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Theory of strong-field light-induced collisional energy transfer in Eu and Sr
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The theory of light-induced collisional energy transfer (LICET) in the Eu-Sr system is extended
to include all the degenerate M states that occur in the separated-atom basis states. Previous
treatments were restricted to only the M = 0 substates. Numerical solutions are obtained for
the resulting nine-state dynamic coupled system to determine transitions probabilities on a given
straight-line path. Intense laser 6elds of linear and circular polarization are treated. It is found that
the full M-state treatment results in dependences on the trajectory orientation angles which are
much more complex than in the M = 0 treatment. The exact and quasisymmetries involving these
orientation angles are described in simple group-theoretic terms. The resulting spectral line shapes
(LICET transition cross sections as a function of laser detuning) are seen to have structures that
are understood in terms of the coupling matrix elements, as well as appreciable Stark shifts. These
shifts, which appear to be an essential outcome of the theory, are not yet seen in measurements of
the LICET line shape.

PACS number(s): 34.50.Rk

I. INTRODUCTION

Our general understanding of the process of light-
induced collisional energy transfer (LICET) has ad-
vanced steadily since the process was first proposed by
Gudzenko and Yakovlenko [1]. Their two-state atomic
representation plus dipole-dipole interaction gave rise to
a Lorentzian-like shape for the LICET cross section which
varied linearly with the radiation intensity, as a one-
photon absorption process should at low intensities. It
was then shown by Geltxnan [2] that at large intensities a
saturation of the transition occurred and the peak cross
section changed its variation with intensity from I to

I ~ . A xnolecular-based treatment by Gallagher and
Holstein [3] dexnonstrated the ixnportance of the van der
Waals interaction to the low-intensity line shape, which
becomes highly asymmetric. This asymmetry arises from
the fact that the initial and final molecular potential
curves will allow a region of resonance with the laser pho-
ton AO on only one side of the line, called the quasistatic
wing, while on the other side (antistatic) the absence of
energy conservation results in a very rapid fallofF. The
quasistatic wing behavior from this picture is (b,A)
It was then shown by Bambini and Berman [4) that a
two-state basis, even if they are molecular states, is not
adequate to describe the far quasistatic wing behavior.
They showed that the introduction of a third basis state,
which couples collisionally and radiatively with the initial
and final states, leads to the quasistatic wing behavior

(b,n) '~ ()b,o) + b, n)

where Ao is detuning between the interxnediate state and
the initial or final state. Thus the molecular two-state
form is modified for ]b,Q~ )Do, and the limiting far wing

behavior is (b,A) z. A physical interpretation of this ef-
fect is that the introduction of the intermediate state, and
its adiabatic population during the collision, allows a de-
parture from the two-state quasistatic form. While the
above discussion on LICET line shape applies to the case
of weak laser fields, or essentially one-photon absorption,
a number of studies have looked at the strong-Geld prob-
lem [5,6]. As the field is made xnore intense, and radia-
tive coupling becomes dominant over collisional coupling,
Stark shifts of the line center occur, and the line shape
tends to become symxnetrical and intensity broadened.

On the experimental side, the first observations of
LICET by Harris et aL [7] have been followed by exten-
sive weak-field line-shape studies on a number of atomic
systems, including Rb-K [8], Na-Ca [9), Li-Sr [10], and
Eu-Sr [ll]. Those measurements generally confirm the
theoretical expectation of asymxnetric line shapes and the
quasistatic wing transition from (b,A) I to (AO)
()Do] + b,o) ~ on the far wing. They also confirmed
the intensity transition of the peak cross section from
I to IxI2 behavior. A theoretical expectation [12,13]
that was not confirmed by the measurements is the Stark
shift. A very recent measurement was made by Mazzoni
and Fini [14] on the Eu-Sr system in the intensity range
5 x 10 —3.75 x 10 Wjcm2. While their results show
a trend to decreasing asymmetry as intensity increases,
which is consistent with the theory, they do not show the
predicted shift in the position of the central peak.

This disagreement between experiment and theory on
the question of a shift is at present the major obstacle to
a full understanding of the LICET process. As such, it is
a leading motivator of the present work. The two previ-
ous calculations [12,13] on the Eu-Sr system adopted the
simple set of product atoxnic basis states which included
only the I = 0 substates. That model was adequate
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FIG. 1. Simpmed atomic energy levels {in cm ') for the
Eu-Sr LICET process. The curved arrows represent the joint
collisional transitions.

to explain all the weak-field features of the I ICET line
shape, and at the same time it predicted a high-field shift
of the order of —0.035 cm i/(MW/cm2).

In the present work we retain the same essential set of
three basis states:

~i) = Sr(5s 'So) + Eu(6s),
~n) = Sr(5s5p 'P, ) + Eu(6s Sp/2),

~ f) = Sr(5p' 'D&) + Eu(6s' S7/2),

but now we include all possible M states. The appropri-
ate energy levels are shown in Fig. 1.

This enlarges our basis set considerably and of course
involves much larger amounts of computing time, but we
feel that it is necessary to do this as the next step toward
the full treatment of the problem.

II. FORMULATION OF THEORY

A. The basis states of the LICET transition

The level structure of europium is complicated by its
large spin, S = 7/2. This couples to the orbital angular

momentum I = 0 of two 6s electrons to form the ground
state, and to the orbital angular momentum I, = 1 of
the 6s6p electrons to form a multiplet, with J = 5/2,
J = 7/2, and J = 9/2. Initially, we assume that europium
is in the J = 9/2 excited state.

