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We have studied the transition probabilities and the photofragment energy and angular distributions
in a resonant two-photon transition to the continuum with an elliptically polarized radiation field. The
general formalism applies both to ionization of atoms within the framework of a single-electron model

and the dissociation of diatomic molecules with the involvement of X states only. Detailed calculations
for an initial J =0 state give the observable quantities as functions of detuning, intensity, and the polar-
ization parameter for several combinations of the system parameters such as bound-bound and bound-

continuum couplings and the Fano q parameter. For sufficiently intense fields the Raman-like coupling
between the two coherently excited magnetic sublevels of the resonant J= 1 state {one of which can be
decoupled from the ground state by a linear transformation) causes a significant enhancement of the
transition probability near the Fano minimum obtained for linearly or circularly polarized fields. The
evolution of the photofragment kinetic-energy distribution changes with the ellipticity parameter of the
radiation. The angular distribution becomes intensity dependent for general ellipticity parameters; the

shapes of the resultant distribution in different space-fixed planes are discussed.

PACS number{s): 33.80.Rv, 33.80.Wz

INTRODUCTION

Resonance-enhanced intense-field multiphoton transi-
tions to the continuum of an atomic or molecular system
has been extensively studied in the past few years [l].
Generally, in such transitions, a set of degenerate or
near-degenerate field plus atom-molecule levels is
coherently excited by the resonance absorption. The
characteristics of the transition to the continuum then
depends upon the symmetry properties and excitation
process of this set of coherently excited resonant levels

[2]. In intense electromagnetic field, however, the set of
energy levels dressed by the radiation field, rather than
the unperturbed levels, determines these characteristics.
The eigenvalues, wave functions, and symmetry proper-
ties of the bound states are modified from the field-free
values. This is the reason why theoretical studies of
resonance-enhanced multiphoton transitions to the con-
tinuum are of fundamental interest. Such studies, when
combined with the proper experiments, may help to ad-
vance our understanding of the fundamental aspects of
radiation-matter interaction.

The symmetry properties of such resonantly excited
dressed states will of course depend on the polarization of
the incident radiation. Absorption of polarized radiation
transfers population to a group of oriented and/or
aligned intermediate states undergoing radiative transi-
tions to the continuum [3]. In a strong field with the in-
volvement of many radiatively coupled states, the polar-
ization dependence affects the characteristics of the
phenomenon concerned in a strongly nonlinear way [4].

The polarization dependence of weak-field two-photon
processes with a single intermediate resonance has al-

ready been investigated by a number of authors [3,5].

The polarization dependence of the photoelectron angu-
lar distribution in resonant atomic multiphoton ioniza-
tion when two closely spaced resonant fine-structure lev-

els are excited has been shown to require detailed compu-
tation and is not predictable from general considerations
[6]. Most of the studies reported so far have used linearly
or circularly polarized light.

For elliptically polarized light, with the propagation
direction of the radiation as the space-fixed Z axis, each
magnetic sublevel m of an initial state with well-defined

angular momentum J will be coherently coupled to two
magnetic sublevels m+1 of the resonant state. The
different magnetic substates of the initial and resonant
states will be differently shifted and broadened by the el-

liptically polarized field [7]. Each magnetic sublevel m

will be nonlinearly coupled to m+2 states of the same
manifold through real and imaginary parts of Raman-like
couplings [8]. The excitation process can be broken
down into two independent ladders, one consisting of all
odd I sublevels of the initial state and even m sublevels

of the resonant state. The other ladder will have the odd
and even m sublevels interchanged between the initial
and resonant states. The dynamics of such a system can
be very complicated in near-resonance intense fields caus-

ing important modifications in the transition rates, proba-
bilities, and angular distribution of photofragments of the
atom-molecule system from that in cases of linear or cir-
cular polarizations. So far there have been very few stud-
ies on resonant interactions of atoms and molecules with

strong elliptically polarized fields and, as far as we know,
none on the effects of elliptical polarization on features of
continuum transitions. However, recently a formulation
has been presented for formation of coherent stationary
states of an atom in interaction with elliptically polarized
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resonant light in a magnetic field [9]. This study also
stresses the unequal distribution among the magnetic sub-
levels arising from the coherent excitation of the different
magnetic sublevels of the resonant state. However, in the
present study we are not concerned with the property of
those stationary states as such, but rather with the
behavior of an unpolarized initial state.

The angular distributions of the two-photon ionization
or dissociation fragments and their dependence on the
polarization and intensity can be very interesting in the
presence of such mutual couplings between m states with
some of the couplings varying nonlinearly with field. The
angular distribution now will characterize the rotational
properties of the mixed state at difFerent intensities.

In this work the resonant two-photon transition proba-
bilities and the kinetic-energy distribution of the pho-
tofragments in the continuum, as well as their angular
distribution, have been obtained in an elliptically polar-
ized field as functions of its intensity, frequency, and po-
larization parameter in the presence of a background of
nonresonant bound and continuum states with allowed
dipole transitions. After giving the general formulation
detailed calculations have been presented only for the
special case of transition from an initial J=O state
through a J=1 resonant level within the framework of
the resolvent operator formalism [10]. The various ob-
servable quantities mentioned above have been obtained
in terms of three parameters, the bound-bound coupling,
the width of the resonant state, and the Fano asymmetry
parameter defined as usual for linearly polarized radia-
tion. We have concentrated on different cases where the
bound-bound coupling is much weaker compared to the
bound-continuum coupling and when the two are of the
same order. Realistic values of the Fano asymmetry pa-
rameter have been assumed. It may be mentioned here
that the formulation will be applicable both to atomic
ionization within the framework of the one-electron pic-
ture and to molecular photodissociation through an elec-
tronically excited intermediate resonance provided all the
relevant molecular states are X states and no other
molecular frame quantum numbers arise. We also neglect
electronic spin.

