiting the polarization entangle-
ment to see the quantum space-time interference.

The experimental setup is illustrated in Fig. 10. The
down-conversion is nondegenerate and the filters I'1 and
I'2 are chosen to have wide bandwidths so that both fre-
quencies can reach each detector. Following the down-
conversion crystal a set of quartz phase plates M1 is in-

serted, which introduces a phase delay in the e ray rela-
tive to the o ray by the amount (n, —n, )L /c=DL/2,
where the q subscript indicates the quartz. This gives us
complete overlap between the two parts of the biphoton

-100 -50 0 50 100

Optical Delay h, l (N, m)

-1 5 -1 0 -5 0 5 10

Number of Quartz Plates Inserted

1 50 200

F2 M4
I

I I M4
I

D2
FIG. 9. Difference frequency oscillations with 100% visibili-

ty showing the biphoton quantum beats between orthogonally
polarized photons. FIG. 10. Different type of interferometer.
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II(t) and II( —t} A. nother set of quartz phase plates M2
is oriented at 45' relative to the o and e axes of the crys-
tal. The length of these is long enough so that the emerg-
ing beams polarized along the x' and y' axes do not over-
lap. The optical delay between them is much greater than
the single-photon coherence length. M3 is a Pockel cell

with the same orientation as M2, which is used to pro-
vide a fine variation in the relative optical path length of
the two polarizations. The analyzers in front of the
detectors are oriented at 0 relative to the initial x axis.

For the case in which the angle of rotation of the M2 is
4, we write the first row of the transformation matrices

I

D",,'(O, k)=e ' " [cos (Ii+e '" sin %',e™r(1—e ™dr)sin%cos%],
I

D(2)(0 k) e' o x [eimhr(sjn2lP+e imper'—cos2LP) (1 e iu—ad) isnP(costi]
(44}

where k =to/c and r, and v„are the optical path length through M 1 and M2 along the o and x' axes, respectively.
The difference in optical path lengths along the e and o axes in M 1 is b,r and along the x' and y' axes in M2 is b,r'. Us-
ing this result, it is not too difficult to show that

A (t„tz }=Wcos+ sin%'I [v(r, +~& hr}c—os 9' v(r, —+~2 —6~+26 ~')sin (Ii]u(r, —r2+br)

+V(T(+Tz 5T+6T }[ cos O'u(1 ( 1p+5T Ar )+Sin (Ii]u(1
~ rz+5T+kT )]J +(t(t2),

(45)

where 8' is a slowly varying quantity which need not
concern us. We have defined ~, =t, (~, +r„.—) and
~z=t2 (r.+~—„).

The expression in (45} contains four amplitudes. The
first term corresponds to the case that 0- and e-polarized
photons both passing along the x' axis of M2. The
second term corresponds to both photons traveling along
the y' axis of M2. The third term corresponds to the 0
photon traveling along the x' axis and the e photon along
the y' axis of M3 and the fourth term is the reverse case.
In all these terms the x photon is detected at D1 and the

y photon at D2. The terms obtained by interchanging t,
and t2 corresponds to the x photon being detected at D2
and they photon at D l.

We now set 4=45' and let b,r=DL/2 so that
u(t+b, r)=u( t+b, ~) In (—45) .only the first term and
its partner obtained by interchanging t, and t2 survive.
The other terms cancel exactly, independent of the delay
b,r' because the terms shown in (45}are out of phase with
those obtained by interchanging t

&
and t2. Then, using

I4"&=(e'"' ls&(ls&2 —lf &, lf &, )'2 2

+e ' (ls &(lf &2
—lf &(ls &2)'2 2' (49)

where we retain only the terms that the coincidence
counter detects. Projecting these states onto the detector
analyzer states we get

—,
'

I
o & (I o &2(

—1+ e'"' ') . (50}

The second term cancels exactly. This simple picture

I

above. Since both detectors can detect both photons we
take them to be of the same frequency in this simplified
model. After leaving M1 the polarization state can be
written in the form (33). The phase plate transforms this
state into an expression like (39), except the factor i is re-
placed by exp(i to b r'/2) and we take 4'= n /4 for simpli-
city. Then after the beam splitter transformation (40) we
have

v(t+br') =e ~ v(t) (46)
1 200 I

'
I

'
I

'
I 3000

reduces

8' —ice hr'
A(t„t2)= v(~, +~2 —hv)(1 —e ~

)

X I ti (7 ( T2 6'r)+ u( T(+72 AT) J (47)

and the counting rate becomes

R, =Ro(1—cosco A~') . (48)

By varying the voltage on the Pockel cell, h~' may be
varied and the counting rate oscillates at the pump fre-
quency with 100% visibility. This is shown in Fig. 11
[27].

