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We present a numerical evaluation of the resonant charge-transfer cross sections for ions of various
positive charges. In the calculations we introduce trajectory parameters through the expression for
the instantaneous velocity of the projectile. Subsequent analysis reveals the existence of a natural
scaling law by which cross sections of ion-ion collisions can be generated from the isoelectronic ion-
atom charge-exchange cross section. We obtain a set of simple formulas useful for a semiquantitative
description of the features of such cross section curves and we discuss the oscillatory structure of

the cross sections.

PACS number(s): 34.70.+e

INTRODUCTION

The resonant charge-transfer process
XtT+X=>X+XT (1)

in the collision of an ion Xt with its parent atom has
received considerable attention and the magnitude and
variation of the cross section with collision energy have
been calculated for many ion-atom pairs [1-7]. The cross
sections oscillate about a mean which decreases mono-
tonically with increasing energy.

The ion and the atom may approach along either of the
two potential energy curves, one, £4(R), corresponding to
the gerade state of the molecular ion X, and the other,
ex(R), corresponding to the ungerade state, where R is
the internuclear distance. Except at very low energies the
nuclear trajectories may be taken to be linear and the
cross section is determined by the difference potential
Ae(R) = eu(R) - £4(R). In resonant charge-transfer
collisions of positive ions with positive ions

XZ+ +X(Z_1)+ = X(Z—1)+ +XZ+, (2)

the nuclear motion takes place in the Coulomb field
Z(Z —1)/R of the interacting ions and the assumption of
linear trajectories must be discarded. As shown by the
calculations of Bardsley et al. [8] the Coulomb repulsion
introduces an effective energy threshold below which the
charge-transfer process is ineffective. The approxima-
tions made by Bardsley et al. suppress any oscillatory
structures that might be present in the cross sections.
We extend the study of the resonant charge transfer in
positive ion-ion collisions by carrying out more accurate
calculations and we find that the oscillatory structures
persist although they are less pronounced than in the
ion-atom cases. We also seek a scaling procedure for the
collision energy and the cross sections in an attempt to
construct a universal curve from which useful estimates
can be made of the resonant charge transfer involving
any positive ion. We find that by multiplying each ion-
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atom cross section by appropriate “trajectory factors”
the cross sections of a series of ion-ion systems may be
generated.

THEORY AND CALCULATIONS

The charge-exchange cross section can be written in
the form [1,2]

o(B)=2n [ pdpsin{<(0)}, (3)

where ¢ (p) is the difference in phase arising in the elas-
tic scattering by the potentials e4(R) and e, (R) evalu-
ated at the impact parameter p. If in evaluating the nu-
clear trajectories we adopt a common potential E(R) =
1{eu(R) "e4(R)}, the semiclassical formula for the phase
difference is

)= [ mae(R) i ()

R, VR

where R; is the classical distance of closest approach for
the nuclei in the potential E(R), vg is the radial velocity
at R, given by

2

1/2
vR:{%[E—%E-e(R)]} : (5)

m is the ion mass, and E is the initial energy of the
projectile. For the positive ion-ion collisions the potential
e(R) is dominated by the Coulomb repulsion term Z(Z —
1)/R and the use of a common potential is valid down to
low velocities.

For the evaluation of the radial velocity of hydrogen-
like ions €,4(R) and e, (R) can be obtained directly from
the calculations for Hy* by scaling the energy in units of
Z? and length in units of Z~! and adding the Coulomb
repulsion. For lithium ion-atom collisions we used the

496 © 1994 The American Physical Society



30 RESONANT CHARGE TRANSFER IN COLLISIONS BETWEEN . .. 497
TABLE I. Model potential parameters for lithiumlike ions.
Ion a; az as ay as Q¢
Be?t 3.7085113 1.6302359 1.8415093 0.0216971 -0.1198800 0.1932634
B3t 4.7625048 1.7050000 3.9110000 0.1949878 -1.0000080 0.1932634
cHt 4.7625048 1.7050000 3.9110000 0.5350000 -0.9899999 0.1932634
N5+ 2.5061870 1.6802350 1.8415090 0.9750000 -0.1150000 0.1919999
ot 3.7625045 1.7050000 3.9110000 1.2557319 -1.0000000 0.1923000
actual electronic energy e(R) = 1{e.(R) +&4(R)}, and  tial AE(R) is
for the lithiumlike ions, we assumed that in the deter-
mination of vg from Eq. (5) the potential e(R) could be Ae(R) = =2 [ xpVx, - d9, (7
taken equal to the Coulomb repulsion. Q

The electron-electron interaction within the lithium-
like ions prevents a siniple scaling of the energy e, 4(R)
analogous to the hydrogenlike series. We calculated
Ae(R) numerically using the Holstein-Herring formula
[10-13], coupled to a model potential description of the
motion of the valence electron [14,15]. The model poten-
tial for X(¢=1+ has the form

