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Impact-parameter dependence of energy loss for 625-keV H+ ions in Si single crystals
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The energy distributions for 625-keV H+ ions transmitted through thin Si single crystals are studied

for detailed angular scans through the (110) and (100) axial as well as the [111]and [110] planar
channels. Well-resolved structures in the distributions taken near the (110) axial direction are ob-

served. The experimental energy-loss distributions are very well reproduced by a Monte Carlo simula-

tion using the semiclassical approximation model for core electrons and the two-component free-
electron-gas model for valence electrons. The best fit to the data is obtained if the model energy losses
are scaled up for core electrons and down for valence electrons by several percent. The experimental
distributions can also be reproduced by assuming the mean excitation energy for distant collisions of the
ion with core electrons equal to 1.4 times the binding energy for a given shell. No significant di6'erences

between the distributions obtained using the solid-state and free-atom valence electron densities have

been found. The evolution of the distributions for the (110) axial scan is discussed in terms of ion tra-

jectories and the fiux distribution. Also, the azimuthally averaged mean energy loss is studied as a func-

tion of tilt angle with respect to the ( 110) axis.

PACS number(s): 61.80.Mk, 61.80.Jh, 79.20.Nc, 79.20.Rf

I. INTRODUCTION

The stopping of energetic ions in crystalline materials
is known to strongly depend on the direction of in-
cidence. In particular, ions moving along a major crys-
tallographic axis lose their energy at a rate that can be as
low as 50% or less of the so-called normal or random
value. This reduced stopping is one of the dominant
features of the channeling phenomenon [1]. The random
stopping, on the other hand, occurs for directions far
from any significant axial or planar channels, where the
crystal lattice appears to the ion beam as a randomlike
arrangement of atoms. The reduced stopping of chan-
neled ions is easily understood in terms of the impact-
parameter dependence of the energy loss that occurs in a
single ion-atom collision. The channeled ions maintain
large distances from the atom rows and therefore can
only make small energy transfers to the atomic cores.
Similarly, the contribution of valence (outer-shell) elec-
trons to the stopping is diminished, as their density in the
central region of the channel is reduced.

An understanding of H ion stopping is essential for
studies of a broad range of stopping phenomena and a
good deal of effort has been expended to explore the
orientation effects in the stopping of H ions in crystals
(see Refs. [1—4] for surveys of the pre-1982 work). The
experimental studies published so far have concentrated
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mainly on the reduced stopping for ions transmitted
through thin single crystals along major axial and planar
channels [5—12]. In addition, following the 1965 seminal
article on channeling by Lindhard [13],a large number of
theoretical studies on the impact-parameter-dependent
energy loss b E(b) have appeared [14—31].

The principal quantity of interest extracted from the
observed energy distributions has been the leading edge
value, corresponding to the energy loss of the best chan-
neled ions. Thus comparisons between experiment and
theory have usually been restricted to the energy loss cor-
responding to impact parameters close to the channel ra-
dius (axial channeling) or the channel half-width (planar
channeling). Such comparisons are often ambiguous due
to the inability to resolve various contributions to the en-
ergy loss [19]. Further, an extraction of the leading edge
value from experimental distributions is subject to uncer-
tainties related to energy straggling and energy resolution
factors [32]. The situation is much improved if full
energy-loss distributions are utilized, allowing compar-
isons between experiment and theory over a broader
range of impact parameters. Such an approach, however,
requires modeling of individual particle trajectories in the
crystal by the Monte Carlo technique and only a few at-
tempts to simulate full energy distributions have been
published so far [32—38].

In the present paper, energy-loss distributions for 625-
keV H+ ions in thin Si single crystals are studied as a
function of the crystal orientation. Detailed angular
scans are taken through the (110) and (100) axes as
well as through the most open planar channels intersect-
ing these axial directions, i.e., the [111] and [110]
planes, respectively. The experimental distributions are
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very well reproduced by a Monte Carlo simulation using
the semiclassical approximation (SCA) of Kabachnik,
Kondratev, and Chumanova [28] to describe the energy
loss to core electrons and the free-electron-gas (FEG)
model to determine the energy loss to valence electrons.
It is found that the mean excitation energy approxima-
tion, used to calculate the impact-parameter dependence
of the core electron contribution to the stopping in our
preliminary report [39], can reproduce the SCA results
quite well. Various approaches to the valence electron
contribution are also analyzed: the Lindhard-Winther
local-density approximation [40] versus the constant den-
sity approximation, as well as the use of the solid-state
versus free-atom electron densities. Based on individual
ion trajectories and ion Aux distribution calculations, the
evolution of the energy distributions as a function of tilt
angle with respect to the axial direction is discussed.
Also, randomlike directions near the (110) axis are
identified by means of a detailed study of the orientation
dependence of the mean energy loss.

II. EXPERIMENT
Two separate experiments were performed to measure

the energy distributions for directions near the (110)
and (100) axes, using two different Si single crystals. As
the equipment and procedures used in the two experi-
ments were essentially the same and the (100) experi-
ment is described in our earlier communication [39], we
will confine ourselves in this section to the (110) experi-
ment.