The terms in the complicated expression (45) can be de-
rived easily using the Schrodinger-like picture discussed
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FIG. 11 Sum frequency oscillation for the interferometer
shown in Fig. 10.
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does not fully illustrate the curious nature of this cancel-
lation. Recall that if one tries to envision the wave func-
tion in terms of individual photons, the photons that
emerge with polarization s have been delayed relative to
those with polarization f by an amount exceeding the
single-photon coherence length. This is one reason for
not relying too heavily on a picture of the biphoton as a
pair of single photons.

where

Fkk = rkk, 5(,k+,k
— )Lh (Lb kk. )h „(k,k' ) (A2)

and

Ilail &
= lO&

——' f" dt H, ~O& = ~O&+ &Fkk.a,ka, k lO&,
k, k'

(A 1)

VI. CONCLUSIONS lI kk
= E,kE, k 2n e(gEO A . (A3)

We have discussed the nature of the two-photon state
or biphoton for type-II optical parametric down-
conversion. The nature of the state is such as to allow a
number of interesting quantum-mechanical interference
experiments to be performed which illustrate the entan-
glement of spin and space-time variables and the genera-
tion of EPR states. In the experiment discussed in Sec.
V A the degree of entanglement is determined by the
length of the crystal, the dispersion in the crystal, and the
bandwidth detected. This dependence is in sharp con-
trast with the entanglement produced in experiments us-
ing type-I down-conversion [28].

In the quantum beating experiment the polarization
and space-time entanglement is illustrated in an interest-
ing way. The detectors see nonoverlapping frequency
bands. The state produced following the beam splitter is
entangled in both space-time (or, equivalently, in frequen-
cy and wave number) and in the polarization. The
space-time entanglement is illustrated by the beating at
the difference frequency. The polarization effects may
also be observed by rotating the analyzers at the detec-
tors.

In the final experiment discussed above, it was shown
how a different type of interferometer allow us to perform
an EPR-type experiment of the type proposed by Fran-
son. However, in this case the creation of the EPR en-
tangled state is realized by the cancellation of amplitudes
by the adjustment of polarizers rather than a coincidence
time window.
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APPENDIX A: TYPE-II PARAMETRIC
DOWN-CONVERSION

In this appendix we calculate the initial state for type-
II down-conversion in the general case. The interaction
Hamiltonian is given by Eq. (1) and the electric field of an
output beam with polarization j is given by Eq. (2) in the
text. In the general case k does not lie along the z axis
and the direction of the polarization vector e- is deter-
mined from the Fresnel equations for uniaxial crystals.

The calculation of the state vector to first order in per-
turbation theory gives

The z integral from —I. to 0 over the length of the crystal
gives Lh (L b,kk. ), where

and

1
lX

h (x)=
lX

(A4)

Akk. =k —k, —k,
' .

The integral over the area A of the intersection of the
beam cross section and the crystal gives

(g )ri) d2~ e(k k+') P1
(A6)tr 7

where we assume that A is independent of z and tr means
transverse. The time integral gives the 2m times the
Dirac 5 function, which is the steady-state or frequency
phase-matching condition.

The function h„depends on the components of the
wave number perpendicular to the z axis. In the limit
that the area of the beam is large enough so that
diffraction effects may be ignored,

(A7)
x x y y

In this approximation, the modes are correlated in pairs.
Each o ray with k=k„+k,e, is correlated with an e ray
with k'= —k„+k,'e, . Using the dispersion relation, k,
can be expressed in terms of k„and the angular frequen-
cy co and k,' can be expressed in terms of k„and the an-
gular frequency co'=co —co. In most experiments the
range of the transverse component of the wave number is
limited by placing pin holes in the beams.