1
V(r) = —;[N — 242747 — (aq + asr)e 7]
Qe
2r4

where N is the charge of the nucleus, a. is the core polar-
izability and a;, as, a3, a4, and a5 are parameters chosen
so that the eigenvalues corresponding to V' (r) match the
energy levels of X(Z=1)+_ The values of these parameters
for Bet, B2+, C3+, N4+, and O%* are listed in Table I.
The Holstein-Herring formula for the difference poten-

[1—e™], (6)
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FIG. 1. The exchange energy Ae(R)/Z? of the lithiumlike
ions evaluated using Eq. (7) plotted as functions of ZR.

where X, is a localized wave function and the integral
is evaluated over the midplane Q between the two nu-
clei. It is asymptotically exact. We adopted for x, the
first-order polarized wave function corresponding to the
perturbation of X(#=1+ by the electric field generated
by the presence of a charge Z [12]. The resulting values
of Ae(R) as shown in Fig. 1 are exponentially decreasing
functions of R.

The calculated cross sections for incident hydrogenlike
and lithiumlike ions are presented in Figs. 2 and 3. Be-
cause of our more detailed calculations of the exchange
interactions and a more complete treatment of the tra-
jectories, our cross sections differ from those of Bardsley
et al. [8] and in no case by more than a factor of 2. They
differ also in containing oscillatory structures though the
oscillations are less pronounced than for the ion-atom
cases.
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FIG. 2. The symmetric charge-transfer cross sections
o:(E) for the ions belonging to the hydrogenlike series.
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FIG. 3. The symmetric charge-transfer cross sections
o.(FE) for the ions belonging to the lithiumlike series.

UNIVERSAL CURVE

If it were not for the influence of the Coulomb repul-
sion, the cross sections for the hydrogenlike ions would
scale exactly to yield

0.(8) = gz (22 1), ®)

where o}, is the cross section for HT-H collision. For the
lithiumlike sequence, Eq. (8) may be replaced by

o.(E) = %a,(ﬂ‘%), (9)

where I; is the ionization potential of lithium, I, is the
ionization potential of the lithiumlike ion with charge Z-
1, and o; is the cross section of the Li-Lit* collision.

The cross sections evaluated numerically and scaled
according to Egs. (8) and (9) are shown in Figs. 4 and 5
as functions of the dimensionless energy u = '%'LIE At
high energies where the Coulomb repulsion is rélaEively
less important, the scaled cross sections for each sequence
tend to the corresponding limiting curve. At small ener-
gies the curves are distinct and the scaling fails.

To interpret the behavior of the cross sections, we
rewrite Eqgs. (3) and (4) using the radial coordinate R;
for the turning point as the independent variable instead

of the impact parameter. Thus with p? = Rf{l - —(ﬁ') },
o(E) may be written
a'(E) = 27r/ sinZC(Rt) T(E) R.dR;, (10)
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FIG. 4. The scaled symmetric charge-transfer cross sec-
tions for hydrogenlike ions. The rectangular box highlights
the crossing of the Het-He®* and Li**-Li** cross section
curves. All cross sections coalesce into a single curve at high
energies.
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FIG. 5. The scaled symmetric charge-transfer cross sec-
tions for lithiumlike ions. The cross sections coalesce at high

energies, though not as completely as in the hydrogenlike se-
ries.



50 RESONANT CHARGE TRANSFER IN COLLISIONS BETWEEN . .. 499

where R}, is the turning point for a head-on collision with
p = 0 and T(E) is a trajectory factor,

B e(R:) _ s’(Rt)Rt.

T(E)=1-—% V3 (11)
The phase difference ((R;) is given by
hat Ae(R)RAR

C(Rt) = l/ ( ) ) (12)

e [re( - 42 - r( - )

where v is the relative velocity. If we consider the pure

Coulombic case, s(R) = ﬂ%ﬂ, Ry =27 = ﬂ%-_ll, and
we obtain

T(E) =1-7/R; (13)

J

and

1 /°° Ae(R)RdR
vJR, [(R—7)%— (R —7)?]}

C(Re) =

(14)

For head-on collision R; in Eq. (14) is identical to Ry, =
Z(z-1)

'fhe “asymptotic theory” can be used for further sim-
plification of the above equations. Because the exchange
interaction decreases exponentially with distance the pre-
exponential factor in the phase integral (12) can be writ-
ten as a Taylor series expansion about the turning point.
By rewriting R = R; + y Eq. (14) reduces in the asymp-
totic region to

Ae(R: +y) (Re +y)dy

[(Re+)* (1 - 520) - 2 (1 - 242) |
Ae(R:) VR,

N

®e~¥/medy

B Vv (1 _ eggq _ e'g.tzzgn,)% 0 VY

_ \/EAE(Rt)\/—R,—rb
2 v

where r, = 1/4/2I, is the effective Bohr radius. It is
the presence of the trajectory factor that precludes the
invariance of the phase shift which is a required condi-
tion for the success of the scaling procedure. The scaling
procedure fails because the trajectory factor is a function
of energy. In the high-energy limit, T'(E) tends to unity
and the scaling is exact.