FORMULATION

The interaction Hamiltonian between an atomic or
molecular system and a monochromatic elliptically polar-
ized electromagnetic field of angular frequency co propa-
gating along the space-fixed Z axis can be represented as

1/2
27TCO

l
V

g «yD1«g
jlL

where do =d„d+, =(1/v 2)(d„+id» ), and d„, d, and d,

are the body-fixed components of the transition dipole
moment operator d. The coefficients A and 8 are

A =cos P+ —e
4

(2a)

7rB =sin P+ —e'~,
4

(2b)

where

b
tan((}= —.

a
(2c}

G(z)=, Go(z}=1 1
(4)

where

H =H~+HF+ V=Hp+ V

and H~ and Hz are the molecular and radiation field
Hamiltonians, respectively, coupled equations satisfied by
the matrix elements of G in the P space obtained for the
initial state ~g ) can be written as

(z Eg —Rz g )Gg g—

Here f is the angle between the major axis of the ellipse
and the space-fixed X axis. a and b are the lengths of the
major and minor axes, respectively, of the field ellipse
[11]. Equation (1) represents a coherent superposition of
the operators corresponding to right and left circularly
polarized radiation with different coefficients. The corre-
sponding interaction Hamiltonian then contains terms
causing absorption and emission of both the circularly
polarized components with the selection rules hM= +1
in both absorption and emission, where M is the com-
ponent of the angular momentum J along the propaga-
tion direction Z. The operators corresponding to the
transition EM=+1 enter V with different coefficients in
absorption and emission.

Let the initial state of the system be ~G,Js,Ms ). By
absorption of a single photon of frequency ~ the system
can be resonantly excited to a coherent superposition of
states

~ A, J„M +1) and
~ A, J„Ms—1), with the angu-

lar momentum of the resonant state J, equal to either
J +1 or J —1. These two states will be Raman coupled
to each other through the continuum and discrete states
and radiatively coupled also to ~G,J,M +2) and

~
G,J,M —2), respectively, and so on. For consideration

of all such couplings let us define a projection operator P
(and Q =1 P) in the sp—ace of the (2J +1)+(2J,+1)
field molecule states with the basis

~g~ )=~G,Js,Mz)~n) and ~a~ )=~A,J„M, )~n —1),
where

~
n ), etc. are the photon number states [12],

J J
P= z ~gk)&gk~+ z ~ul)&nil. (3)

k= —J I= —J
g a

Now, considering the definition of the resolvent operator
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Thus we can write

k= —J to J
g (6b)

where

i = —&„.. . , J, . (6c)

where I = —J„.. . , J, and R is the shift operator given
by

), , =2~yV,"', V,",'
In a similar fashion

R, , =I', , —(i/2)I,

(12)

(13)

R =R(Es), R (z)= V+ g [V(QGOQV)]" .
k=1

Solutions of Eqs. (6) give Gs and G, in terms of the
k

matrix elements of R. Evaluation of the matrix elements
of the shift operator R finally provides the parameters
needed for the calculation of the probability of transition
to the continuum. The real and imaginary parts of the
infinite series associated with each of the R. matrices will
be evaluated to the lowest nonvanishing order in the
rotating-wave approximation (RWA).

Thus we can write

Since a Ig ) to g ) transition must involve an even num-
ber of ~hotons, T" for odd values of i give zero. The
term T ' can be expressed as

Ts 's (Es)= Q (V)s b (b, IQGOQ b2)(V)b s .
b), b2

QGOQ is diagonal in the basis of eigenfunctions of Ho and
assuming I

6 ) to be the ground electronic state, in the
RWA b, and bz must be states denoted by IB, ) In —I ),
where IB; ) are nonresonant discrete and continuum
states

( V)s, b( V)b, s

Since from a level in the manifold a, there will be a single
photon resonance in the continuum, both the real and
imaginary terms arise from the second-order term in the
expansion of R,

(V), , (v), ,
(14)

P denotes the principal value andI:2g(V V )E E

Once again, the diagonal elements give the single-
photon shifts and widths of the resonant state levels while
the nondiagonal terms give the complex Raman cou-
plings between the levels in the a manifold. In Eq. (14)
the summation over all possible nonresonant discrete
states satisfying the proper selection rules should be in-
cluded. Also, Eqs. (12), (14) and (15) all involve summa-
tion over an index i, which distinguishes the different
continua to which transitions may, in general, take place
(e.g., continua with two different J values).

The real and imaginary parts of the matrix elements
between the states in the g and a manifolds will arise
from the first- and third-order terms, respectively, in the
expansion of R, (Es),

R, (Es ) = Vs, + g Vs J
1

Thus the lowest-order contribution to the real parts of
the matrix element of R between states of the g manifold
occurs in the second order. The diagonal matrix elements
give the energy shift of each g state due to single-photon
virtual transitions from ground to nonresonant states and
the nondiagonal matrix elements give the Raman cou-
pling between different states.