The incident beam of H+ ions, produced and accelerat-
ed to 625 keV by the University of Florida 3.5-MV Van
de Graaff accelerator, was collimated to a cross-sectional
area of 0.8 XO. 8 mm and an angular divergence of 0.03'.
A 1.2-pm-thick Si(110) sample was prepared using a
dopant-selective etching technique [41] and a 10-A-thick
amorphous layer of Au was deposited on the 10% HF-
dipped surface. The etched area of the sample had a di-
ameter of 5 mm, with a thickness variation of 5 —10 %.
The sample was mounted on a two-axis goniometer,
stepper motor driven with a resolution of 0.02'. The
goniometer was also equipped with translation perpendic-
ular to the beam. The ions scattered through 80' were
detected in a transmission geometry (the Au layer on the
beam exit side, as shown in Fig. 1) and energy analyzed
using a Si surface-barrier detector with an acceptance an-

gle of 2.5'. The base pressure in the scattering chamber
was 5 X 10 Torr.

The scattering yield from Si was used to align planar
and axial directions to the beam. The goniometer-beam
system was calibrated and the alignment for any direction
in the crystal was achieved to a precision of 0.02 —0.05'
by applying the methodology developed in Ref. [42].
Both the multichannel analyzer and the stepper motors
on the goniometer were controlled by a personal comput-
er. Once reference directions were established (usually an
axial and a planar direction), the energy distributions cor-
responding to full angular scans in the crystal coordi-
nates, involving rotations about both axes of the goniom-
eter, were taken in a completely automated way.

The energy distributions of the H ions transmitted

through the Si single crystal were retrieved from the Au
signal by dividing the measured energy by the kinematic
factor. A total of 21 distributions were taken on the same
target spot to ensure no variation in sample thickness.
Each distribution was collected for 0.8 pC of the integrat-
ed beam charge. Two angular scans were performed: (i)
through the (110) axis along the [111] plane and (ii)
perpendicular to the [111] plane at a tilt 8=10' with
respect to the (110) axis. The tilts included in scan (i)
were 8=0' (i.e., the (110) axis), 0.2', 0.4', 0.6', 0.8', 1',
and 2, while the azimuthal angles studied in scan (ii)
were /=0' (i.e., the [111]plane), 0.5', 1', 1.5', 2. 5', 5',
and 10' ($=54. 74' corresponds to the [ 100] plane, while
P= —35.26' corresponds to the [110] plane). Based on
our simulation results presented in Sec. IV C, the tilt of
10' is large enough to avoid the influence of the (110)
axis. The direction (8,$)=(10',0') can thus be con-
sidered to represent a "pure" [111]plane. It will be fur-
ther shown that the mean energy loss for the direction
(8,$)=(10', 10') approximates the random value to better
than 1%.

As a consistency check, a number of randomlike distri-
butions (for specific directions) were taken, followed by a
repeated measurement of the (110) distribution. Com-
parison between the two measurements for the (110)
direction revealed a slight change in the shape of the dis-
tribution as well as a shift toward lower energies. These
changes are primarily due to carbon deposition on both
sides of the sample during the irradiation. Changes in
the distribution can also result from structural defects in
the sample, introduced by the irradiation. However, as
the distributions for the most sensitive directions (close to
the (110) axis) were taken at the beginning of the mea-
surement sequence, they do not seem likely to be affected
by significant radiation damage. In order to determine
the amount of the shift due to the carbon layers, the dis-
tributions for the direction (8,$)=(10', 10') were taken at
the beginning of each scan [in addition to the measure-
ment at the end of scan (ii)], as well as at the end of the
whole sequence. The magnitude of the shift for all other
distributions was determined by linear interpolation
based on the accumulated beam dose and the distribu-
tions were corrected accordingly. The estimated shift
corresponded to about 10' C atoms/(cm }MC) deposited
on both sides of the sample.

The sample thickness, the normalization constant for
all distributions, as well as overall energy resolution are
determined based on the distribution for the direction
(8,P ) = ( 10', 10 ) by requiring that the simulated distribu-
tion (see Sec. III) matches the experiment. The distribu-
tions for randomlike directions depend on the random
value of the stopping cross section assumed in the simula-
tion, but are insensitive to the impact-parameter depen-
dence of the energy loss. As the random stopping cross
section is known in our energy range to an accuracy
better than 5%, the same (in)accuracy is achieved in the
thickness determination. This does not affect the energy
distributions because for a sample about 1 pm thick, the
ion flux distribution (and, consequently, the energy distri-
bution if normalized to the random energy loss) does not
change significantly if the thickness is increased (de-
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creased) by 5%. The overall energy resolution was found
to be 10 keV. This value includes the detection system
resolution, the energy spread of the incident beam, and
the effect of the sample nonuniformity.

A final note concerns the overlap of the Si and Au sig-
nals seen in Fig. 1. The Si signal consists, in fact, of two
components: one that is due to scattering within the
single-crystalline material and the other one coming from
scattering by the amorphous oxide layer at the Au/Si in-
terface. The latter registers the energy distribution of the
transmitted ions in the same way as the Au signal does.
However, it appears shifted to lower energies and is much
weaker than the Au signal, due to the smaller kinematic
factor and scattering cross section of Si, as well as the
smaller thickness of the oxide. It can be estimated that
the shift amounts to 29 keV for the (110) direction and
27 keV for the random direction (cf. the energy distribu-
tions presented in Sec. IV A).