Since neither the collisional interaction between the
two atoms nor the coupling of each atom with the elec-
tromagnetic field induces transitions among states with
different spin, we can simplify the problem by neglecting
the electron spin in the europium atoms, by assuming the
two states of europium to be a " So" and a " Pi" state,
respectively. Extensive calculations of I ICET transitions
involving the whole set of substates in europium have
shown that such an approximation does not introduce
significant modifications in transition probabilities.

The level structure of strontium is simpler. The two
outer electrons of strontium form the ground state (5s2
iSo), the first excited state (5s5p i'), and the double
excited state (5p2 iD2).

We form the set of essential basis states for the LICET
transition as the outer product of states of europium and
strontium. When magnetic degeneracy is accounted for,
the essential states are eleven in all. These states are
defined as follows.

The first three states, labeled 1, 2, and 3, are formed
by the three magnetic substates of europium " Pi" and
strontium in the So ground state; states 4, 5, and 6
are formed by europium in the ground state " So" and
the three magnetic substates of strontium Pi. The final
five states, 7 through ll, are formed by europium in the
ground state and the five magnetic substates of stron-
tium D2. The magnetic substates of both europium and
strontium are referred to the quantization axis Z which
is chosen along the field polarization axis (for linearly po-
larized field) or along the direction of field propagation
(for circularly polarized field).

Denoting by r, , r, the coordinates of the two outer
electrons in the europium atom and by rt„, rb, the coor-
dinates of the two outer electrons in the strontium atom,
we can write the wave vectors of these states as follows:

1
~1, 2, 3) = (us, (r~, )us„~(r~, ) + us, (r~, )usi~(r, )) vs, (r&, ) vs, (rs, ),

2
1

~4, 5, 6) = us. (r, ) us. (r, ) ]vs. (rb, ) s~~v(rs, ) + vs. (rb, )vs„(rb, )),
2

~7, 8, 9, 10, 11) = us, (r, ) us, (r~, ) ) C(112;mim2M) v5p, (ri„) pv,s(ri„),

where we have indicated by u(r ) and v(rs) the atomic
orbitals of europium and strontium, respectively. In Eq.
(3), C(112;mim2M) denote the Clebsch-Gordan coeffi-
cients of angular momentum coupling.

Within each multiplet, the states are arranged in in-
creasing order of the magnetic quantum number M, so
that, for instance, state 1 has M = —1, state 2 has
M = 0, and state 3 has M = 1. In the set of final states

[Eq. (3)], M (= mi + m2) ranges from —2 to +2, five

states in all. However, as will be shown in the following,
due to selection rules, not al} states are accessible by the
transition. When the electromagnetic field is linearly po-
larized, only the final states with M = —1, M = 0, and
M = +1 can be populated; with a circularly polarized
field, the states involved by the transition are those with
M = —2, M = —1, M = 0 or M = 0, M = +1, M = +2,
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depending on whether the field is right or left circularly
polarized. In any case, only three of the five final states
can be reached by the transition; thus only nine states
need to be included. Z(t) = Zp+ v (t —tp),

B. The coordinate system and the geometry of
collisions

Due to the lack of spherical symmetry, the population
transferred to the final substates during a single collision
would depend on the spatial orientation of the trajec-
tory with respect to the quantization axis. We assume
a coordinate system whose Z axis is along the electric
field component in the linear polarization case, or along
the propagation vector for the circular polarization case.
The collision plane is determined by the impact param-
eter vector p and the relative velocity vector v. The
direction of a particular trajectory is identified by the
angle 8 formed by the relative velocity v and the Z axis
and by the angle P between the collision plane and the
YZ plane. The Y axis is chosen to lie in the plane of the
Z axis and v (see Fig. 2).

The system wave functions as well as the matrix el-
ements for the collisional coupling are evaluated in this
XYZ reference frame.

The relative position of the two atoms at time t is
identified by the vector R = (X, Y, Z), where X, Y,
and Z are functions of time. The relative motion of the
two atoms is assumed to follow a straight-line trajectory,
described by classical mechanics. When e = P = 0, the
trajectory lies in the YZ plane and is parallel to the Z
axis, and we have

(4)

Z
]4

where Xo, Yo, and Zo are the coordinates of the vector R
at the time to, chosen so large in magnitude that the two
atoms are very far apart and their collisional interaction
is negligible. For that particular trajectory, Xo ——0 and
Ye ——lpl, and the vector v has only the Z component
diferent Rom zero.

To pass &om this trajectory to another trajectory char-
acterized by arbitrary angles 8 and P, we subject each of
the two vectors (Xe, Yo, Zo) and v to a rotation by an
angle 8 about the X axis, followed by another rotation
by an angle P about the direction of the v displaced by
the first rotation. Along the trajectory so obtained, the
R joining the two atoms at the time t is given by

where (Xe, Yo, Zo) and v' are the rotated vectors. Since
the second rotation clearly leaves the vector v unchanged,
the relative velocity lies in the YZ plane for any 8 and

P, hence v' = 0.