Real parts of the fourth-order terms T' ' (E ) in the
&m n

expansion of diagonal matrix elements Rg g give the
gm gm

shifts of the g states due to virtual two-photon transi-
tions and the off-diagonal elements in the g manifold give
the four-photon couplings. Since the shifts of these states
and the real Raman couplings between them occur in
second order also, the higher-order shifts and couplings
need not be considered. However, because of the pres-
ence of an intermediate two-photon resonance in the con-
tinuum, each of the matrix elements in (8) will acquire an
imaginary part in the fourth order. The diagonal imagi-
nary terms will define the width of each g state due to
two-photon transition to the continuum.

XV 1
VJi ~2 E +2'~ —E.

A Jp

(2)

=V, +
gm' n, E +2/4g —E.j G

=v, . [1—i/q, .], (16)

where

(2)V, V, ,
V Vg '+P E +2k„—EC.

(17)

and

1/q „=m
QIVs", V, . IE, =E,+2~

V

Vg ', is the usual two-photon matrix element for the
m' i

continuum transition and q „ is the effective asymmetry
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parameter for coupling between g and a„.
The evolution operator U is obtained as the Laplace

transform of 6,

U(t, 0)= — . JG(z)e 'dz .
27Tl

In terms of the matrix elements of U the expression of
transition probability to the continuum P (t} is obtained
as

through the involvement of X states only with the neglect
of electron-spin quantum numbers. Within this limita-
tion the bound- and continuum-state wave functions for
the diatomic molecular case using the Born-Oppenheimer
approximation can be generally written as [3)

%~„„~=[(2J+1)/4n]'~ .R„J(r)%,(r„r)D~o($, 8,0),
(22a)

P (t)=1—ylU (t)l —ylU, (t)l (20)
=(1/4n)g(2J+1)(i) exp( i—5z)R~(r)

J,M

W(s, t)=(2J +1) 'gglU, (s, t)l
g

(21)

Thus, in principle, all that remains is to determine the
matrix elements of V between different states and use
them to get the matrix elements of R to various orders.

As stated above, we neglect all angular momentum
couplings such as the molecular frame angular momen-
tum quantum numbers or the electronic spin angular
momentum and consider only the changes in the orbital
angular momentum quantum number. Thus the formal-
ism can be applied to atomic two-photon photoionization
within the framework of a simple one-electron model or
to two-photon dissociation of diatomic molecules

I

The contributions to the various matrix elements of U
arise from the poles of the corresponding matrix elements
of 6 below the real axis which, as usual, are given by the
roots of the secular equation arising from the system of
linear equations (6}. The expression for the photofrag-
ment spectra at a continuum energy c is obtained as

XDsto(0 8 o}

XDsto(kk 8k, 0)%',(r„r) . (22b)

Here r, collectively denotes the coordinates of all elec-
trons and r is the internuclear separation. 8 and P are the
orientations of the internuclear axis in the space-fixed
frame. In the atomic case the general form of the wave
functions will be similar, but the radial part will be a
function of the electron coordinate only. The angles 8
and P now define the radius vectors of the electron from
the center of mass. 8„and Pk give the final direction of
motion of the photofragments in the space-fixed frame.

Using these wave functions, matrix elements of R ap-
pearing in Eq. (6), or, equivalently, the shift, width, and
coupling parameters, can be obtained for the case of ellip-
tically polarized light for any values of the magnetic
quantum numbers. For example, in terms of the elliptici-
ty parameters A and B the width of the states J„M,
after integration over all possible directions of fragmenta-
tion is given by

(J,+M, +1) (J, +M, +2)(J,—M, +1) (J,—M, —1)(J,—Mg) (J,+M, )

(2J, +1)(2J,+2)(J, +1)(2J,+3) 2J,J,(2J, + 1)(2J,—1)

(Jg —M, +1) (J,—M, +2)(J, +M, +1) (J, +M, —1)(J,+M, ) (J, —M, )

(2J, + 1)(2J,+2)(J, + 1)(2J,+3) 2J,J,(2J, + 1)(2J,—1)
(23)

Here the radial bound-free matrix elements D„ involve the integrals over all coordinates except 8 and P and we have
neglected the variation of the radial integrals with angular momentum in the continuum. Similarly the Raman coupling
between (J„M, ) and (J„M,+2) is given by

I (J, +M, + 1)(J,+M, +2)(J,—M, )(J, —M —1)I
'

(2J, —1)(2J,+3)

where F involves integrals over all coordinates except 8
and P.

Thus it is clear that a resonant two-photon ionization
or dissociation process from an arbitrary unpolarized an-
gular momentum state caused by elliptically polarized ra-
diation can be very complicated. Instead of dealing with
the general case we will discuss the features of two-
photon transitions to the continuum from an initia1 state
l
G ) with Js =0 by absorption of elliptically polarized ra-

diation.
In this case, by absorption of a single photon of fre-

quency to the system can reach either a state
l A+, ) with

J,=l and M, =l or a state lA, ) with J,=l and

M, = —1. Using the linear combination of
l
A+i ) and

l A, ) one can construct two orthogonal states
l U) and

IV&,

lU) = —AlA+, &+&lA, &,

IV&= AIA+, &+~IA, &,

(24a)

(24b)

such that the transition from the initial state
l
G ) to state

l V) will be forbidden. Thus the state
l V) becomes

decoupled from the initial state. However, two-photon
couplings between

l U) and
l V) exist and when

l U ) is
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excited, state
~
V) may also become populated through

two-photon coupling terms if the field is intense enough.
The problem is thus reduced to that of a three-level sys-
tern with the initial ground level connected to one inter-
mediate resonant level by a dipole interaction and to the
continuum by two-photon coupling. The two intermedi-
ate levels are each coupled to the continuum. They are
also two photon (Raman} coupled to each other through
continuum and discrete (if any) states. The matrix ele-
ments of U in terms of the roots of Eqs. (6) for a three-
level system have been given by us earlier [13]. The spe-
cial advantage of this change of basis is that with changes
in the ellipticity parameter the resonant states are
redefined so that one of them always remains decoupled
from the ground state and all the simplifications for cases
of linear and circular polarization follow in a natural way
in the same space-fixed axes.

