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Resonant charge transfer in collisions between positive ions
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We present a numerical evaluation of the resonant charge-transfer cross sections for ions of various

positive charges. In the calculations we introduce trajectory parameters through the expression for

the instantaneous velocity of the projectile. Subsequent analysis reveals the existence of a natural

scaling law by which cross sections of ion-ion collisions can be generated from the isoelectronic ion-

atom charge-exchange cross section. We obtain a set of simple formulas useful for a semiquantitative

description of the features of such cross section curves and we discuss the oscillatory structure of
the cross sections.

PACS number(s): 34.70.+e

INTRODUCTION

The resonant charge-transfer process

atom cross section by appropriate "trajectory factors"
the cross sections of a series of ion-ion systems may be
generated.

X+ + X w X + X+

in the collision of an ion X+ with its parent atom has
received considerable attention and the magnitude and
variation of the cross section with collision energy have
been calculated for many ion-atom pairs [1—7]. The cross
sections oscillate about a mean which decreases mono-
tonically with increasing energy.

The ion and the atom may approach along either of the
two potential energy curves, one, sg (R), corresponding to
the gerade state of the molecular ion X2+ and the other,
E:„(R),corresponding to the ungerade state, where R is
the internuclear distance. Except at very low energies the
nuclear trajectories may be taken to be linear and the
cross section is determined by the difference potential
b,s(R) = s„(R) —ss(R). In resonant charge-transfer
collisions of positive ions with positive ions

X ++X( ')+ w X( ')++X + (2)

the nuclear motion takes place in the Coulomb Geld

Z(Z —1)/R of the interacting ions and the assumption of
linear trajectories must be discarded. As shown by the
calculations of Bardsley et al. [8] the Coulomb repulsion
introduces an effective energy threshold below which the
charge-transfer process is ineffective. The approxima-
tions made by Bardsley et al. suppress any oscillatory
structures that might be present in the cross sections.

We extend the study of the resonant charge transfer in
positive ion-ion collisions by carrying out more accurate
calculations and we find that the oscillatory structures
persist although they are less pronounced than in the
ion-atom cases. We also seek a scaling procedure for the
collision energy and the cross sections in an attempt to
construct a universal curve from which useful estimates
can be made of the resonant charge transfer involving

any positive ion. We find that by multiplying each ion-

THEORY AND CALCULATIONS

The charge-exchange cross section can be written in
the form [1,2]

o(s) = 2m pdp sin (j(p)),
0

where ((p) is the difference in phase arising in the elas-

tic scattering by the potentials sg (R) and s„(R) evalu-

ated at the impact parameter p. Ef in evaluating the nu-

clear trajectories we adopt a common potential s(R) =

2 (s„(R'i '-zg(R)), the semiclassical formula for the phase
difference is

((p) = dR,
As (R

R, UR
(4)

where R~ is the classical distance of closest approach for
the nuclei in the potential (sR), vR is the radial velocity
at R, given by

ii2
2 p I

vs = —E — E —s(R)
m R2

m is the ion mass, and E is the initial energy of the
projectile. For the positive ion-ion collisions the potential
s(R) is dominated by the Coulomb repulsion term Z(Z—
1)/R and the use of a common potential is valid down to
low velocities.

For the evaluation of the radial velocity of hydrogen-
like ions ss(R) and s„(R) can be obtained directly from
the calculations for H2+ by scaling the energy in units of
Z and length in units of Z and adding the Coulomb
repulsion. For lithium ion-atom collisions we used the
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where Rp, is the turning point for a head-on collision with

p = 0 and T(E) is a trajectory factor,

s(R, ) s'(R, )R,
j

The phase difference ((Rz) is given by

C(R) =-' ( ) „(»)
Rg R2 (1 e(R)

) Rz (1 z(Rg)
)

where e is the relative velocity. If we consider the pure

Coulombic case, s(R) = (& ), R~ = 2r = (@ ), and
we obtain

T(E) = 1 —r/Rz

and

1 be(R)RdR
~, [(R —r )

2 —(Rg —r) 2] ' (14)