III. ENERGY DISTRIBUTION CALCULATIONS

The main purpose of this work is to investigate the en-
ergy loss suffered by H ions in individual collisions with
Si atoms over a wide range of impact parameters. In or-
der to utilize all the information available in experiment,
full energy distributions for detailed scans through chan-
neling directions will be considered. Calculations of such
distributions can be best done by means of a Monte Carlo
simulation. In Sec. III A, details of the simulation code
used will be presented, while the energy-loss models ex-
amined mill be described in Sec. III B.

A. Monte Carlo simulation of ion trajectories

In a Monte Carlo simulation, one follows a large num-
ber of ion trajectories in the crystal, taking all the in-
teractions involved into account as closely as possible.

These include scattering of the ion by the screened
Coulomb field of the crystal atoms, multiple scattering by
electrons, energy loss processes, effects of surface layers
and the incident beam angular divergence, as well as
thermal vibrations of the crystal atoms. The cxx simula-
tion code, originally described in Refs. [34] and [43] and
subsequently updated in Ref. [44], was used in this work.
The code has been successfully tested against backscatter-
ing experiments in Si and A "'8"single crystals [43—48].
The backscattering energy spectra show high sensitivity
to details of ion trajectories, but are rather insensitive to
the position dependence of the ion stopping power.
Thus, in the present calculations we retain most of the
simulation parameters as determined from these experi-
ments. The major modifications to the "backscattering"
version of the code pertain to the energy-loss calcula-
tions, as presented in Sec. III B.

In calculating the energy distributions discussed in Sec.
IV A, the H-Si interaction potential [46,47], based on the
Hartree-Fock electronic density modified to account for
solid-state effects [49], and the vibrational amplitude of
0.078 A were used. The incident beam angular diver-
gence of 0.03' (standard deviation), corresponding to the
experimental conditions, was taken into account. The
calculations of the angular spread due to thin amorphous
surface layers were done in a Monte Carlo fashion by
evaluating individual ion-atom collisions (using the
Ziegler-Biersack-Lit tmark universal potential [49] for
atoms other than Si). Typically, 3200—6400 ion trajec-
tories were followed to generate a single energy distribu-
tion. Energy straggling was not included within the
simulation code, but separately, by convolving simulated
distributions (channel by channel) with a Gaussian distri-
bution of the appropriate standard deviation dependent
on the energy loss. The amount of straggling was deter-
mined based on Ref. [50] by converting the dependence
of straggling on the penetration depth into a dependence
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on energy loss (assuming random stopping power). Due
to widely differing energy losses from channeled to ran-
dom distributions, the energy dependence of the H-Au
cross section was taken into account. Finally, small
changes in the path length for ions penetrating the crystal
along different directions were considered in the simula-
tions.

B. Energy-loss models

We make the usual assumption that core and valence
electrons contribute independently to the stopping. The
interaction of the ion with valence electrons is treated
within the (FEG) theory. The energy losses to valence
electrons are divided into the contribution due to single-
particle excitations that occur in close collisions and the
contribution due to collective (plasma) excitations that
occur via distant collisions. The first contribution is as-
sumed to be proportional to the local valence electron
density, while the second one is taken proportional to the
average valence electron density. The energy lost by the
ion (to core and valence electrons) in an individual col-
lision with the lattice atom, for an impact parameter b,
can thus be written as

bE, (b)=DE, (b)+DE„i(b),

where b,E, represents the energy loss to core electrons
and b,E„, is the energy lost in close collisions with
valence electrons of the atom. The energy loss due to col-
lective excitations of the valence electron gas, not being
associated with any particular ion-atom collision, does
not enter into Eq. (1).

When the impact-parameter-dependent energy loss is
integrated over all b's, one gets the respective stopping
cross section, for instance,

E, = J bE, (b)2mb db .

Similarly, c.„& and c,,=c, +c„are obtained by integrating
bE„, and b,E„respectively. It is convenient to normal-
ize the above energy losses by their corresponding stop-
ping cross sections, which defines functions of b referred
to as L (b). For example,

1. Core electrons: The semiclassical approximation

The energy loss due to core electrons is calculated
within first-order perturbation theory using the SCA
method of Kabachnik, Kondratev, and Chumanova [28].
The method involves an explicit summation of all contri-
butions due to excitation and ionization of the atom
which is described by the Hartree-Slater approximation.
The SCA model was successfully applied to explain data
on the angular dependence of the energy loss in thin films

[52]. In contrast to channeling experiments, these data
are most sensitive to small impact parameters. The rnod-
el was also used in a number of studies on energy loss of
channeled protons and antiprotons [53,36]. Recently,
good agreement with the SCA model predictions was
found by Auth and Winter in a study of the energy loss of
100-keV protons in single collisions with Ar atoms [54].
Additionally, the calculation of the impact-parameter-
dependent straggling within SCA agreed very well with
experimental data [55].

The L, function for a 625-keV H ion on a Si core, cal-
culated within the SCA model, is plotted in Fig. 2. In
this calculation, the energy loss due to excitation to
bound states is neglected, as it is estimated to contribute
about 5% to the total energy loss. The calculation indi-
cates that K-shell electrons give a significant contribution
to the energy loss at very small impact parameters only
(about 16% for b =0 and rapidly vanishing by b =0. 1 A).
One can conclude, therefore, that the E-shell electron
contribution to the stopping cross section is negligible [cf.
Eq. (2)].

