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Classical stabilization of periodically kicked hydrogen atoms
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We investigate the stability of a classical three-dimensional hydrogen atom subject to a periodic train
of alternating 5-like pulses, or "kicks." The intense-field stabilization effect, widely investigated for the
case of monochromatically driven atoms, is numerically shown to occur in this purely classical model,
and its dependence on various parameters is analyzed. Our results support the view that classical
intense-field stabilization is determined by the stability of the motion in a direction transverse to the field

polarization, and confirm previously established estimates for the onset of stabilization.

PACS number(s): 31.50.+w, 32.SO.Rm, 42.50.Hz

When a beam of hydrogen atoms prepared in some ini-
tial state interacts for a certain time with a radiation field
of given intensity and frequency, some of the atoms are
ionized, the ionization probability being a function of the
initial state, the interaction time, and the field intensity
and frequency as well. Ceteris paribus, one would naively
expect this function to be monotonic in the field intensity,
i.e., a stronger field should always produce a larger ion-
ization. This expectation is contradicted by theoretical
investigations that have shown that, on the contrary, on
increasing the field strength above a critical value the hy-
drogen atom becomes increasingly stable against field-
induced ionization. This surprising efFect, known as
intense-field stabilization (IFS), was originally predicted
on purely quantal grounds [1],but has subsequently been
found even in classical systems, first in simplified one-
dimensional (1D) models using a smoothed Coulomb po-
tential [4], and then in realistic 3D models [2,3]. A pure-
ly classical approach to IFS has yielded a rough theoreti-
cal estimate for the intensity border above which IFS
should be expected [2]. Being thus clear that quantum
IFS is paralleled by a quite similar classical phenomenon
[5], the conclusion that the two phenomena have a com-
mon origin seems inescapable. Although only the quan-
turn phenomenon is physically relevant in the atomic
domain, much may be learned from a careful investiga-
tion of its classical counterpart.

However, in spite of the growing attention attracted by
IFS, the explanation for this phenomenon is not yet com-
pletely clear, also, because theoretical analysis has to take
into account a number of distinct dynamical features, the
relative weight of which has not been fully assessed in
determining IFS.

A typical example is the so-called "dichotomy. " In a
reference frame oscillating with the external field, the nu-
cleus itself oscillates and produces an average Coulomb
field quite similar to the field due to a charge continuous-
ly distributed along its trajectory. With a smooth (e.g.,
monochromatic) driving, the nucleus spends a large part
of its time in the vicinity of the turning points of its tra-
jectory; therefore, the effective charge distribution is
highly nonhomogeneous and looks like a sort of

dumbbell. At low field the combination of "dumbbell"
and centrifugal potentials produces an effective potential
well which has a single minimum; however, as the field
increases the potential well is more and more strained,
and above a certain field intensity it splits into a double-
well potential which has two minima located close to the
extrerna of the dumbbell. This metamorphosis of the
average potential experienced by the electron in the mov-
ing frame has attracted considerable attention, both in
quantum [6] and in classical descriptions [3,5].

Generally speaking, the precise role of this and other
intriguing features is not clear. Our understanding of the
purely classical Kepler problem with a periodic driving is
still far from complete, and further analysis is needed.
For example, it is often argued, as an intuitive explana-
tion of classical IFS, that the problem has two integrable
limits, given respectively by the unperturbed Kepler
motion and the free-field motion; the former limit is at-
tained on neglecting the external field, the latter on
neglecting interaction with the nucleus. On increasing
the field intensity, the second limit is approached, and
this should explain why the motion becomes stable.

This naive interpretation is not satisfactory, because
the free-field motion is not bounded; it consists of oscilla-
tions pius a drift that would lead to fast ionization in an
overwhelming majority of cases. As a matter of fact, at
very large field intensities the survival probability drops
to zero (see Fig. 1). In addition, the atomic part of the
Hamiltonian is a singular perturbation of the free-field
Hamiltonian: it is never "small" compared to the latter,
because its effect is always quite strong in the proximity
of the nucleus. Therefore, in order to explain IFS, one
has to understand why, in the stabilized regime, the elec-
tron does not come close to the nucleus, even though it
remains at all times confined in a bounded region.