C. Equations of motion

The total wave function of the atomic system is a linear
superposition of the nine states involved in the process.
We have

V

where e~ is the energy of state j, and

All quantities are in atomic units, unless otherwise spec-
ified. The wave function of the system evolves with time
according to the Schrodinger equation

.04
i = H@ = (He + H. + H ) @,Bt (12)

FIG. 2. Laboratory-fixed coordinate system. Z is along
electric field vector for linearly polarized radiation and along
the propagation direction for circularly polarized radiation.
The Y axis is in the plane of Z and relative velocity v. The im-
pact parameters p and v determine the collision plane, which
makes an angle P with the YZ plane.

where Ho, H, and H„represent the unperturbed Hamil-
tonian, the collisional interaction potential, and the ra-
diative coupling, respectively. When the expansion of 4
in the basis states lj) is used, the Schrodinger equation
gives the equations of motion for the coeKcients b~ in the
expansion
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9

b, = —t ) (gH. + H„~&')b, e-*~" -"l'

9-=) ~„b, .

must consider the linear polarization and the circular
polarization cases separately. In the linear polarization
case, E is directed along the Z axis, and the radiative
coupling is written as

H„= Eo(zb, + zb, )cos Bt

This is a system of nine, first-order linear differential
equations that must be solved by integration from t = tp
to t = ti, where tp and tz are properly chosen to be
the times prior to and after the collisional interaction.
Usually, the origin of time is chosen at the point of closest
separation of the two atoms, and tp, t] are symmetrically
placed with respect to this point, tp ———tq.

The dipole-dipole collisional interaction H, is given by
the sum of four terms, each representing the dipole-dipole
coupling of one electron in europium to one electron in
strontium

H, = Hd~(r, , rb, ) + Hq~(r, , rb, ) + Hd~(r, , rb, )

(xb, + zb, ) cos At + (yb, + yb, ) sin At
(20)

or, also,

(», +», )""'+(», +», )

2v2
(21)

where

In the circular polarization case, the electromagnetic field
propagates along the Z axis, and the electric field vec-
tor rotates in the XY plane. The radiative coupling is
written as

+Hgg(r „rb, ) (14) », =*b. —iyb. (k = 1, 2)

with

Hrr(r, rr) = (r rr —3(r, R)(ra R)), (15)

4'
Hgd(r, rb) =,r rb ) Y;,(O po)Ylq(Obpb)

q= —1

—4vr ) Y; (O P )Ygq(OC')

1

x ) Y,
*

(Obgb)Y, (04)
q= —1

The expression of the matrix elements of Hqg(r, rb)
between two single-electron states ~us, (r )vs'(rb)) and
~us~(r )vs, (rb)) are Presented in APPendix A. From these
elements, one can find the collisional coupling terms
among the states by using the expression for the com-
pound states in the LICET process, Eqs. (1) and (2).

The radiative coupling 0 is

H„= E (r, +r, +rb, +rb, ), (17)

but can be simplified to

H„= E. (rb, + rb, )

since only the strontium atom has a transition close to
resonance with the laser field. In this equation, E repre-
sents the electric component of the electromagnetic field,
which couples to the dipole moment of the Sr atom. We

where R represents the distance of the two atoms and R
is the unit vector in the direction joining the two atoms.

The operator H~d(r, rb) is conveniently expressed
in terms of the irreducible tensor operators Yj(O P ),
Yj (Obpb) and Yq(84) of the angular electrons coordinates
O, P and Ob, Pb and the interatomic separation 8, C as

and the asterisk denotes the complex conjugate.
In both cases of polarization, the rotating wave approx-

imation can be used to eliminate the counter-rotating
component of the electric field.

The electromagnetic field couples different sublevels in
the two cases. When the field is linearly polarized, the
final sublevels 8, 9, and 10 are coupled to the levels 4, 5,
and 6, respectively, according to the selection rule AM =
0. In the circular polarization case, the Gnal sublevels
coupled by the field are 9, 10, and 11, AM = +1. The
matrix elements of 0„ for the two cases are shown in
Appendix B.

III. RESULTS

A. Evaluation of the LICET spectra

The LICET process is initiated with europium atoms
in the excited state 686p P9y2 and strontium atoms in

the ground state 58 Sp. The compound atomic states
corresponding to this initial preparation are states 1, 2,
and 3, with M = —1, M = 0, and M = +1, respec-
tively. For fixed Geld parameters and a given collisional
trajectory, we integrate the system (13) of nine differen-
tial equations for the state amplitudes b~, starting from
each initial sublevel, i.e. , we perform three integrations,
one with the initial condition bq( —oo) = 1 and all other
state amplitudes set to zero, one with b2( —oo) = 1, and
one with bs( —oo) = 1. The transition probability is then
found by summing over the final level populations and
averaging over the initial conditions so chosen.

It should be noted that we are calculating transition
probabilities of a quantum mechanical process, in which
interference effects may play a major role. In other
words, the population of the final levels, after a process
started from a state in which all three initial states are
equally populated, may differ &om the population aver-
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aged over the three initial conditions mentioned above.
This is even more evident in the strong-6eld regime.

The preparation of the initial state of the LICET pro-
cess in most experiments results in an incoherent super-
position of the initial sublevels, in which the three states
have random phases. The final level probabilities should
then be averaged over the phases of the three initial levels
rather than over their populations. However, this proce-
dure would require a much longer computational time.
We do not believe that our method of averaging would
introduce any substantial error in the determination of
the LICET cross section.

Since the process lacks spherical symmetry, the 6nal
level probabilities thus evaluated would depend on the
geometry of the trajectory. As mentioned in Sec. II B, we

have chosen a coordinate system in which the Z axis lies

along the polarization axis or the field propagation axis,
depending on the polarization of the field. The trajectory
of the relative motion can have any orientation in that
coordinate system, and one has to average the final level
probabilities over the angles 8 and P that characterize
such orientation (see Sec. II B).We will describe below a
method that allows a substantial reduction of the number
of cases that need be evaluated.