2. Core electrons: The mean excitation energy approximation

As an alternative approach, we divide the core electron
contribution to the stopping, 'e, ) into the close collision
part (E,I) and the distant collis.:on part (E,z). Assuming
the equipartition rule [40] we have E„=E,2. The

625 keV H -& Si

L, (b) = bE, (b)
(3)

Within the restricted energy interval considered here, the
dependence of the functions L on the energy (velocity) of
the ion can be neglected. Obviously, they satisfy the nor-
malization condition

f L (b)2nbdb = 1 . .

The total (random) stopping cross section is given by

Io~ ) 0-1

~r ~a+~v2 ~c+~v1+~v2 ~ (5) 10
0.0 0.5 1.0

where F,2 is the contribution due to distant collisions
with the valence electron gas (plasmon excitation). In the
calculations to be presented in Sec. IV, e„ is taken from
the semiempirical tables of Ref. [51].

IMPACT PARAMETER (A)

FIG. 2. I., function for 625-keV H ion on a Si core calculat-
ed within the SCA model.
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position-dependent stopping cross section related to close
collisions is assumed to be proportional to the local densi-

ty of core electrons, while the energy loss due to distant
collisions is calculated within the dipole approximation
with the mean excitation energy (cf. the four-component
model in Ref. [39]). Hence the energy loss due to close
collisions with core electrons is given by EE„=E,IL,I(b),
where

1.0
1.2
1.4

L„(b)= f n, (r)dz .
C

(6)

Z, denotes the number of core electrons per atom and

n, (r) is the core electron density (associated with a single

atom). The integral is taken along the ion's trajectory (as
it passes the atom}, which is approximated by a straight
line (r =b +z ). Based on the SCA calculations, the
contribution of E-shell electrons to the stopping of 625-
keV H ions can be neglected (cf. Sec. III B 1 ). Therefore,
only L-shell electrons are included when evaluating Eq.
(6}. Their density is determined based on the Roothaan-
Hartree-Fock (RHF) atomic wave functions [56].

To calculate the distant collision term L,2, the dipole
approximation as discussed by Kumakhov and co-
workers [19,4] is used. Assuming a mean electronic exci-
tation energy fico for a shell j, the energy transferred to a
single electron I can be written as

bE( (b)=

where Z, is the projectile atomic number, e is the elec-
tron charge, m, is the electron mass, v is the projectile ve-

locity, Q =co /c01 „ is the mean excitation energy (IIi'co )

measured relative to the binding energy (Iris@ „),
b~

=
v/coi „,and Ko and KI are the modified Bessel func-

tions. Again, Eq. (7) is applied to the L I, L II, and L III
shells only. (Their respective binding energies are 149.7,
99.8, and 99.2 eV [57].) By summing over all electrons in
inner shells, one thus gets bE,2(b)=g~g&EEI (b) and

L,z(b) =EE,z(b)/s, 2. However, Eq. (7) is derived for im-

pact parameters greater than the shell radius and it
diverges for b ~0. In order to evaluate L,z for small b, a
third-order polynomial form was assumed:
L,2(b)=co+c, b+c2b +c3b . The cutoff value of the
impact parameter b„where the two branches meet, and
the parameters c; (i =0, . . . , 3} were uniquely deter-
mined by requiring that (i} the derivative of L,2 at b =0
vanishes, (ii) both the L,2 and its derivative at b =b, for
the two branches are equal to each other, (iii) Eq. (4) is
fulfilled, and (iv) L,2 monotonically decreases between 0
and b, and the difference between L,z(0}and L,2(b, ) is as
small as possible. For example, if one assumes Q = 1, the
resulting b, (for 625-keV H on Si) is 0.64 A, while for
Q =1.4 one gets b, =0.46 A.

The L, functions (i.e., —,'L„+—,'L,z), calculated within
the mean excitation energy approximation (MEEA) for
three values of the parameter Q (1, 1.2, and 1.4), are com-
pared with the SCA dependence in Fig. 3. While 0=1

0
0.0 0.5 1.0 1.5

IMPACT PARAMETER (L)

FIG. 3. 2mbL, functions calculated within the MEEA model
for three values of 0 (and P=0.94), compared with the SCA
calculation.

clearly overestimates the energy loss for large impact pa-
rameters (b & 0.5 A), the curve for Q= 1.4 is remarkably
close to the SCA prediction in the whole range of impact
parameters [58]. I.et us note that within the MEEA
model, EE,2(b) (for b &b, ) and s,2 are independent of
each other, so the resulting L,2 function depends on the
chosen value of s,z. The latter, in turn, is related to
s„(=s„i+a„2) through the equation e,2= —,'(s„—s„),
where the random stopping cross section s, is a fixed
quantity (for a given energy). The value of s, is deter-
mined by the parameter p, defined in Sec. III B 3 . The
results presented in Fig. 3 were calculated for p=0. 94.
This value corresponds to the best fit to the experimental
energy distributions, obtained using the SCA model (see
Sec. IV A}.