In this paper we present results for a model of a classi-
cal 3D hydrogen atom subject to a periodic sequence of
5-like pulses of fixed strength and direction and alternat-
ing sign. The motion of the electron under such a driving
is conveniently described in a stroboscopic way, by iterat-
ing a map that yields the evolution over one complete
period of the external kicking field. In comparison with
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suits, which were obtained with a zero magnetic quantum
number, do not allow for a quantitative comparison with
the classical data presented below.

The usual model for IFS is described by the Hamiltoni-
an

H(p, r, t) = ——+ez sin(cot },
2

r

where r=(x,y, z) and atomic units are used. The radia-
tion field is treated in the dipole approximation and is
linearly polarized in the z direction. Here we shall in-
stead consider the Hamiltonian

H(p, r, t) = ——+ g ( —1)"5 t n-p 1 2E'z ~ T
2 r co 2

(2)
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FIG. 1. Survival probability after a time -1000 a.u. with mi-

crocanonically distributed initial conditions at n=1, 1=0.3,
and m =0.25, as a function of intensity e and frequency co, for
60 evenly spaced values on the horizontal axis and 80 evenly

spaced values on the vertical axis. Darker tones of grey corre-
spond to larger survival probability. The line has equation
e= 5'/m.

the monochromatically driven model, the kicked model
offers the advantage of a much easier numerical simula-
tion; at the same time, it turns out to retain many of the
essential features of the monochromatic case, including
IFS. Thus one can carry out extensive numerical compu-
tations to yield a fairly complete picture of the classical
process leading to ionization.

In this paper we use numerical results for the kicked
model as an illustration of the relative importance of the
various mechanisms that have been considered in connec-
tion with IFS.

Our results confirm that classical IFS appears only
with a nonzero value of the magnetic number (the com-
ponent of angular momentum along the direction of po-
larization of the field} [3,2], and support the central role
of a mechanism, qualitatively similar to the one described
in Ref. [9], which was used in Ref. [2] to derive quantita-
tive conditions for IFS. In fact, the conditions for field
intensity and frequency under which IFS was observed in
our model are fully consistent with these quantitative ar-
guments. At the same time, a smooth switch-on of the
field was necessary to observe IFS.

In addition, our results suggest a marginal role for di-
chotomy, because in the kicked model IFS is observed in
the absence of dichotomy. In fact that free-field motion is
here uniform, except for sudden inversions occurring at
the turning points; therefore the effective charge density
seen by the electron in the moving frame is uniform (a
rod instead of a dumbbell) and the potential it produces
has in all cases a single minimum.

The 30 kicked model has been also studied in a recent
paper [7] in which similar conclusions are drawn about
dichotomy. The authors of that paper were able to inves-
tigate the quantum dynamics of the model, which was
found to exhibit stabilization. Unfortunately their re-

The evolution defined by (2) over one period T =2m/co is
given by a product of four maps. The first of these de-
scribes a free Keplerian motion over a time T/2, the
second a "kick" which discontinuously changes p, into

p, +(2e/to}; next comes one more free Kepler motion,
followed by one more kick changing p, by —2e/co. Itera-
tion of this four-factor map yields a stroboscopic evolu-
tion defined by (2) which can be computed with consider-
ably less numerical effort than that required for the simu-
lation of (1) over a comparable number of periods.

A Kramers-Henneberger (KH} transformation can be
performed to a reference frame which oscillates in the z
direction according to a sawtooth,

nT ( ( (n+1)T
or &t&

Here a =me/2' is the halfwidth of free-field oscillations.
On canonically transforming (2) to the variables p', r' of
the moving frame, one obtains the KH Hamiltonian

where p=+x +y . For ~z'~ (a, the average potential
has a logarithmic singularity at p=O. Introducing the
momenta pz, p, the time-averaged KH Hamiltonian in
cylindrical coordinates becomes

2 2 2

HKH= + + + V(p, z') .Pp Pz' m

2p
(4)

Here m is the constant z component of the angular
momentum. The average potential appearing in (4) is the

where e is a unit vector in the field direction. One can ex-
pand the periodic potential appearing in HKH in a
Fourier series. The constant average term will be