At the end of these processes, we obtain the final level

probability P(p), averaged over the initial states, for a
given impact parameter p and fixed 6eld parameters. The
cross section is then obtained by integrating P(p) over
the impact parameter p

0' = 27r P(p) pimp.
0

(23)

In practice the lower limit p = 0 is replaced by a finite
value, say p = 10. This has no appreciable efFect on the
total integral since the major contributions come from
much larger impact parameters. We have also put in the
physical constraint that the straight-line path is replaced
by one representing specular reflection at a hard sphere
radius, say Ro ——10, and this gives essentially the same
results as taking p = Ro as the lower limit.

B. Symmetry considerations

Averaging the probabilities of the final levels over the
trajectory parameters 8 and P would, in principle, re-
quire integrating the system of differential equations for
several values of 8 ranging from 0 to 180' and P ranging
from 0 to 360 . However, as will be shown now, not all of
these calculations are necessary. The final level probabil-
ity turns out to be the same for difFerent sets of 8 and P
if these angles are related by some symmetry operation.
We describe these symmetries in terms of "transfer ma-
trices, " de6ned below. There are three sets of states: the
"initial states" (1, 2, and 3), the "intermediate" states
(4, 5, and 6), and the "final" states (8, 9, and 10 for the
linear polarization case, or 9, 10, and 11 for the circu-
lar polarization case, see Appendix B). For each set, we
build a three-dimensional vector whose elements are the
populations of the states in that set. The first element in

each vector is the population of the state with the low-

est magnetic quantum number M (usually —1), and the
other elements are arranged in the order of increasing
values of m. Label I will denote a vector of populations
in initial states; labels I and I' will denote vectors for
the intermediate and final states, respectively.

Because of our choice of the initial conditions, at the
initial time t = tp (with tp very large and negative to be
considered "—oo") the vector of the initial state popula-
tion wl can only take one of the values

(oi I'0
wI(tp) = 0, 1, 0

&0) &» &1)
(24)

depending on whether the populated state at the initial
timeistheonewithM = —1, M = O, or M =+1,
respectively. At the initial time the two other vectors,
wx(tp) and wy'(tp) are both (0, 0, 0).

At the final time, t = ti (with ti large and positive to
be considered "+oo"),all vectors contain elements which,
in general, are different from zero, and can be related to
wl (tp) by means of the transformations

w& (ti) = T& (tp, ti, 8, $)wI(tp) (j = I, X,F), (25)

(a) 8 = Hp, P = Pp,

(b) 8 = Hp, g = —Pp,

(c) 8 = 180 —Hp, g=gp,

where T7(tp ti 8, $) i's a 3 x 3 matrix, i.e. , the transfer
matrix for that set of levels.

The transfer matrix is a convenient tool to describe
how populations have been transferred by the LICET
process from states 1, 2, or 3 at t = to to each state
of the system at t = tq. To evaluate the transfer matri-
ces, we integrate the system of differential equations (13)
with the initial condition b7 (tp) = b&' i. The probabilities
of the nine states at the end of the integration form the
first columns of the matrices TI, T~, and T~, respec-
tively. Then we repeat the integration with b7(tp) = b& 2

to find the second columns of these matrices, and 6nally
we integrate the system with b7(tp) = b7 s to find the
third columns. The dependence of the transfer matrices
on the angles 8 and P has been made explicit by includ-

ing these angles in the argument list. The two other
arguments, the initial and final times, will be dropped
henceforth.

The three transfer matrices, TI(8, it) for the initial
states, Tx (8, P) for the intermediate states, and T~(8, P)
for the final states, are borrowed from the theory of lin-
ear transformations. However, as discussed above, our
problem is not linear, so that the populations at the 6-
nal time are not obtainable from Eq. (25) when LICET
is started from an arbitrary superposition of M = —1,
M = 0, and M = +1 initial states. Thus, these matrices
are used here only as a suitable means for describing the
symmetries of the problem.

We have considered eight transformations of the orig-
inal orientation angles of a given collision with Hp Pp
characterizing v and p:
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(d) O = Op, P = 180 —Pp,

(e) H = Hp, P = 180' + Pp,

(f) O = 180 —Op, P = 180 —Pp,

(g) O = 18O —Op, 4 = —4p,

(h) O = 180 —Hp, g = 180' + Pp.

C. Symmetries in the absence of the laser field

We have found that the transfer matrices for the initial
states, in cases (b) through (h), are related to the transfer
matrix of case (a) by simple algebraic transformations.
Namely,

Tl(Op, dp) = Tl(Op, dp),

TI(Hp, —4p) = Y 'Tl(Op, kp)Y, (26b)

Tr(180 —Op, 4'p) = (Tr(Op 4p)) (26c)

TI (Op, 180' —Pp) = (TI (Hp, Pp) ) (26d)

TI(Hp, 180'+ 4'p) = (& TI(Op~4'p)T) (26e)

Each combination can be thought of as the result of one
or several "elementary" symmetry operations performed
on the first set. These symmetry operations are Pp —i
—Pp, Op ~ 180' —Hp, and Pp -+ 180'+Pp. We now discuss
the symmetry properties of our problem in detail.

transpose (transformation Op, pp ~ 180 —Opi pp) «Y
TI(Hp, Qp)V (transformation Hp~ 4p ~ Hp~ 4'p).