3. Valence electrons

and

4mZ &e 2m, uuF
e„,=P Z„ln

m, u'

4m.z',e'
s„z=P Z„ln

m, u uF

(8)

(9)

where Z„ is the number of valence electrons per atom and

p is introduced here as a scaling parameter. In the above
formulas the Fermi velocity v~ and the plasmon energy
%co are calculated for the average density of valence elec-
trons in the crystal.

Based on the assumption that the position-dependent
stopping due to close collisions is proportional to the 1o-

As mentioned earlier, the valence electron contribution
to the stopping is treated within the free-electron-gas
theory. The stopping cross sections due to close and dis-
tant collisions are calculated according to the formulas

[6]
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cal density of valence electrons, one gets the formula for
L, &

that is analogous to Eq. (6) for the core electron term
L„. However, the valence electron density (associated
with a given atom) extends to much larger distances than
the core electron density does. More importantly, due to
the directional bonding effects, the valence electron den-
sity in solid Si is not isotropic. Thus, in general, the L„
function depends on the impact parameter vector b rath-
er than on its absolute value b. Therefore, from a pro-
gramming point of view, it is convenient to calculate a
two-dimensional map L„&(b) across the channel, to be
used in the simulation code. The L„&(b) map is no longer
associated with a single atom, but includes contributions
from all atoms that are sufficiently close to a given point
within the channel area. Consequently, the argument b
ceases to be an impact parameter with respect to any par-
ticular atom. Instead, it is a two-dimensional position
vector with respect to a chosen frame of reference. The
use of L„&(b) map simplifies and speeds up the simula-
tions, but it is strictly valid only for trajectories parallel
to the axis along which the electron density is integrated.
For trajectories tilted by g with respect to the axis, the
energy loss is approximated by E„L„,(b) /cosg.

Maps of L„&(b) were tabulated for both solid-state and
free-atom valence electron densities with a resolution of
0.0543 A (along the [110] plane) X0.0384 A (along the
[100] plane) for the (110) axis and a resolution of
0.0384 X 0.0384 A (along the [ 110] planes) for the
(100) axis. The solid-state electron density was taken
from the analysis of x-ray diffraction measurements by
Deutsch [59], while the free-atom electron density was
based on the RHF wave functions [56]. Both maps con-
sider contributions to the density from all atoms (on a
given atomic plane) within a distance of about 4 A.

The L„& functions corresponding to the solid-state and
free-atom valence electron densities are compared in
Figs. 4 and 5. In order to reAect the symmetry of the
channel, the values plotted include contributions of two
successive planes for the (110) axis and four successive
planes for the (100) axis. Figure 4 shows the values of
L„, in the case of the (110) axis, calculated across the
channel and along the bond, as indicated by the insets.
The dotted line corresponds to the average density of
valence electrons. The two densities produce quite simi-
lar results, except for the midbond region where the
solid-state curve exceeds the free-atom values by 25%%uo.

Both densities predict a substantial reduction of L„ in
the middle of the (110) channel. In the case of the
solid-state density, the minimum value of L„amounts to
21%%uo of the average value. The results obtained in the
case of the (100) axis are shown in Fig. 5. Let us note
that "along bond" means here: along the projection of
the bond. The differences between the I, &

functions cor-
responding to the solid-state and free-atom densities are
even smaller in this case. Surprisingly, the absolute
minimum of L„across the channel and along the bond is
found at a distance of about 0.3 A from the atom rows
and not at the center of the channel. Thus the minimum
energy loss observed in the case of the (100) axial chan-
neling is in fact due to the impact-parameter dependence

I I
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solid state density
----- free atom density

0 ' 4

0.3
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l
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FIG. 5. L 1 functions for the solid-state and free-atom

valence electron densities for the (100) axis in Si (a} across the
channel and (b) along the projection of the bond, as indicated in

the insets.

FIG. 4. L„, functions for the solid-state and free-atom
valence electron densities for the (110) axis in Si (a) across the
channel and (b) along the bond, as indicated in the insets.
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4' &e 2m, v
E„=P Z„ln

mev p

(10)

At our projectile velocity (v/vF =5) the above expression
agrees to within 0.5%%uo with the results given by Lindhard
and Winther [40], if the local value of ro is used. Al-
though in our calculations the plasma frequency corre-
sponding to the average valence electron density has been
used, it only has a minor effect on the results, as co~ enters
in Eq. (10) through the logarithm. Therefore this ap-
proach will be referred to as the Lindhard-Winther (LW)
model.

IV. RESULTS AND DISCUSSION

of the energy loss to core electrons (cf. Fig. 2), which

overcompensates the valence electron term shown in Fig.
5.