1 & dtV(r') =——
T o ~r'-z, (t)e~

1 Vp +(z'+a) +z'+a
ln

+p +(z' —a) +z' —a
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sum of (3) and the centrifugal potential. Therefore it has
a single minimum at

' 1/2 1/2
m 4az'=0, p= — 1+ 1+

m4

In the case of a sinusoidal driving the effective potential
still has a stationary point at z'=0, which, however, be-
comes a saddle point for (a/I ) ~0.9; then two distinct
minima appear, and the potential becomes dichotomic.
This is never the case with the present model. A picture
of the averaged KH potential is shown in Fig. 2, for pa-
rameter values which correspond to stabilized motion, as
discussed below.

On setting z' =0, p,
' =0 in (4), a reduced one-

dimensional Hamiltonian is obtained, the orbits of which
are also stable orbits for (4), and will be termed "radial
orbits" in the following.

The dependence of the ionization probability on the
field parameters e and co is illustrated by the "phase dia-
gram" of Fig. 1, which displays the survival probability
after a fixed physical time for different values of e and co.

It was constructed in the following way. First we have
chosen 60 evenly spaced points on the horizontal axis and
80 evenly spaced points on the vertical axis. Having thus
discretized the region shown in Fig. 1 by means of 4800
points, for each of these we have numerically computed
100 orbits having initial action variables n =1, 1=0.3,
m =0.25, and randomly distributed angle variables. Due
to well-known scaling properties, cases with initial n%1
can be reduced to cases n =1 by using scaled variables
con, en, lln, andm jn.

The survival probability was determined as the fraction
of orbits that remained within a distance r =500 from the
nucleus after a time corresponding to approximately 1000
Kepler periods at n =1. Kicks were smoothly switched

14-

on, i.e., e was linearly increased from zero to its nominal
value during a finite number of kicks (ten kicks for the
case of Fig. 1).

The main qualitative feature of Fig. 1 is represented by
two wedge-shaped regions of high survival probability.
These regions are separated by a "death valley" that be-
comes deeper when moving to higher frequencies. The
lower stable region is located at small e and corresponds
to a regime of dynamically stable motion; the upper re-
gion is the one corresponding to IFS.

Of course, the survival probability depends on time:
during a longer interaction time, some of the surviving
orbits contributing in the grey zones in Fig. 1 would ion-
ize. At later times Fig. 1 would therefore overall turn to
paler tones of grey, and its geography would be also
modified. In Fig. 3 we show the dependence on time of
the survival probability recorded at three different posi-
tions in the E, co plane of Fig. 1, namely, one deep in the
lower stable region, another still in that region but not far
from its upper border, and a third one inside the IFS re-
gion. In the first two cases the survival probability is not
stable in time and will in fact decrease at larger times.
Instead, in the third case the probability will at first de-
crease but then settle to a seemingly constant value.

Let us now discuss in more detail the various regions,
starting with the lower stable one. According to Fig. 3,
the upper border of this region is not constant in time
and moves downwards on increasing the interaction time.
This time-dependent border is determined by a chaotic
ionization mechanism very similar to the one widely dis-
cussed for the case of monochromatic driving. This
mechanism is qualitatively illustrated in Fig. 4, where we
show an ionizing orbit very close to the border. Far from
the nucleus the electron is moving on an almost perfect
Keplerian ellipse in spite of the periodic kicks. In fact,
subsequent kicks have opposite sign, and compensate for
each other almost exactly, except when the electron
comes close to the nucleus: there its velocity changes
significantly between subsequent kicks, and the external
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FIG. 2. Showing some equipotential lines of the average KH
potential in the plane (p,z'), at m =0.25, a=158, and co=6.28.
Since these lines are symmetric with respect to z=0, only the
part lying in the region z )0 is shown.