Because of the properties described above, these trans-
formations (Op, Pp) ~ (Oi, Pi) form a group, and the
transfer matrices are a representation of this group.
Transformation (26a) can be assumed to represent the
identity element in the group.

The elements of this group can be divided into sub-

groups, and this can be done in several ways.

(i) The subgroups of elements related by the opera-
tion of transposition: there are two such subgroups, one
formed by transformations (a), (c), (d), and (f) and the
other formed by the transformations (b), (e), (g), and (h).
We pass from an element in one subgroup to an element
in the other subgroup by performing a Y transformation.

(ii) The subgroups formed by elements related by the
Y transformation: there are two such subgroups, one
formed by the transformations (a), (b), (f), and (h) and
the other formed by the elements (c), (d), (e), and (g).
We pass from an element in one subgroup to an element
in the other subgroup by performing a transposition.

Since the transpose of the transpose of a matrix co-
incides with the matrix itself, and the matrix Y is the
inverse of itself (i.e. , Y is the identity matrix), there are
elements within each subgroup (i) and (ii) that are equal.
Thus, there is a third way of dividing elements into sub-

groups, namely the subgroups of elements related by the
identity matrix, i.e. ,

(iii) the subgroups of equal elements. There are four
such subgroups, formed by transformations (a) and (f);
(b) and (h); (c) and (d); (e) and (g).

This is the classification scheme for the symmetry
properties of the initial state transfer matrix in the ab-
sence of the field.

TI(180 —Op, 180 —Pp) = TI(Hp, Pp),

TI(180 —Hp, —Pp) = (Y' 'Tl(Hp, gp)Tj,

(26f)

(26g)

D. Symmetry properties with linearly or circularly
polarized Acids

Linear polarization caae

Tr(180 —Op~180 + 0p) = V TI(Op~I'p)T, (26h)

t
where ( ) denotes the transpose matrix, and

I'0 0 1)
Y= 0 1 0

1 0oj
(27)

Note that Y is equal to its inverse Y. In relations
(26) we have included also the trivial relation (26a) for
completeness.

If one transformation (Op, gp) + (Oi, gi) is the re-
sult of two elementary transformations, the transfer
matrix transforms according to the product of these
two transformations. For instance, the transformation
(Op, Pp) ~ (180 —Hp, —Pp) is the result of (Op, Pp)

(180' —Op, Pp) and (Op, Pp) + (Hp, —Pp); accord-
ingly, the transfer matrix for (180 —Op, —Pp) is ob-
tained from the transfer matrix for (Op, Pp) by taking the

In the LICET process with linearly polarized field, the
symmetry properties of the transfer matrix for the initial
states are the same as those described above for the "no
field" case, while the transfer matrix for the final states
keeps only those symmetry properties within groups (ii)
and (iii) above. In other words, TF(Hp, Pp) does not
possess the symmetry properties associated with trans-
positions, but does possess symmetry properties associ-
ated with Y transformations: each transformation in the
group (a), (b), (f), (h) can be obtained from another one
of the same group by performing on it one or more Y
transformations; the same is true for a transformation in
the group (c), (d), (e), (g). But there is no transforma-
tion which, when acted upon by an element of the first
group, transforms it into an element of the second group
or vice versa .

Within each subgroup there are elements that are equal
(elements (a), (f) and elements (b), (h) in the first group;
elements (c), (d) and elements (e), (g) in the second one,
see discussion above).
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Circular polarization caee

In the LICET process with a circularly polarized field,
the initial state transfer matrix TI(8, P) keeps only those
symmetry properties within groups (i) and (iii) above.
Thus, in this case, Tl(Ho, Po) does not possess the sym-
metry properties that are associated to Y transforma-
tions, but does possess symmetry properties associated
with transposition.

Also the 6nal level transfer matrix loses some sym-
metry properties with respect to the linearly polarized
case: in the circular polarization case, T~(8, P) keeps
only those symmetries associated to the identity transfor-
mations of groups (iii) above. Thus, cases (a) and (f)
yield the same transfer matrix, and so do cases (b), (h),
cases (c), (d) and cases (e), (g) (see discussion above).

For instance, T~(180 —Hp, 180 —Pp) = Ty'(Hp, gp),
and also T» (180' —Ho, 180' + Po) = T~(Ho, —Po), but
there is no way of relating the outcome at 180' —Ho, Po
to the outcome at Ho, Po.

This discussion of the symmetry properties of the
transfer matrices allows us to reduce the ranges of 8 and

P for which the integration of the system (13) is required.
Indeed, the average of the 6nal level probabilities over the
initial preparation of states M = —1, M = 0, M = +1,
is just one third of the sum of all nine elements in the
transfer matrix T~(8, $). The symmetry operations of
transposition and V transformations keep the sum un-

changed. Therefore, if we find that T~(Hq, Pq) is related
to Ty'(Hp, Po) by one of these transformations, we do not
need to evaluate the transition probability at Hq, Itq, if
we know the transition probability at Hp, Pp. Hence, we

can restrict the ranges of the trajectory angles to the
following:

For linear polarization, we can restrict integration to
the ranges 0' & 8 & 90' and 0' & P & 180'. For circu-
lar polarization, we can restrict integration to the ranges
0' & 8 & 90' and —180' & P & 180'. These ranges
can be deduced by the symmetry properties of the 6nal
level transfer matrix Ty (8, P). However, we can also ex-
ploit the symmetry properties of the initial level transfer
matrix TI(8, P) to further reduce the ranges of integra-
tion. We know that the intermediate states 4, 5, and
6 are just populated adiabatically during the collisional
process. At the end of a LICET transition, population
has been transferred only to the final levels, and little
remains in the intermediate states. Thus, we expect the
matrix elements of Tx (8, P) to be small compared to the
matrix elements in TI(8, P) and T~(8, P). On the other
hand, the sum of all elements in the three transfer matri-
ces is equal to three, due to conservation of populations.
These two facts allow us to state that the sum of elements
in T» (8, P) remains almost constant when passing from
Hp, Pp to Hq, Pq, even if the corresponding TI(8, P), but
not Tz(8, $), are related by a syxnmetry operation. To
elucidate this point with an example, let us consider, the
case of linear polarization. The transfer matrix TI(8, P)
resulting from an integration at 8 = Hp P = 180 —Pp is
the transpose of the matrix TI (8, P) resulting from an in-
tegration at 8 = Ho, P = Po, while the corresponding ma-
trices T~(8, P) do not exhibit any symmetry properties.

E. The calculated spectra

We have calculated the spectral pro61es in the high-
intensity regime, for both linear and circular polarization
of the laser field. The field intensity in both cases was
chosen to be 10 W/cmz and the relative speed of the
collision was taken to be 5 x 104 cm/s. The radial dipole
matrix elements are taken to be the values given by the
Bates-Damgaard approximation: (5s~r~5p)s, = 3.82 a.u.
and (6s~r~6p)E„= 3.77 a.u.

Figure 3 is a graph of the spectral pro6le for linear po-
larization. In this case, the peak is shifted, with respect
to the bare atomic resonance, by the ac Stark efFect. The
shift is of the same magnitude as in the spectral profile
obtained under the approximation where magnetic de-
generacy is neglected [12,13]. The line shape shown in
Fig. 3 was obtained by averaging over the spatial distri-
bution of trajectories and the three initial substates, as
discussed above.

It should be noted, however, that the spectral profile
obtained when LICET is started Rom a single magnetic
substate shows a more structured shape. In Fig. 4 we
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FIG. 3. LICET spectral line shape for linearly polarized
radiation, including all M states (nine states) and averaging
over initial M, and the 8 and P trajectory parameters.

Thus, the sum of the elements of TI(8, P) remains cons-
tant; and, because of conservation of total population, so
does the sum of elements in T~(8, P) if we can neglect the
population transferred to the intermediate states. We re-
fer to this property as a "quasisymmetry" property. Note
that these "quasisymunetries" appear only in the average
of the final level population over the initial states.

Usually, the final population in the intermediate levels
has been found to be two to three orders of magnitude
smaller than that in the 6nal levels. Thus, with a mi-

nor loss in accuracy, we can further reduce the ranges
of integration in the two cases: For linear polarization,
integration can be reduced to the ranges 0' & 8 & 90
and 0' & P & 90'. For circular polarization, integra-
tion can be reduced to the ranges 0' & 8 & 90' and
—90' & Q & 90'.
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FIG. 4. LICET spectral line shapes for linear polarization
including all M states, both trajectory parameters 8 = 60'
and P = 30', and initial M state; (a) M = —1, (b) M = 0,
(c) M =- 1, (d) average over M.

FIG. 5. LICET spectral line shape for linearly polarized
radiation and only three basis states (M = 0), including av-

eraging over the II and It trajectory parameters.

show profiles of the LICET spectrum when the process
is initiated from each of the substates 1, 2, and 3 (M =
—1, 0, and +1, respectively). Moreover, no average is
done over the space orientation of the trajectory, i.e. , the
angles that characterize the collision geometry are kept
fixed at 8 = 30' and P = 60'.

The two-peak structure that appears in Fig. 4, curves

(a), (b), (c), can be explained in the following way: the ac
Stark shift depends on the atom-field coupling, and ac-
cording to Eqs. (Bl)—(B3), is different for the strontium
transitions 5s5piPi(M = +1) e+ 5p2 D2(M = kl) and
5s5p Pi(M = 0) e+ 5p D2(M = 0). This determines
the appearance of two peaks in the spectral profile.

Curve (d) in Fig. 4 shows the arithmetic mean of these
profiles, i.e., their average over the initial substates. Al-

though obtained for a single orientation of the trajectory,
this graph is remarkably similar to the line shape in Fig.
3. The two-peak structure in curves (a), (b), and (c)
is smoothed down in the process of averaging over the
initial states.

To see the effect of the collision geometry alone, we

have also recalculated the spectral profile for the linear
polarization case under the assumption that the mag-
netic degeneracy of the sublevels is limited to the M = 0
substates alone in each of the initial, intermediate, and
final states of the LICET process. Under this assump-
tion, therefore, the population is distributed among three
states only. The corresponding graph is shown in I"ig. 5.
Strangely enough, the line shape in this approximation
also shows a two-peak profile. Both peaks of the spectral
profile are lower than in the previous case (Fig. 3), but
the shift is larger. It must be noted that the spectral pro-
file in Ref. [12] was found by integrating over collisions
occurring in the plane orthogonal to the direction of the
field polarization (i.e., collision trajectories characterized
by 0 = 90'), while the graph of Fig. 5 was obtained by
averaging the (M = 0) ~ (M = 0) transition proba-
bilities over collisions occurring with any orientation in
space. This seems to indicate that a structure in the spec-

10—

Eo

CO

G

U
LLl

CQ

C/3

Q)
D
CC

U

0 1 2 3 4 5

DETUNING (cm )

FIG. 6. LICET spectral line shape for circularly polarized
radiation, including all M states and averaging over initial

M, aud the 8 aud Q trajectory parameters.

tral profile can be introduced by the collisional geometry
alone.