The above approach to the position-dependent valence
electron stopping, which assumes the contribution due to
close collisions to be proportional to the local valence
electron density, while the contribution due to distant
collisions is taken proportional to the average density of
valence electrons, will be referred to as the tmo-

component IiEG model. In addition, to investigate sensi-
tivity of the energy distributions to various assumptions
about the valence electron stopping, two limiting cases
are considered. First, the nonuniformity of the valence
electron gas is disregarded, i.e., the total energy loss to
valence electrons is made proportional to their average
density. This approach will be referred to as the constant
density modeL Second, the contributions due to both
close and distant collisions are assumed to be proportion-
al to the local density of valence electrons. Then the total
energy loss to valence electrons is given by
bE, (b)=E„L„,(b), where E„=E„,+E„2. Based on Eqs. (8)
and (9), one obtains

and the [111]planar directions, calculated using (i} the
constant density model, (ii) the two-component FEG
model, and (iii) the LW model, are compared with the ex-
perimental data in Fig. 6 [(ii) and (iii} are with the solid-
state valence electron density; see Sec. III B 3]. The con-
stant density model clearly overestimates channeling en-

ergy losses, while the K,W model gives too large an energy
dispersion in the case of the (110) distribution. The
two-component FEG model is seen to reproduce features
of the experimental distributions quite well for both the
axial and the planar directions. These observations are
consistent with a recent analysis of the H ion stopping by
valence electrons in Si at lower incident energies of
50-300 keV [35].

The two-component FEG model with the solid-state
valence electron density, together with the SCA model,
was thus used to calculate the distributions for all direc-
tions studied in the (110) experiment. In order to
achieve the best overall agreement p was reduced to 0.94.
The simulation results for a set of 12 representative dis-
tributions are compared with the experimental data in
Fig. 7. When assessing agreement between the simula-
tion and experiment, the low-energy part of the distribu-
tions is not taken into account, as it is affected by the
overlapping Si signal (cf. Sec. II). The distribution for the
(110) axial direction can still be better reproduced if
p=0.97 is used. However, the (110) distribution is

0.04
(a) (110)

~ expt.
0.03 - "---- const. density .'

2-comp. FEQ:
Lindhard-

0.02

A. Energy distributions

Seeking to reproduce the experimental energy distribu-
tions, we will use the SCA model to determine the
impact-parameter dependence of the energy loss to core
electrons. The MEEA model only serves as a simple ap-
proximation to the more accurate SCA calculation and
will be used later on to test the sensitivity of the energy
distributions to the core electron contribution to EE(b).
In order to investigate the influence of the valence elec-
tron term on the distributions, we first consider the three
approaches to the valence electron stopping, discussed in
Sec. III 8 3. The stopping cross sections due to valence
electrons are calculated from Eqs. (8)—(10), assuming
p= 1. For 625-keV H ions in Si one obtains the following
values (in eV A ): s„=42.2, E,2=25. 3, and e,„=67.5. In
order to reproduce the random stopping value of
e„=108.2 eV A [51],one has to assume the core electron
term to be c, =40.7 eV A . However, the SCA calcula-

O

tion yields c., =38.4 eV A . Therefore, in determining
losses to core electrons, the impact-parameter depen-
dence given by the l., function is multiplied by c, corre-
sponding to p= l. The distributions for the (110) axial

0.01
IJJ

O
0.00

X
O

0.03

l

(b) (»1)

0.02

0.01

o.oo
525 550 575 600 625

ENERGY (keV)

FIG. 6. Energy distributions for (a) the (110) axial and (b)
the [ill] planar directions, calculated using the SCA model
(@=1) and (i) the constant density, (ii) the two-component
FEG, and (iii) the LW models, compared with experimental
data.
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most sensitive to crystal imperfections and we prefer to
give more weight to the distributions for other directions,
in particular the I 111]planar direction at 8= 10 .

The present model (with P=0.94) was also tested
against our previous experiment for the (100) axis [39].
The distributions simulated for 12 representative direc-
tions are compared with the experimental data in Fig. 8.
Here the tilt 8 is referenced to the ( 100) axis and the az-

imuth P is taken relative to the [110] plane. Unlike the
distributions near the (110) axis, the distributions shown
in Fig. 8 do not exhibit well-resolved structures. The
reason for this is twofold: first, the ratio of channeled to
random energy losses for the ( 100) axis is larger than for
the (110) axis (the channel radii for the (100) and

(110) axes are 1.36 and 2.04 A, respectively); second, the
Si crystal used in the (100) experiment was half the
thickness of the crystal used in the (110) experiment,
which resulted in a poorer relatiue energy resolution in

the former case. Nevertheless, the excellent agreement
between the simulated and experimental distributions

shown in Fig. 8 gives additional support for the energy-
loss model used.

In the calculations above, the influence of surface lay-
ers due to C deposition during the measurements was not
taken into account, as it had been found negligible in our
previous study for the (100) direction [39]. The distri-
butions near the (110) direction, however, are more sen-
sitive to any imperfections in the crystal. Therefore, the
influence of surface layers was additionally studied in this
ease. The thickness of the C surface layer for the (110)
measurement was estimated to be 5X10' atoms/cm,
while in the case of the I 111] planar channeling it
amounts to about 3 X 10' atoms/cm . The simulations
of energy distributions were done for crystals covered
with the above C layers as well as a thin silicon oxide lay-
er (3X10' 0 atoms/cm and 2X10' Si atoms/cm ). In
comparison with the distributions obtained for perfect
single crystals (without any surface layers), no significant
changes in the shape of the distributions were found.
One concludes, therefore, that in the case of the (110)

H beam energy 625 keV, Si crystal thickness 1.2 pm

0=8
0=0

io
iO

0=i
0=0

10
2.6

O=.e'
y=O

.4
0

iO
i

FIG. 7. Monte Carlo simulated energy dis-

tributions (solid lines} using the SCA model to-
gether with the two-component FEG model
with the solid-state valence electron density
(P=0.94), compared with experimental data
(dots) for directions near the (110) axis.