FIG. 3. Illustrating the dependence of the stabilization prob-
ability P, on time, at fixed frequency ~=7.9, for three different
field intensities: (a) @=0.2, {b)a=3. 17, and (c) @=500.
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FIG. 4. An ionizing orbit with n =1, m =0.25, and initial
value of 1=0.3, projected onto the plane (x,y) of the initial un-

perturbed orbit, for a=0.5, and co= 6.28.

field is therefore most efFective. From close encounters
with the nucleus the electron emerges on a different al-
most unperturbed ellipse and the process is repeated a
number of times, until a particularly energetic encounter
with the nucleus sets the electron on an escape route. In
the case of monochromatic driving, the jumps from one
unperturbed ellipse to another which occur when the
electron comes close to the aphelion have been described
by a "Kepler map, " [8] which has a dynamically stable
regime at small field intensities and becomes chaotic at
strong fields. In the chaotic regime, the sequence of
jumps can be pictured as a random walk (in energy) even-
tually leading to ionization. The corresponding diffusion
coefBcient, however, decreases on increasing the external
frequency, so that at fixed interaction time the survival
probability is found to be an increasing function of co.
The behavior observed in the kicked model is consistent
with this general picture valid for the monochromatic
case. Nevertheless, we ignore whether KAM tori exist at
very small values of e: these would leave Arnol'd
diffusion as the only possible mechanism of long-time de-
cay of the probability. Numerically computed Lyapunov
exponents in the low-field regime fall in the range of nu-
merical noise and are therefore consistent with either a
KAM stability or a very weak level of chaoticity.

The time behavior shown by Fig. 3 suggests that the
observed borders of the IFS region should not
significantly change on increasing the interaction time.
In Fig. 5 we give various representations of a typical sta-
bilized orbit. The projection of this orbit on the plane of
the initial unperturbed orbit fills an annulus-shaped re-
gion, which means in particular that the orbit never
comes very close to the nucleus. The reason why such an
orbit remains trapped apparently forever emerges when
looking at its phase-space projection onto the (p,p~)
plane: after an initial transient this projection remains

CO

e, -const X—.
m

(6)

This estimate has the same functional dependence as for
the sinusoidal driving. The essentia1 point of this crude
argument is that IFS is basically due to the low-frequency
motion in the p direction being scarcely afFected by high-
frequency harmonics. This estimate is confirmed by our
numerical results; indeed, the lower border of this IFS re-
gion in Fig. 1 appears to increase linearly with co, as pre-
dicted by (6). Fitting this lower border yields a value -5
for the constant in Eq. (6), to be compared with the value—10 found for monochroinatic driving [2]. The depen-
dence on m is shown in Fig. 6, where the survival proba-
bility P, is plotted versus m at fixed co/m: P, is roughly
stationary as predicted by (6), but at small m a sharp fall
is observed. Though not accounted for by the previous
argument, this fall is explained by the growth of a as m is

confined to a relatively narrow region, the shape of which
is unambiguously tailored after the "radial orbits" of the
averaged KH Hamiltonian. The width of this region is
determined by the slow motion in the z direction. A nu-
merical computation of the maximal Lyapunov exponent
for orbits like the one shown in Fig. 5 yielded values—10, on the order of the numerical error; thus motion
in the IFS region is either stable, or very weakly chaotic
at best.

Another class of orbits exists in the IFS region, which
account for the initial decay of the survival probability
shown in Fig. 3(c). Once projected on the p,p plane,
they are found to stick most of the time to some approxi-
mately periodic orbit whose period is very long compared
to the period of the kicks; occasionally, and in coin-
cidence with passages at minimal values of p, they jump
from one such orbit to another, until eventually they es-
cape. Again, the approximately periodic orbits mimicked
by the projected dynamics are quite close to "radial" or-
bits.

It should be noted that, with monochromatic driving,
the effect of coming close to the z axis is enhanced near
the turning points of the nucleus, where the (dichotomic)
potential has a worse singularity. In Ref. [7] it was point-
ed out that, due to this fact, the monochromatic case is
less stable than the kicked one.