In Fig. 6 we illustrate the spectral line profile for the
LICET process with circular polarization of the laser
field. In this case the spectral profile departs substan-
tially from the profile obtained with linearly polarized
fields. The spectrum is much wider and again presents
a two-peaked structure, but its width is twice as large
and its center of mass is detuned from resonance by 30%%uo

more than in the linear polarization case.
The wider spectral profile is attributable to the factor

6 difference in the ac Stark shift for the transitions (M =
—1) ~ (M = 0) and (M = +1) ~ (M = +2), see Eqs.
(B4) and (B6). All radiative coupling coefficients are dif-
ferent in the circular polarization case, while in the linear
polarization case two of them are equal. This, according
to the discussion above, should give rise to a three-peak
spectrum with circular polarization corresponding to the
three different shifts induced by the ac Stark effect. That
this is actually the case is shown in Fig. 7, where curves
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FIG. 7. LICET spectral line shapes for circularly polarized
radiation, including all M states for the trajectory parameters
8 = 60' and e = 30', and initial M state; (a) M = —1, (b)
M = 0, (c) M = 1, (d) average over M.

figures, the orientation of the trajectory is again fixed at
0=30, 8=60.

In Fig. 8(a), the laser frequency is detuned from
the "bare" atomic resonance by 0.69 cm, which cor-
responds to the expected Stark shift of the strontium
transition 5s5p Pq(M = —1) ~ 5p D2(M = —2)
for a laser intensity of 10s W/cm2. In this case, only
the final substate with M = —2 gets the highest pop-
ulation at large values of the impact parameter, which
contribute mostly to the spectral line shape. Similarly,
in (b) and (c), the laser frequency was detuned from res-
onance by 2.18 cm and 5.44 cm, respectively, cor-
responding to the expected Stark shifts for the transi-
tions 5s5p ~Pq(M = 0) ~ 5p2 ~D2(M = —1) and 5s5p
Pq(M = 1) ++ 5p D2(M = 0). In Fig. 8(b), the fi-

nal substate that is mostly populated in collisions with
large impact parameters is state 8, while in Fig. 8(c) it
is state 9. These graphs confirm the explanation given
above of the multiple peak structure of the LICET spec-
tra obtained with polarized fields.
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FIG. 8. Typical time evolution of level populations
(summed over M states) for the (a) initial, (b) intermediate,
and (c) Bnal states during this I ICET process.

(a), (b), and (c) illustrate spectral profiles for each of
the initial sublevels M = —1, 0, and +1 and for a fixed
orientation of the trajectory (8 = 30', 8 = 60'). The
arithmetic mean of those profiles is shown in panel (d).

From Fig. 7, we see that the spectral profile that re-
sults &om an initial preparation in a single magnetic
substate consists of three peaks. Moreover, holes are
burned into the shape by interference effects between
adjacent transitions, so that the overall spectral profile
shows a much richer structure. These interference effects
are present also in the spectral profiles for the linear po-
larization case [Figs. 4(a)—(c)], but are less evident.

Finally, in Fig. 8 we present three curves that show
how population is distributed among the final sublevels at
the end of the LICET process with circular polarization,
at different laser &equencies. The transition probability
is plotted vs the impact parameter p for three different
values of the detuning, which were chosen to match the
ac Stark shift for the three different transitions. In these

IV. CONCLUSIONS

We have calculated the spectral profiles of LICET pro-
cesses induced by polarized, high-intensity laser fields.
The graphs presented in this article refer to the vapor
mixtures of europium and strontium, and show the line
shapes near resonance. The laser intensity is the same in
all graphs, namely 10s W/cms.

The spectra in Figs. 3 and 6 were obtained for lin-
ear and circular polarizations, respectively, by averaging
over the initial states and summing over the final states.
Calculations were performed on a nine-state approxima-
tion of the electronic excited states of the quasimolecule
formed during the collision and assuming straight-line
trajectories. Due to the lack of spherical symmetry in
the interactions between the two atoms and in the in-
teraction of the system with the electromagnetic field, a
full three-dimensional geometry for the collision was in-
troduced and the spectra were averaged over all possible
orientations of the trajectory of relative motion.

These spectra show a structured line shape, which was
not present in the high-intensity profiles obtained in pre-
vious calculations, in which magnetic degeneracy was
neglected. However, also in the present cases, the spectra
have their peak occurring at laser &equencies displaced
&om the unperturbed atomic resonance, toward the an-
tistatic side of the curve. We have shown that both the
shift of the peak and the structure in the spectra can
be explained in terms of the ac Stark effect, which acts
in a different way on transitions with different coupling
coeKcients. Averaging over the initial states and trajec-
tory orientations removes much of the structure in the
spectra but does not eliminate the large spectral width.
The resulting spectra, therefore, show spectral widths
that differ substantially from the widths inferred from
previous models that used only an M = 0 basis set and
linearly polarized light. The spectrum obtained with cir-
cular polarization is wider than that obtained with lin-
ear polarization, but the overall shape in both cases is in
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agreement with what one would expect &om a superposi-
tion of two or three shapes, one for each transition having
a difFerent value of the coupling coeKcients. Some inter-
ference efFects were also displayed in the spectra obtained
&om a single substate and a single trajectory orientation,
but these effects were washed out in the averaging pro-
cesses.