.2'
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0
0
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experiment, the influence of surface layers on the distri-

butions can also be neglected.
It has been shown earlier in this section that the as-

sumption of a constant valence electron density, as com-
pared to the nonuniform solid-state density, has a marked
influence on the distributions. A related question con-
cerns the comparison of the solid-state valence electron
density vs the free-atom density. It has often been argued
that the inclusion of the solid-state effects in the valence
electron density is essential for a quantitative explanation
of the stopping of channeled ions. The simulations have
been done for the (110) and (100) axes and the [111j
and [110] planes using the RHF valence electron densi-
ty. A comparison with the simulations based on the
solid-state density revealed no significant differences in
the distributions, as illustrated in the case of the (110)
axial direction in Fig. 9. This can be easily understood if

one refers to Figs. 4 and 5, which present L„, functians
for the two electran densities.

The simulations were also done using the MEEA to
calculate the energy loss to core electrons (cf. Sec. III B
2). The valence electron contribution to the stopping was
evaluated within the two-component PEG model with
the solid-state electron density and P=0.94. Based on
the results presented in, Sec. III B 2, the mean excitation
energy of 1.4 times the binding energy was used to deter-
mine L, . The energy distributions thus obtained shaw
virtually no difference with respect to the calculation
done using the SCA model (Fig. 7). This result confirms
that the minor difFerences between the L, functions for
the two models, displayed in Fig. 3, are of no conse-
quence as far as the energy distributions are concerned.
In order to investigate the sensitivity of the distributions
to the assumed L, dependence, two additional simula-

H beam energy 625 keV, Si crystal thickness 0.57 ym
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FIG. 8. Monte Carlo simulated energy dis-
tributions (solid lines) using the SCA model to-
gether with the two-component FEG model
with the solid-state valence electron density
(P=0.94), compared with experimental data
(dots) for directions near the (100) axis.
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FIG. 9. Energy distributions for the (110) axial direction

calculated using the SCA model together with the two-

component FEG model (P=0.94) with (i) the solid-state and (ii)

the free-atom valence electron densities, compared with experi-

mental data.

tions were done for the MEEA model with 0=1 (cf. Fig.
3). These were for the (110) axis and the [111]plane.
The results are presented in Fig. 10, in comparison with
the SCA distributions and the experimental data. The
overestimation of the channeled ion energy losses by the
MEEA model with 0=1 is clearly seen.
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FIG. 10. Energy distributions for (a) the (110) axial and (b)
the [111] planar directions, calculated using the two-

component PEG model with the solid-state valence electron
density (P=0.94) together with SCA and MEEA (II=1.0),
compared with experimental data.

The results presented in this section show that the ex-
perimental distributions near the (110) and (100) axes
in Si can be very well reproduced by the simulation using
the SCA model for core electrons and the two-component
FEG model for valence electrons. The stopping cross
section for valence electrons, however, has to be reduced
by 6% with respect to the values given by Eqs. (8) and (9).
Also, an increase of some 10—14 % with respect to the
SCA prediction is needed for the energy loss to core elec-
trons. Both the SCA and the FEG theories employed
treat the ion stopping within first-order perturbation
theory. Estimates of the Barkas effect within the free-
electron-gas model [60,61] give in our case about a 1—
2% increase of the stopping due to the Z

&
term in the

perturbation series. Although the Z, term is expected to
be negative [60,62], it does not seem likely to account for
the correction of 6% found in the present work. Similar-
ly, the negative correction for the higher-order terms in
the case of the H ion stopping due to core electrons in Si,
obtained in Ref. [53], seems to contradict the results of
this study.

B. Analysis of ion trajectories

The energy distributions corresponding to the angular
scan through the (110) axis, presented in Fig. 7, change
rapidly with the tilt angle. A single-peak distribution for
the axial direction shifts towards lower energies and
broadens as the tilt increases (8=0.2' and 0.4'). At a tilt
of 0.6', splitting of the distribution into two components
is first observed. These will be referred to as the channel-
ing and the random components. %ith a further increase
of the tilt, the area of the channeling component in-
creases. The observed evolution corresponds to the tran-
sition from axial to planar channeling, which has been a
subject of continued interest [63,33,47].

As the experimental distributions are very closely
reproduced by the present simulations, it seems
worthwhile to examine individual trajectories and the ion
flux distribution in order to try to gain a better under-
standing of the observed axial to planar channeling tran-
sition. Figure 11 shows projections of trajectories onto
the interaction zone (as used in the simulation code), cal-
culated for four tilts (0', 0.2', 0.4', and 0.6'). Atom rows
are indicated by black dots. Each trajectory starts in the
center of the ( 110) channel and is followed to a depth of
1.2 pm. If a trajectory leaves the interaction zone it is

put back at an equivalent point. One can see that the tra-
jectories for 6=0' and 0.2' are very similar. The main
difference between them is that the amplitude of the
transverse motion in the case of 0=0.2 is slightly larger
than that for 0=0' The trajectory for 0=0.4' penetrates
almost the whole area of the channel and it still does not
display features of the I 1 1 1 ] planar channeling. The pla-
nar channeling is clearly seen, however, in the case of
0=0.6 .