To evaluate (10) we make use of the Firsov approxi-
mation [16] in which sin?((R;) is taken to be equal to
0.5 for all the trajectories for which {(R;) is less than a
small number, often taken to be 0.28 [8,16], and zero oth-
erwise. If Ry is the corresponding value of R; at which
¢(Re = Ryf) = 0.28, we may write for the ion with charge
Z

T 27
_ (B [, (L)"2z-1
_(E)Eaﬂ, 1 (Io) R (16)

In the second line of the above equation we use the scaling
law for the length to write the “Firsov radius” R¢(Z) of
the ion in terms of the corresponding value of the hydro-
gen or lithium atom-ion system. The values correspond-
ing to the atom-ion systems are denoted by a subscript
0. The resulting equation shows how the cross section
for any ion system of a series can be derived from the
“Firsov cross section” of the first member of the family.
The accuracy of such predictions clearly improves with
the accuracy of the Firsov cross section. At this point

T=%(E), (15)

we replace this approximate value by the best available
ion-atom charge-exchange cross section. This could be
the result of an experiment or of a better ab initio cal-
culation as in the present case. Expressing the energy in
the dimensionless units of u, Eq. (16) is rewritten as

(£)orted =i - o 2222 () (2)]
(17)

This procedure produces a generalized “Firsov formula.”
As the cross section curves of the ion-atom collision in
general possess an oscillatory structure the cross sections
for any other member generated from them by a multi-
plication of the appropriate trajectory factor within the
square brackets of Eq. (17) exhibit similar structures.
The equations are valid for any series and can be used as
long as the cross section for the first member is known.
The Z dependence of the threshold of the unscaled
cross section can be obtained approximately by equating
the terms within the square brackets of Eq. (16) to zero.
To a first approximation the threshold energy is given by

Ex 2(Z-1) (:—O) (%)1/2.

The position of the threshold depends on the charge and
the mass of the ion. A clear manifestation of mass depen-
dence is evident in Fig. 4. There the mass effect causes
the crossing of the Li2*-Li3* and the Het-He?* curves.
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The masses of the ions with large Z are proportional to
Z, m, ~ BmoZ, where 3 is a constant. Then Eq. (17)
shows that for ions with large Z the dimensionless thresh-
old energy is independent of the charge Z. Thus there is
a theoretical upper limit wugy, for the scaled cross section
threshold; un ~ %

of the scaled curves can be estimated using the equation

(2)

s
200th

. The positions of the maxima

1/2
/mo

do(u)
du

Z(Z 1)
2

= 0= v?o)(u)o

1/2
0 m,

X [gaa - 00] = 0. (18)

In order to assess the accuracy of the analytic expres-
sions we compare their predictions with our numerical
calculations as shown in Fig. 6. The agreement is ex-
cellent, although the assumption that all the exchange
processes are limited to a critical sphere systematically
leads to an underestimate of the cross sections and causes
a slight discrepancy with the numerical results. The cross
sections exhibit distinct oscillatory patterns at large val-
ues of the ion energies. The oscillations are periodic func-
tions of inverse velocity with period proportional to 1/Z
and amplitude proportional to 1/Z2.

For the hydrogenlike ion group the oscillations are
rather smooth. The oscillations scale exactly and the
results for all the ions coincide at high energies. The os-

cillations of the Li-Li' cross section are far stronger than
in the H-H* cross section. The same trend is apparent
in the cross sections of the ions of the corresponding se-
ries. Because of the trajectory effect in the cross section
calculation the amplitude of the oscillations is reduced
at high energies of collision and for small energies the
oscillations disappear, but the inclusion of the trajectory
factor does not remove the oscillatory structure of the
ion-ion cross sections completely. The phase difference
((p) remains almost invariant at sufficiently high scaled
energies so that the oscillations of the various curves al-
most coincide. For the scaled curves of the calculated
cross sections the maxima occur at about ten times the
threshold energy as suggested by Eq. (18).

Our formulas may be useful in the planning of experi-
mental studies of ion-ion charge-exchange cross sections.
For example, oscillations of the charge-transfer cross sec-
tions have been measured [17] for the atom-ion Mg-Mg™,
Be-Be*, Ca-Ca™, and Sr-Sr* collisions and may be ex-
pected for the respective isoelectronic ion series. The
universal curve that we obtained should be useful in in-
terpreting experimental results for various ion pairs.
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