Thus for three states the set of equations (6) takes the
form

and

S (x ) = V„Q,(x —5z )+ V,zQ, Fz,

+ V,',"(x—5, )(x —5, ) —V,',"F'„. (28)

Using the standard forms of the wave functions in Eqs.
(22) and the interaction Hamiltonian from Eq. (1), the
quantities yg, I, z, F, z, and q, in Eqs. (26) are obtained
for the initial quantum numbers (J =0 and M =0) and
the final continuum angular momentum states (J=0,2
and M =0, +2), in terms of ellipticity parameters A and
B using the standard theorems for the integrals over the
angular coordinates [14]. They can be expressed in terms
of those for linearly (e=0, i.e., A =B =1/&2} or circu-
larly (a=45', i.e., A =0) polarized light denoted by the
superscripts I and c, respectively. For initial J =0 these
relations become

(x —
5o)Gss —Q, G,s =1,

—QiGss+(x —5))G)s F(zGzg —=0,
—Fzi G is + (x —5z)Gzg =0 .

(25)

Here x =z Es fs a—nd 50, 5—
&, and 5z are interpreted as

the complex detunings of the three states ~g), ~1), and
~2), respectively,

y =—(1+2 A zB z)y & (1+2A zB 2)y c

I
&

—-'(1+2A B )I' =(1+2A B )I',
F', =—'(1+2A B )F'=(1+2A B )F'

qe —3 [1+2A zB2]—lqI [1+2A 2B2]—
1~

(29a)

(29b)

(29c)

(29d)

and

7
5 = ——y

5k =5k ——I', (k =1,2)

5k =Ek+Fk Es fg . — —

(26a)

(26b)

(26c)

F', = ,'AB(A' —-B') F.' rI——

D8 D1 Dc
1g ag ag

(29e)

(29f)

(29g)

and

0)= V) 1—
q&

(26e)

In terms of the three roots x &, x2, and x3 of the charac-
teristic equation, the matrix element of U is obtained as

S(x, )e
U,g(s, t)= (x, —xz)(x, —x3)(x, —s)

S(xz)e+
(xz —x, )(xz —x3)(xz —E)

—ix3t
S(x3)e+

(x3 —x, )(x3 —xz)(x3 —s)

S(E)e
(E—x, )(s—xz )(s—x3 )

(27}

0, and F,z are the complex e6'ective couplings between
these states calculated to the lowest nonvanishing orders
using the pole approximation [12] for both the real and
imaginary parts of the matrix elements of R,

F, =F, =—F, ——I, (26d)12

The index e refers to elliptically polarized light.

PHOTOFRAGMENT ANGULAR DISTRIBUTION
USING ELLIPTICALLY POLARIZED LIGHT

The proper way of obtaining the angular distribution
in the photofragment spectrum is to use the outgoing
wave-vector angle-(8k, gk ) dependent matrix elements of
V in the numerator of W in Eqs. (21)—(27). The roots in
the denominator, as well as the width and shifts of the
levels arising in the expression for 8', must, however, be
obtained by integrating over all possible directions of
final motion. This is necessary to ensure that the integra-
tions over a11 angles do reproduce the total transition rate
and the angular distribution satisfy the very general con-
straint provided by Yang's theorem [15]. These points
were made by Dixit and McKoy [16] and have been
reemphasized in a recent paper by Dixit [17].

In the expression of photofragment spectra for ellipti-
cally polarized light, the numerator [Eq. (27)] contains
the dissociation angle-dependent terms V, &, V,2, and V,'g'.

After the evaluation of Clebsch-Gordan coefticients the
intensity-independent parts of these matrix elements are
obtained. For an initial J=0 state the matrix elements V
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become

' 1/2

V3 4m

' 1/2
(2) 1 1 2 oV,e

= ~ ~ ABDooe

ggD 2

+&6A D e +~2A D e

+~6B D 20e 2]D (30a)
(30c)

V2, = 1 1

V3 4~

' 1/2

[( A B)D—e

—(A B)—D e

~6ABD e

+~6ABD 20e ']D„, (30b)

Here D„and D,'g' include both the intensity-dependent
factor and the radial parts. 50 and 5z are phase shifts for
J=0 and 2 partial waves in the continuum. D~~~ has
been written for the rotation matrix elements
D~~(gk, gk0), where 8k and Pk are scattering angles of
the fragments with respect to the propagation direction
of radiation (Z). The major axis of the ellipse is deSned as
the Xaxis. Using these expressions in (28) S (s) becomes

S(s)= [[(A —B )H+2ABG]Dooe —[(A B)H+—2ABG]Defoe
' 1/2

2 1

v3 4~ [[A G —ABHJD20e '+[B2G+ ABHJD2 20e (31)

where

6 =D„V) (e1 i /q( )(s ——52)

+D,' '(e —5))(s—5~)—F,~,
H=D„I'»V&e(1 ~/q&) .