Some of these features could be detectable in experi-
ments, especially when using circular polarization, and
may help in determining the median position of the
spectral shape with respect to the unperturbed LICET
atomic resonance.

Also, the present more refined model of the LICET pro-
cesses, which includes magnetic substates of the atomic
system, yields spectral line shapes whose peaks are
shifted by the ac Stark efFect. In spite of the lack of ex-
perimental confirmation, all calculations made up to now

agree in predicting a shift, of the peak. Its reduction or
even elimination, therefore, should be ascribed to efFects
that were not contained in the existing models, such as
the competing decay of the excited strontium atoms due
to nonradiative transitions, or the fact that high fields

may bring other levels, so far considered as virtual, into
the interaction process.

One feature that remains to be explained is the pres-
ence of two peaks in the spectrum obtained using a
three-state approximation, but allowing for a full three-
dimensional description of the collision geometry (see
Fig. 5). According to the discussion above, in such an
approximation there is just one radiative coupling; hence,
a single shifted peak should result. A possible explana-
tion of this could lie in the fact that the shift depends on
the collisional parameters that are largest for collisions
occurring at very large impact parameters.

We feel that additional refinements to the theory, such
as more realistic classical trajectories than straight lines
or the inclusion of more atomic states into our basis set,
would result in only minor changes in our present LICET
cross sections. The main contributions to the overall
transition probabilities occur at a large impact parameter

( 50ao to 150as) where the straight-line path should be
quite valid, and additional states are too far removed en-

ergetically to be expected to be populated —even adia-

batically. We have folded a Gaussian spatial distribution
of intensities, as would be expected in the experimental
[14] transfer laser, into our evaluated M = 0 cross sec-
tions, but that does not appreciably help the agreement
at the high intensities. We are planning to continue the
search for an understanding of this discrepancy between
theory and experiment.
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APPENDIX A

C (E 1E'; 000)C(Eb1E'; 000)
& 3 ) (2E + 1)(2E + 1)

q 4~) 2E'. + 1 2E', + 1

x C(E 1E'; m qm' )C (EblEb, mbqmb)

"( -E-I -I '.E'.)( bEbl bl
'E'). (Al)

The (nElrln'E') are radial matrix elements for the respec-
tive atoms A and B.

The matrix elements of Hdd(r, rb) are obtained by
summing over q the products of Clebsch-Gordan coefB-
cients in the expression (Al), and are given by

In the present model the states coupled by the col-
lisional interaction are 1,2,3 and 4,5,6 (see Sec. IIA).
The matrix elements of each term in the collisional op-
erator can be written, in conformity with the Wigner-
Eckart theorem, as a product of radial matrix ele-
ments and Clebsch-Gordan coefBcients. For instance,
the matrix element of r~rbY~' (8 P )Y1~(&bgb) taken be-
tween two compound states Iu„1 ~ (r )v„,1,~, (rb)) and

lu„1 (r )v„r (rb) ) is given by

3'll —1
(u6 (r )v5p —1(rb) IHdd(ro, rb) Iu6p 1(ro)v5 (—rb)) =

6R3

(u" (r-)vsp-1(») IH«(r- ») luspo(r-) v" (rb)) =
2R5 (u —iu„)

(A2)

(u —iu„)
(us/ (r~)v5p —1 (rb) IHdd(ra rb) lu6p+1 (ra)v5 (rb)) 2R3

(u68(ra)vspG(rb)IHdd(rn) rb)lu6p —1( a)rv( 58b)r)—
2Rs (u + iud)

—3th —12

(u" (r-)vsp. (») IH«(r- ») lusps(r-)v5 (»)) =

(A4)

(A5)

(A6)

(us (1 )vspo (1b)IHdd (r rb) lusp+1 (r )» (1 5)) 2Rs (u —iu„)
(A7)
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u~ —iuy
(us, (r )vs„+q(rs)~H«(r, rs))us„q(r )vs, (rs)) =

(u"(r-)»&+~(») IH«(r- ») [us~+~(r-)». (»)) =

(u" (r-)»~+~(») IH«(r- »)1«~p(r-)». (»)) =
2Rs (u +iu„)

3tl —1
6B~

(As)

(A9)

(A10)

In these expressions, we have omitted the radial matrix
elements (5s~r)5p)s, and (6s[r~6p)E„ that are connnon
factors to all terms; u, u„, and u, represent the com-

ponents of the unit vector R joining the two atoms, and
are expressed in terms of 0, 4 as

2
(5iH„i9) = Ep c—os Qt,

3

1
(6)H, F10) = E cosAt.

3

(B2)

(B3)

u = sinOcos4, (A11) In the circular polarization case, the field couples a dif-
ferent set of sublevels:

uy = sinOsinCi', (A12) (4~H„~9) = —~~Epe'"', (B4)

u, = cosO. (A13) (5]H„]10)= — Epe'"',
2 3

(B5)

The three components u~, u» and u, of the unit vector
joining the two atoms depend on time, and their explicit
forms can be found by using Eqs. (7)—(9). (6iH„ill) = — Epe' '.

6
(B6)

APPENDIX B

These are the matrix elements of the radiative coupling
when the field is linearly polarized:

1
(4iH, i8) = Ep cos Ot,

3

In these expressions, we have omitted the radial matrix
element (5s~r)5p)s, .

It should be noted that in both polarization cases, the
final number of sublevels involved in the transition are
always three, while the remaining two sublevels are un-
coupled by the field interaction and remain empty at all
times. Thus, of the original set of eleven states, only nine
need be considered in the calculations.
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