The above results substantiate the analysis of Ref. [2].
It assumes that, at sufficiently large co, the average KH
Hamiltonian will be an approximate constant of the
motion [12]; the electron would then be trapped a long
time inside the effective potential well, and the result of
this trapping would be precisely IFS. Neglecting higher
harmonics in the Fourier series is somewhat more prob-
lematic in the present case because their amplitude de-
cays algebraically, and not exponentially as in the case of
Hamiltonian (1); in any case, a rough estimate for the on-
set of IFS is obtained by requiring that the external fre-
quency co be larger than the internal frequency of oscilla-
tion in the potential well. Identifying the latter {in order
of magnitude) with the frequency of small oscillations in
the p direction around the minimum (5), we obtain the
following estimate for the critical field strength at which
IFS appears:
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decreased at fixed ratio co/m: in fact, at very large a, the
slow z motion will eventually carry the electron beyond
the maximal distance r -500 which defines ionization in
our scheme.

The upper border of the IFS region in Fig. 1 clearly
follows a ~ law. This can be understood on the follow-
ing grounds. The potential well in the p direction is lo-
cated around p-me' /co and is therefore shifted to
higher and higher values of p as the field is increased; it
will eventually move so far that no orbit in the initial en-
semble will have a chance to be trapped in it, because the
initial ensemble of orbits has a finite extent in p that does
not depend on e and co. The critical field for this efFect
will clearly scale as co .

Finally, we have investigated the role of the switching-
on process. In Fig. 7 we show the dependence of the sur-
vival probability on the field intensity at fixed frequency,
for two diferent choices of the number of kicks during
which the field is linearly increased to its nominal value.
It is apparent that, with a sudden switch-on, IFS is prac-
tically suppressed. A smooth switch-on is therefore cru-
cial in accommodating a consistent fraction of initial or-
bits inside the potential well, where they remain trapped.
In this respect, IFS occurring in this model seems quali-
tatively similar to the "adiabatic" stabilization (see, e.g. ,
Ref. [9]). However, a quantitative analysis of adiabaticity
in a classical, periodically driven system in a chaotic re-
gime is still an open problem [10].
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FIG. 6. Survival probability after a time t =1000 a.u. vs m at
fixed ratio co/m = 1 and fixed a=0.629, for a microcanonical en-
semble of orbits with n = 1 and 1=0.3.

In summary, we have investigated the IFS regime in a
realistic model of a 3D hydrogen atom. In this model,
classical IFS appears to be due to trapping of the radial
motion (transverse to polarization of the field} inside the
efFective potential well. To a certain extent this trapping
takes place independently of the structure of the potential
well in the z direction; in particular, it does not rely on a
bilocal, "dichotomic" structure of the latter, which is ab-
sent in this tnodel. Our results quantitatively confirm the
rough estimates previously given for the onset of IFS, and
qualitatively substantiate the physical picture underlying
them. In this picture IFS does not crucially depend on a
large size of free-field oscillations, i.e., on the parameter
a; in that case the stabilization border should scale with
co, and not with co, as it was instead found.

Kicked dynamics, or maps, have been highly successful
in the development of nonlinear dynamics, where they
often retain in simplified form the essential features of
more realistic continuous-time models. This was the
main motivation of our investigation of the kicked
Kepler dynamics, and appears to be fully justified by our
results. The detailed scan of the parameter region
presented in Fig. 1 was made possible by the map dynam-
ics; producing a comparable picture with a mono-

FIG. 7. Survival probability after a time t = 1000 a.u. vs field

intensity, at fixed ~=2.5, for a microcanonical ensemble of or-
bits with n = 1, 1=0.3, m =0.25, and for two different values of
the switch-an time t, :circles are for t, =10, squares for t, =1.

chromatic driving would require a significant computa-
tional efFort.

In addition, we wish to add that, in contrast to the
monochromatic case, periodic kicks involve all the har-
monics of the basic kicking frequency. Therefore our re-
sults also have a bearing on the more general problem of
the excitation of hydrogen atoms by multifrequency,
"colored" driving, and related efFects on IFS [11].

A final crucial question concerns the quantal relevance
of the above classical results. On technical grounds, the
quantized kicked model [7] does not appear to ofFer as
many computational advantages with respect to a mono-
chromatic model as the classical kicked model. In any
case, under appropriate quasiclassical conditions the clas-
sical IFS should have a visible quantum counterpart.
Such a quasiclassical IFS should not be expected to obey
the purely quantum condition that the photon energy be
larger than the electron binding energy; therefore, its in-
vestigation may substantially broaden the scope of
current investigations of the intense-field stabilization
efFect.
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