Now defining

g2 g2A B ~+2++6

Y=—,'[A G —ABH],

(32a)

(32b)

(33a)

(33b)

Z = '[B G—+ABH],

5d =Sq—50,

(33c}

(33d)

and taking the absolute squares of Eq. (27) using the addi-
tion theory of the rotation operator matrix elements [14],
we can express, after much simpli6cation, the angle-
dependent numerator of the expression for angular distri-
bution in terms of an expansion in Legendre polynomials
in 8k and a Fourier series in Pk with ek-dependent
coefficients with terms up to cos4$k and sin4$k. The
quantities X, Y, and Z entering the expression are com-
plex numerical coeScients depending on intensity and
molecular properties and have nothing to do with the
space-fixed coordinates:

X'+ Y'+ Z'Is(s)I'= Ixl'+ +-', [Ixl' —
I
Yl' —Izl' —2lxl cos5, p', (cose„)+,~, [8lxl'+31 Yl'+3lzl']a, (cose„)

+ [Q3 IXY'I sin 8k cos(2$k+5d+z)+Q —', IXZ'I sin 8k cos(2/k —5d+tP)

+—,'Q —,
' IXY*I sin ek cos(2/k+a )+—',Q—', IXZ'

I
sin ek cos(2$„+1()

—
—,', Q —,'IXY

I
sin ek(7cos ek —1)cos(2/k+v)

—
—,', Q3 IXZ'I sin ek(7cos ek —1)cos(2/k+/)+ —,'I YZ'I sin ek cos(4/k+/) J, (34)

where

(35}

Since the denominators in Eq. (27) are angle indepen-
dent, Eq. (34) gives the expression for angular distribu-
tion of photofragments in the long-time limit within a
constant factor for a given intensity, detuning, and the
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kinetic energy of the fragments. Hence the distribution
function IS(c)l is a function of both Ok and Pk and also
depends on 5d. The terms independent of Pk constitute
an expansion in terms of the Legendre polynomials in Ok

involving only terms up to P4. The functional dependence
on the azimuthal angle Pk is expressed as a Fourier ex-
pansion involving cos2$k, sin2$k, cos4$k, and sin4$t
only with Ok -dependent coefficients.

The normalized angular distribution after integrating
over all PI, gives

IS(s)I'= I+~2I'2(cos~k )+&4I'4(coseI, ) . (36)

Here normalization means that the angle-integrated value
of the numerator in Eq. (27) will be equal to unity. The
coefficients are

and

1() IXI'(1 —2 cos5, )
—

I
&I'—

I
z '

6lxl'+ II I'+ izl'
(37a)

a 4 (37b)

Both the Pk-integrated distribution as well as the dis-
tribution on any one plane containing two axes will be in-
tensity dependent for general polarizations. This follows
from the fact that, for a general polarization, X, Y, and Z
are complex intensity-dependent quantities which vary
differently with variation in the intensity. For linear po-
larization X = Y =Z and there is no intensity dependence
of the angular distribution, as expected. For circular po-
larization also, only one of the two quantities Y or Z is
nonvanishing while X=0 and once again, the angular
distribution is intensity independent. Further, since for
circular polarization only the final angular momentum
channel J =2 is allowed, the angular distribution for cir-
cular polarization is independent of the phase shifts of
the continuum wave functions also. Because of circular
symmetry, the distribution for circular polarization will

be P„ independent and this fact also follows from Eq.
(34). For general polarizations the distribution is sym-
metric about Pk =90' as well as about Pk = 180'.

twice the magnitude of that imaginary part defines disso-
ciation rate at long times. For nearly equal roots the
transition rate is not well defined and a time-dependent
description of the dynamics is needed.

Figure 1 shows the transition rate against the detuning
5 for q =5, I =1, and V, =0.1. Here 5 is the difference
between the photon energy and the unshifted level energy
for the resonant J = 1 state expressed in units of I . The
ground-state two-photon width pg can be obtained from
the relation y =4D, /q I . It was found that for this
combination of parameters the transition rate is well
defined for all ellipticity parameters, and we show the line
shapes for /=0', 30', and 45'. The two-photon coupling

F&2 vanishes for both linear and circular polarizations
and the effect of this coupling on the dissociation rate is

apparent near the Fano minimum for elliptic polariza-
tions. The explanation of the relative shift of the Fano
minimum for these three polarizations is the different lev-
el shifts in each case. For exam]~le, the position of
minimum for /=0 is given by 5+F'=q I'Eq. (29c)]. The
position of the minimum at /=45' is shifted from that
for /=0' by —', I, i.e., 0.666. The deep minimum appear-

ing for linearly polarized radiation due to the destructive
interference between the direct and sequential transition
amplitudes is modified by the presence of the I2) state
through which another pathway to the continuum is es-
tablished. 2) is populated only by three-photon transi-
tions from Ig ) and hence its efFect only becomes apparent
near the minimum where other pathways to the continu-
um are effectively blocked. The minimum for linearly po-
larized light becomes much shallower by an enhancement
of the transition rate by six orders of magnitude near the
minimum for elliptically polarized light. For circularly
polarized light this enhancement is by about four orders
of magnitude, which is solely due to geometrical factors.
The small difference between the curves for the three po-
larizations away from the minimum also arises mainly
due to geometrical factors. This also demonstrates how