Although the above observations are based on single
trajectories only, they are corroborated by the flux distri-
butions shown for the four directions in Fig. 12. In each
case 2000 trajectories were followed to a depth of
0.6 pm. A concentration of the flux in the central region
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of the channel diminishes gradually as one goes from
8=0' to 0.2' and on to 0.4'. At 8=0.6', a concentration
of the flux along the [ 111]planar channel can be seen.

C. Azimuthally averaged mean energy loss
near the (110)axis

In measuring the random energy loss using a single
crystal one needs to avoid any channeling effects. This
may prove difficult unless one knows precisely the direc-
tions that correspond to the so-called random incidence.
In order to identify randomlike directions, it is first
necessary to know how much tilt away from the axis is
needed to avoid any influence of the axis. Once a tilt has
been identified as free from axial influence, a detailed
study of azimuthal effects (planar channeling) must then
be done to fully pinpoint randomlike directions.

The first question can be best addressed by studying
the energy loss for the so-called rotating axial dip, i.e.,

the azimuthally averaged mean energy loss as a function
of the tilt angle with respect to the axis. Alternatively,
one might look into the (azimuthally averaged) probabili-

ty of the close encounter processes. This last approach
has recently been applied for the (100) axis in Si [44].
We are not aware, however, of any rotating dip studies
for the mean energy loss, which we undertook by the
simulation of the energy distributions at a number of tilts
from the (110) axis (0'&8& 16', with a step of 0.25 ),
using the four-component model of Ref. [39] (version C).
At each tilt, 64000 trajectories were followed to a depth
of 0.5 p,m. The azimuthal averaging was accomplished
by randomly selecting the azimuthal angle P for each in-
cident ion within the interval [0', 360'), assuming uniform
probability distribution. The resulting mean energy
losses, normalized to the random energy loss, are present-
ed in Fig. 13. The statistical uncertainty of the points
shown is less than 0.2%. Although the values shown
depart from the random level by a fraction of a percent

TILT=0 (b) TILT=.2

fi &o)

FIG. 11. Projections of trajectories onto the
interaction zone calculated for four tilts (a) 0',
(b) 0.2', (c) 0.4', and (d) 0.6' for the ( 110) axis.
Black dots indicate atom rows.

(c) (d) TILT=.6
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FIG. 12. Ion Aux distributions for four tilts
(a) 0', (b) 0.2', (c) 0.4', and (d) 0.6' from the
(110) axis.

only, the shoulder of the (110) axial dip can be seen, as
well as a fine structure for tilts 0&10'. One concludes
that the influence of the (110) dip extends until tilts
exceed 6=9'. In accord with Ref. [44], the observed fine
structure can be explained by the inhuence of planar
channels tangential to the azimuthal scans at certain tilts.
In the present case I 123I, I 158I, and I 135 I planes were
identified by means of the stereographic projection shown
in Fig. 14.

Finally, a detailed azimuthal scan (for the mean energy
loss) was calculated for the tilt of 10 used in the experi-
ment. The results presented in Fig. 15 display a number
of low- as well as high-index planar dips. Additionally,
energy losses increased by up to 5% over the random
value are observed over substantial intervals of the az-
imuthal angle. The energy loss for the randomlike direc-
tion used in the (110) experiment, namely, tilted by 10'
off the axis and azimuthally rotated by 10 with respect to
the (111I plane (towards the nearest I100I plane), is seen
to differ by less than l%%uo from the random value.
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FIG. 13. Azimuthally averaged mean energy loss (relative to
the random energy loss) as a function of tilt from the (110)
axis.
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FIG. 15. Mean energy loss (relative to the random energy
loss) for an azimuthal scan taken at a tilt of 10' from the (110)
axis.
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FIG. 14. Stereographic projection for the [011]axis, showing
various planes [(123), (158), and (135)] running tangent to the az-

imuthal scans for tilts 8&, 82, and 83 (cf. Fig. 13).

V. CONCLUSIONS

Based on the comparison between experimental and
Monte Carlo simulated energy-loss distributions for 625-
keV H+ ions transmitted through thin Si single crystals,
it has been found that the impact-parameter dependence
of the ion energy 'loss can be well described by the SCA
model applied to cqre electrons and the two-component
FEG model applied to valence electrons. These models,
based on first-order perturbation theory, reproduce very
closely the extensive set of experimental distributions cor-
responding to detailed angular scans through axial and
planar channels in Si, if a small adjustment of the stop-
ping cross sections due to core and valence electrons is
made. The corrections found, however, do not appear to
be consistent with the current estimates of the contribu-

tion to the stopping due to the higher-order terms in the
perturbation series.

The dependence of the energy loss to core electrons on
the impact parameter, predicted by the SCA model, can
be surprisingly well approximated by the MEEA model
with the parameter 0=1.4. Therefore, at least in distant
collisions of the ion with core electrons, the mean excita-
tion energy is about 1.4 times greater than the binding
energy for a given shell. It has also been found that the
local-density approximation of Lindhard and Winther ap-
plied to valence electrons does not agree with the experi-
mental data as well as the two-component FEG model
does. The comparison between the solid-state and free-
atom valence electron densities has shown a rather unex-
pected insensitivity of the energy distributions to the
solid-state effects in the electron density in Si.
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