It should be recalled that when the beams exit the crys-
tal, the components of the wave numbers parallel to sur-
face of the crystal are continuous across the interface. If
the length of the crystal is infinite, then the integral over
z becomes a 5 function and we obtain the perfect phase-
matching conditions

~op +~ Q' ~p k+k kpe (A8)

When these conditions are satisfied we get a maximum in
the intensity of the output beams.

In the collinear case, to a good approximation we can
ignore the transverse components of the wave vector.
Then the modes may be labeled by the angular frequency
and the polarization. k, =k,e, and k, =k,e„where
k, (ai}=con,(re) jc and k, (ro}=ron, (ro)lc We also h. ave
e, =e„and e, =e . For the collinear case we may drop
the vector notation for the wave numbers. %e then ob-
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tain Eq. (6) and the perfect phase-matching condition
reduces to (9).

The two-photon state in (Al} is entangled in both k
and spin since the polarization vectors are themselves
functions of k because they must satisfy e k=0.

The two-photon amplitude is defined in Eq. (12) as

a(t„r, ) = &0IE,'+'E',"I+& . (C1)

APPENDIX C: EVALUATION OF THE TWO-PHOTON
AMPLITUDE

APPENDIX B: THE SINGLE-PHOTON
COUNTING RATE

To discuss the single-photon properties of the radia-
tion, we consider an experiment like that shown if Fig. 1

with the beam splitter removed. The average counting
rate is given by

R(= lim —Jt dt) &%'lEI 'EI+'l%'& .
T (B1)

(B2)

where r, =sic, s is the distance from the crystal output
face to the detector, and Ei, is given by Eq. (3) with unit
index of refraction. Inspection of (B2) shows that it is a
single-photon state which is a superposition of two in-
dependent modes. The first term is polarized along the e
axis and the second along the o axis. Note that this is the
state of the undetected photon.

Now it is a simple matter to show that

Applying the free field E„which has the polarization
vector e1, to 4' gives

( )l &

—k( — )

k, k'

XEI,(FI,I, e) eau,"g +F), ),e) e,yu01, )10&,

The fields E1 and E2 are fields that are defined outside
the crystal and therefore in using the definition (2) we
must take the index of refraction to be unity. Since for
simplicity we assume the detectors are point detectors,
the space-time dependence of the fields, k r„—cokT, be-
comes a)),(T„sic—)=co),t„, where s is the optical path
length from the surface of the crystal to the r detector
r =1,2. The beam splitter transmits the o ray and reflects
the e ray.

1. Detection of the natural bandwidth

In this case there are no filters placed in front of the
detectors. Substituting Eq. (2) into (Cl) gives

l(N) f) +&1 t2 )

A(t), t2}= g E), E), e
kl, k2

(C2)

The E), are defined by (3) and are independent of the po-
larization. Next, using (6) we find

(C3)

Substituting this into (C2) and evaluating the summa-
tions using the Kronecker 5 gives

y 1/3

&~lE()-)E()"l~&=Z '
lg( .)E.l'

k 2'
A(tl ~f2) XWkk'5(&ok+&ek' &p )

kk'

(C4)

uek' "0k'

(B3)

(B4)

To evaluate the Dirac 5 functions in F),I, a summation
over a wave number is converted into an angular frequen-
cy integral. This is done in the usual way

The functions which vary slowly over the bandwidth of
the beams have been absorbed into Wl, ), . Recall that
b,„„=k —k —k'.

Suppose that the crystal is oriented so that the perfect
phase-matching conditions (10) can be satisfied by the set
Q„Q„K„and K, . The bandwidth of the down-
converted beams are such that it is possible to select the
frequencies such that m=Q, +v and co'=Q, +v', where
lvl «Q, and lv'l «Q, =mz —Q, . The 5 function in
(C4) requires that v= —v'. Now expand k and k' to first
order in v using the dispersion relations

dE,k=E, +v =E,+
dQ, '

u,
(C5)

where u. is the group velocity of the j-polarized beam.
Equation (B3) is the sum of two independent terms due to
the o-polarized and e-polarized photons. There is no in-
terference between these terms because the o and e modes
of the beam have no definite relative phase. This means
that the beam is unpolarized. For a given orientation of
the analyzer, e1, the counting rate, is constant. As the
analyzer is rotated the last term in (B3) varies. This vari-
ation is determined by the difFerence is the inverse of
group velocities of the two beams.