4=0

to 45

RESULTS AND DISCUSSION

We denote by y, I, and q the values of the ground-
state and resonant state linewidths and the asymmetry
parameter for linearly polarized light. These parameters
for other ellipticities are calculated from these values
with the help of Eq. (29). The line shift for linearly polar-
ized light will be taken as F=I always. All quantities
with the dimension of energy, e.g. , detuning, kinetic ener-

gy in the continuum, etc., will be measured in units of F
for all polarizations. Time will be measured in units of
1/I . The roots of the complex cubic equation (12)
representing the positions and widths of the dressed
states generated from

I g ), I
1 ), and

I
2 ) by their interac-

tion with the elliptically polarized radiation have been
calculated by the method of successive iteration. When
the magnitudes of the negative imaginary part of one of
these roots is much smaller than those of the others, then

?
tg

CI

&0
C)

-9
1P

)0- 0

-3

FIG. 1. Dissociation rate plotted against 5 (in units of I ) for

P =0', 30, and 45' using I' = 1, q =5, and V, =0.1.
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small changes in matrix elements can cause very large
variations in observed quantities when destructive in-
terference is involved. The positions of the maxima are
slightly shifted for /=45' and 30' from / =0', though the
peak heights are not very different for these polarizations.

Figures 2(a) and 2(b) show the transition probabilities
at two different times I t =1 and 10, respectively, for the
parameters I =1, q =5, and V,g=1. Here the bound-
bound coupling is as strong as the bound-free coupling
and the transition rate is ill defined. Hence the transition
probabilities are plotted. At the small value of time
I t =1 [Fig. 2(a)] the probability shows similar variation
with detuning at different polarizations. The maximum
variation of polarization appears for higher negative de-
tunings near 5= —3 and the magnitude of P(t}gradually

0.35 (aj
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~~ ~ ~
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0.2—

oi-S I

-3

FIG. 2. (a) Dissociation probability P(t) vs 8 for /=0', 15'.,
30, and 45 using F= 1, q =5, and V,g

= 1 at I t = 1. {b) Same
as (a) except at l t = 10.

decreases with the change of polarization from linear to
circular. Hence this difference is again mainly due to
geometrical factors. This is to be expected, since the dom-
inant coupling V, is not polarization dependent. Transi-
tion probabilities are found to be nearly equal for
different ellipticity angles (/=0', 15', 30, and 45'), near
the region where one of the roots is much smaller than
the others. The minima are obtained for these polariza-
tion angles near 5=3. At larger detunings the probabili-
ties slowly begin to increase and the curves differ from
each other, although the magnitudes remain much small-
er than those obtained at similar negative values of de-
tunings. A similar behavior is seen at a longer time
I't =10 in Fig. 2(b), where the probabilities have been
plotted against detuning for the same four ellipticity pa-
rameters. At this time the probabilities P(t} approach
saturation for all polarizations at negative values of the
detuning. The curves cross each other twice at inter-
mediate values of 5, but both for large negative and posi-
tive detunings, the relative orders of the transition proba-
bilities remain the same as that for short times. The posi-
tions of minima at /=0' and 45' are at 5=1.2 and 1.8,
respectively, and those for /= 15' and 30' lie in between.

In Figs. 3(a) and 3(b} we have taken a value of bound-
bound coupling V,g larger than I . The values of the pa-
rameters used are I =1, q =5, and V,g =2. We see that
in Fig. 3(a), which has been drawn for linear polarization
and a detuning 5=0, the transition probability becomes
almost constant after a steep initial increase, indicating a
near trapping of the population in ~g } and ~1) states.
When elliptically polarized light is used [Fig. 3(b)], the
dissociation probability for the same detuning shows a
slow increase at long times. This in another form again
demonstrates that near-population trapping is efFectively
destroyed by two-photon couplings. The populations of
states ~g) and ~1} exhibit oscillations with time. The
maximum buildup of population in the state ~2} is about
2% at intermediate times, but is much smaller compared
with the population of state

~
1 ). Even smaller peaks ap-

pear in the population of state ~2) at subsequent times,
but these are not discernible on the scale of the figure.

In Figs. 4(a) and 4(b) the dissociation rates are plotted
against the ellipticity angle P for different values of de-
tunings. Figure 4(a) shows the dissociation rate for
5= —1.5, 0, and 1.5 using the values I =1, q =5, and
V, =0.1. For 5=1.5, the values of dissociation rate are
magnified by a factor of 100 to represent them on the
same scale. At this value of 5 the dissociation rate goes
through a deep minimum for /=0', as seen from Fig. l.
For different values of detunings the behaviors of the dis-
sociation rate with ellipticity angle P are different. For
5=1.5 the dissociation rate increases with P and shows a
maximum at /=24', which is nearly 15 times larger than
the value of this rate for P =0 . In the range 24 & P & 45
is again decreases to a small value. At 5=0 the variation
of dissociation rate with P is similar to that at 5=1.5,
though the maximum dissociation rate at /=28 is only
4.5 times larger than the minimum value at /=0. At
5= —1.5, however, the dissociation rate is maximum at
/=0' and decreases slowly up to about /=10'. For
P —=10'—40' dissociation rate decreases more rapidly with
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P and then becomes flat again near / =45 . The resultant
variation of the dissociation rate for different detunings is
a consequence of the variation of the parameters with the
ellipticity angle which gives rise both to geometrical fac-
tors and two-photon coupling effects as discussed earlier.
The second factor becomes significant near the minimum
of the rate.

Figure 4(b) shows the variation of the dissociation rates
with P for 5= —2.4, 0, and 2.4, but with the intensity re-
duced by a factor of 10. The parameters are related to
the intensity I as 1 ~I, q ~ 1/I, and V,g ~&I and are
changed accordingly. The magnitudes of the dissociation
rates are now smaller compared to those in Fig. 4(a). At
this intensity, the dissociation rate has a minimum for

5=2.4. The variation of the dissociation rate with eOip-
ticity angle P at this detuning (5=2.4) shows a steep rise
up to /=8 . There is an increase of the magnitude by
four orders in this small range. For 5=0 and —2.4 disso-
ciation rates are much larger and show a slight monoton-
ic increase and decrease with P for 5=0 and 5= —2.4,
respectively.

Figures 5(a) and 5(b) indicate the nature of evolution of
the photofragment energy distribution by showing it at
I t =10 and 100 for / =0', 30', and 45' and 5=0 for two
different sets of parameters as functions of c
[ = (8, EG——2fuu)/I ]. The distribution obtained at
small time (I't =10) in these figures shows different
shapes for these three ellipticity angles. Figure 5(a) has
been obtained for I =1, q =5, and V, =1. At I t =10
the distribution for /=0' shows a number of peaks and
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FIG. 3. (a) Dissociation probability P(t) vs I t for /=0 at
6=0 and I =1, q =5, and V,g =2. (b) Same as {a) except for
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Fl&. 4. {a)Dissociation rate plotted against (t at &= —I.5, 0,
and 1.5 for I = 1, q =5, and V,g =0.1.The values for 5= 1.5 are

magnified by a factor of 100. (b) Same as (a) except at 5= —2.4,
0, and 2.4 and for the intensity reduced by a factor «10.
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the peak at c= —0.5 is larger than the others. Similar
types of distributions have been obtained at the same
time (I't =10) for /=30' and 45'. For /=30', the peak
at E= —0.75 is much larger (3 times) than that near
E = 1.5. For P =45' the peak at E = —0.7 is 1.5 times
larger than that at a=1.5. A number of peaks arise at a
short time because all the roots of the secular equation
contribute to the dissociation amplitude. The imaginary
parts of two of the roots are nearly equal because the
bound-bound coupling V,~ is equal to I . At a longer
time (I't =100), a sharp peak arises at the same position
as that of the larger peak for the shorter time (I t =10}
for each P. Also, at long times, an inelastic peak appears
for each P at the same position as that of the secondary
peak observed at shorter time. This peak is roughly 100
times smaller than the sharp one, its height being slightly

larger for /=45'. At long times, the major contribution
comes from the smallest root only.

Figure 5(b} is drawn for the same values of I and q as
in Fig. 5(a), but for V, =2 Fig. 5(b) has shapes very
different from those presented in Fig. 5(a) for all the {t)'s.

The shapes of the distributions obtained at I t =10 are
drastically changed at the longer time I t =100. At
I t =10, one large peak at c.=2.5 and a number of small

peaks, with one of thexn at a negative value of c and more
prominent than the others, arise. At longer time
(I t = 100), only two peaks remain, one at the position of
the large peak (a=2.5) and the other at the position of
the secondary peak observed at a short time. However,
in this case, the peak at c=2.5 remains much broader
compared to the other one for each {().The height of the
narrower peak for /=0' is nearly equal to the broader
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FIG. 5. (a) Kinetic-energy
distribution W of the photofrag-
ments against s for (al) /=0'
and I't =100, (a2) /=0' and
I't = 10, (b 1) P =30' and
I t =100, (b2) /=30' and
I t =10, (cl) /=45' and
I t = 100, and {c2) /=45' and
I t =10. In this 6gure I =1,
q=5, and V,~=1. (b) Same as
(a) except for I =1, q =5, and
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FIG. 6. Angular distribution
of the photofragments for the
parameters I =1, q =5, and

V,g =0.1 for 5d =0' plotted
against (al) Pk when Ok=90' (in

the XY plane), (b1) 8I, when
$„=90' (in the YZ plane), and

(cl) 81, when PI, =0' (in the XZ
plane). For these figures 5d =0.
(a2), (b2), and (c2) show the cor-
responding angular distributions
for 5d=180'. The solid, long-
dash-short-dashed, dashed and
dot-dashed lines are for /=0',
15', 30', and 45', respectively.

peak at a =2.5 but for /=30' this height (at e = —1.75) is
about 10 times greater than that of the broader peak. For
/ =45' the height of the narrower peak (at e = —l.75) is 3
times greater than the other one.