and

dE,k'=K, +v' =K, —
dQ, '

u,
(C6)

u

1 1

ue
= —vD (C7)

Now converting the sums in (C4) into integrals in the
standard fashion (see 84) and using
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gives
—i(co /2)(tl +t2 )

A ( t„t 2 ) = W)r x. e
x y

X '& dvQ —vDL e

1 2
—iv(t —t )

(C8)

sets of conditions

00=0, , 0, =02,

Q, n, (Q, ) Q2n, (Qi)

(C12a)

In this expression we have absorbed all the slowly vary-
ing quantities into 8' and introduced the frequency
difference cod=A, —0, . The limits on the integral may
be taken to + ~ since the function h is peaked around
v=0 and has a bandwidth of order 1/DL, which is gen-
erally much smaller than Q, or Q, . The integral in (C8) is
the Fourier transform of a phase factor times the sine
function and so gives the rectangular function

II(t)= f dvh( vDL)e—1

277

1 DL) t)0
DL
0 otherwise.

(C9)

It is now a simple matter to rewrite (C8) in the form
given in (13)—(15).

For some orientations of the crystal it m.ay be possible
for more than one pair of photons to satisfy the perfect
phase-matching condition. In such a case, we must add
terms to (C8) for those cases.

and

0,=02, Q, Qi,

K2, = Q2n, (Q2) Q, n, (Q~)
(C12b)

In these cases k~
—K)o

&—
2,, =&&0

k —t(.'„—&2, ——(i'Q0. In the experiments described in
the text it is possible to select l5l, l5'l (&DL. In this case
the H functions are simply multipled by an overall phase
factor which does not effect the results. Now (C8) has
four terms. These can give rise to amplitudes
I(Q„o)~1, (Q2, e)~2}, t(Q), o)—+2, (Q2, e)~1},
I(Q),e)~l, (Q2, o)~2}, and I(Q), e)~2, (Q2, o)~1}.
If the filters are chosen so that their overlap is negligible,
then the second and fourth terms are neghgible. In this
case, Eq. (C8) becomes

—i(co /2)(t) +t2) —((co 2d)(t —
i i2)

2. Detection with restricted bandwidths

We now consider the case in which there are filters
placed in front of the detectors. Equation (C2) becomes

i(co& t& +co& t2 )

A(t), t2)= g Eg E), f,f,e
kl, k2

X I Wx tt e, e, e2 e, llf(t( t2)

+Wx, x, e2 e()e) e, llf( —t)+t2)},

(C13)

where II& and H& depend on D and D', respectively, wtih

x(oltt)), o2k I+&,

where, for j =1,2 the filter f is peaked at Q and

(C10)

"10 "2e
D'= 1 1

Q2 Q&
(C14)

f =f1(to), —Q ) . (Cl 1)

3. Two-photon quantum beats

In this experiment the crystal is oriented so that per-
fect phase matching is satisfied approximately for two

For the degenerate case, Q) =Qz=to /2. For the nonde-
generate case the choice of filters depends on whether the
experiment of interest requires that each filter pass both
photons or only one of the pair. In the quantum beat ex-
periment discussed in the paper, the filters are selected so
that their spectral bands have negligible overlap.

In the experiment discussed in the text the e-polarized
beam is phase shifted relative to the o-polarized beam.
This can be accounted for by recalling that the o-
polarized beam is detected at detector 1 in the first term
and at detector 2 in the second term. Therefore, let
t, ~t, (L g)I2c and—t—2~t& (L+g)/2c in t—he first
term and t, ~t, (L+g)I2c and —ti~t2 —(L —g)/2c in
the second.

Finally to get Eq. (39), we use the assumptions that

8'K K =8', , D=D' .
lo 2e K2o K

Then

—i(co /2)(tl +t2+L/c) t cod/2)(ti —t2A(t t2))=Wx. )~ e ' ' ' e
2o le

1Nd ($ /c )

XIe, e,e2 e,e . II. f(t, t2+slc)+e2 e,e, e, e —IIf( t)p++t/cs)} . (C15)
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