The angular distributions of the photofragrnents in the
XY plane (8=90') has been plotted against the angle Pk
in Figs. 6(al) and 6(a2) for the ellipticity angles /=0',
15', 30, and 45' for a particular choice of parameters
I =1, q =5, and V,&=0.1. The two figures have been
drawn for two values of the continuum phase shift
difference 5d between the J =0 and 2 wave functions.
The upper curves are for 5& =0', while the lower curves
are for 5d = 180'. In general, this distribution will depend
on s. We have taken 5=0 for all polarizations, which
means an exact resonance with the unshifted field-free
level. With change in polarization, there will be a conse-
quent change in the detuning from the shifted resonance
state which enters into the expression for the distribution.
However, for our choice, the peak of the photofragment
spectrum will be very near c=O for all polarizations. We
have plotted the distribution at this single value of c.,
a=0. It is to be noted that if we change c. and 5 in the
same way, keeping the intensity and polarization the
same, the angular distribution does not change. For our
choice of parameters the pattern of angular distribution
is insensitive to the change in detuning which occurs due

to polarization effects. This will not be true for consider-
ably larger shift of the resonant level. This point will be
discussed in more detail in connection with the intensity
dependence of the angular distribution. From Figs. 6(al)
and 6(a2) we see that for linear polarizations, no frag-
ments will be observed perpendicular to both the polar-
ization direction and the propagation direction when the
phase shifts for J=0 and 2 are the same. On the other
hand, for a phase-shift difference of 180', maximum frag-
mentation will occur in a direction perpendicular to the
polarization direction in a plane perpendicular to the
direction of propagation. For circular polarization, sim-

ply for reasons of symmetry, fragmentation arises in all
directions in the XY plane equally and the magnitude is
independent of 5d, as mentioned previously. The case for
other ellipticity angles are intermediate. For example,
for P =30', the minimum (maximum) in the XY plane will

be slightly shifted from (()k =90' for 5d =0' (180'). For
/=15', the distribution shows a minimum (maximum)

very close to $„=90' for 5~ =0' (180'), but this is much
narrower compared with that for /=0'. The maximum
(minimum) fragmentation is thus also nearly along the
major axis of the ellipse. It should be mentioned that, in

a recent work, Reid, Leahy, and Zare have shown how
the use of different combinations of polarizations of two-

photon fields in a resonant two-photon ionization process
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FIG. 7. Same as Fig. 6 except
for 5d =18' and /=30' at exact
resonance with shifted state ~1)
for intensities I= 10 (dashed

line), 1 (solid line), and 0. 1 (dot-
dashed line);
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lead, under certain circumstances, to the breaking of cy-
lindrical symmetry in the angular distribution [18].

Figures 6(bl) and 6(b2) show the pattern of fragmenta-
tion in the YZ plane which is perpendicular to the major
axis of the ellipse. In this plane Pk =90' and the angular
distributions have been plotted as functions of 8k. For
linearly polarized light, the angular distribution is very
Bat in this plane. Almost no fragmentation occurs for
5d=0', but for 5d =180' this is the preferred plane of
fragmentation for linear polarizations. For most elliptici-
ty angles, there will be a peak at 8k =90' in the YZ plane
for all values of 5d. The sharpness of this peak will, how-
ever, be greatest for circularly polarized light.

The angular distribution in the XZ plane (/k=0'),
containing both the propagation direction and the major
axis of the ellipse, have been shown as functions of ek in
Figs. 6(cl) and 6(c2) for 5d=0' and 180', respectively.
For 5d =0' the pattern of the angular distribution in the
XZ plane is the same as in the YZ plane. However, the
peak at 8k=90' is now sharpest for linearly polarized
light. For 5&=180' there are peaks both at 8k=90' as
well as 8k=0' and 180' except for circularly polarized
light. There are two zeros symmetrically located on each
side of 8k =90'. The depth of the modulation decreases
with increase in the ellipticity angle. From a three-
peaked structure the pattern reduces gradually to that
with a single peak as the polarization is gradually
changed from linear to circular.

Figures 7 and 8 demonstrate the efFect of change in
laser intensity on the angular distribution. The distribu-
tions in the YZ, XY, and XZ plane have been plotted in
(a), (b), and (c), respectively. 5d has been taken to be
equal to 180' and the ellipticity angle P has been fixed at
/=30' in all cases. (No intensity dependence can occur
for linear and circular polarizations within our approxi-
mations. ) In Fig. 7, intensity effects have been demon-

strated, always maintaining exact resonance, after taking
into account the shift (which is equal to I ) at different in-
tensities. The distributions have been shown for a=0.
For I =1, q =5, and V, =0. 1 we have arbitrarily
defined the intensity to be unity. For any other intensity
I, I has been changed by a factor of I, q by a factor of
I/I, and V, by a factor of I'~ . From Fig. 7(a) we see
that there is not much difFerence in the angular distribu-
tions for I=0.1 and 1, but at higher intensity I=10,
there is a shift of the maximum away from t()k =90' and a
broadening of the distribution in the XZ plane. In the
XY plane the distribution becomes narrower with the
peak height at 8k =90' considerably exceeding the values
at 8k =0' and 180' for higher intensity. In the YZ plane
the three peaks at Hk =0', 90', and 180' become more and
more nearly equal in magnitude as the intensity is in-
creased.

Figure 8 shows the angular distribution for the same
choice of intensities and parameters as well as 5& and P,
but with the frequency adjusted to an exact resonance
with the field-free level, i.e., 5=0. As can be seen, the
curves for I =10 are now closer to those for I =0. 1 than
to those for I=1. This demonstrates the effect of detun-
ing. Since the real frequency remains the same, the de-
tuning of the bound-bound transition is considerably in-
creased relative to the strength of the bound-bound cou-
pling because the shift is proportional to intensity, but
the bound-bound coupling increases only as the square
root of intensity. Thus the efFect of introducing addition-
al detuning is to bring the shapes of the angular distribu-
tions closer to those for a lower intensity.
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