For head-on collision Rz in Eq. (14) is identical to R~ =
Z(Z —i)

E
The "asymptotic theory" can be used for further sim-

plification of the above equations. Because the exchange
interaction decreases exponentially with distance the pre-
exponential factor in the phase integral (12) can be writ-
ten as a Taylor series expansion about the turning point.
By rewriting R = Rz + y Eq. (14) reduces in the asymp-
totic region to

as(R, + y) (R, + y) dy
&(a)= 'f-

(Z + ) (1
* '+"

~

—R 1 —'
t

as(R, )v R, ~-~/'"~dy
1

e(R&) c'(R&)Rg 0
E 2E

T z E,hs (Rz) vt'R, rs
V

where rs = 1//2I, is the effective Bohr radius. It is
the presence of the trajectory factor that precludes the
invariance of the phase shift which is a required condi-
tion for the success of the scaling procedure. The scaling
procedure fails because the trajectory factor is a function
of energy. In the high-energy limit, T(E) tends to unity
and the scaling is exact.

To evaluate (10) we make use of the Firsov approxi-
mation [16] in which sins((Rz) is taken to be equal to
0.5 for all the trajectories for which ((Rq) is less than a
small number, often taken to be 0.28 [8,16], and zero oth-
erwise. If Ry is the corresponding value of Rq at which

((R& ——Ry) = 0.28, we may write for the ion with charge
Z

~, (E)= -R', (Z) 1—

/Ip) ~, (I,) ~ Z(S —1)
(I,) 2 (,Ip) ERfp

(16)

In the second line of the above equation we use the scaling
law for the length to write the "Firsov radius" Ry (Z) of
the ion in terms of the corresponding value of the hydro-
gen or lithium atom-ion system. The values correspond-
ing to the atom-ion systems are denoted by a subscript
0. The resulting equation shows how the cross section
for any ion system of a series can be derived &om the
"Firsov cross section" of the first member of the family.
The accuracy of such predictions clearly improves with
the accuracy of the Firsov cross section. At this point

we replace this approximate value by the best available
ion-atom charge-exchange cross section. This could be
the result of an experiment or of a better ab initio cal-
culation as in the present case. Expressing the energy in
the dimensionless units of u, Eq. (16) is rewritten as

(I ) w Z(Z —1) (mo) (lo)
&l~

(Ip) '
20p u mz I,

(17)

This procedure produces a generalized "Firsov formula. "
As the cross section curves of the ion-atom collision in
general possess an oscillatory structure the cross sections
for any other member generated &om them by a multi-
plication of the appropriate trajectory factor within the
square brackets of Eq. (17) exhibit similar structures.
The equations are valid for any series and can be used as
long as the cross section for the first member is known.

The Z dependence of the threshold of the unscaled
cross section can be obtained approximately by equating
the terms within the square brackets of Eq. (16) to zero.
To a first approximation the threshold energy is given by

The position of the threshold depends on the charge and
the mass of the ion. A clear manifestation of mass depen-
dence is evident in Fig. 4. There the mass eKect causes
the crossing of the Li +-Li + and the He+-He + curves.
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The masses of the ions with large Z are proportional to
Z, m, PmpZ, where P is a constant. Then Eq. (17)
shows that for ions with large Z the dimensionless thresh-
old energy is independent of the charge Z. Thus there is
a theoretical upper limit utah for the scaled cross section
threshold; nss & gs . The positions of the rnaxitna

of the scaled curves can be estimated using the equation

do (u) 2, zy2 Z(Z —1) (I )I mo=0Wu 0'p u o'p
du 2 l.,I ) m,

X —0'p —Op = 0.
2

In order to assess the accuracy of the analytic expres-
sions we compare their predictions with our numerical
calculations as shown in Fig. 6. The agreement is ex-
cellent, although the assumption that all the exchange
processes are limited to a critical sphere systematically
leads to an underestimate of the cross sections and causes
a slight discrepancy with the numerical results. The cross
sections exhibit distinct oscillatory patterns at large val-
ues of the ion energies. The oscillations are periodic func-
tions of inverse velocity with period proportional to I/Z
and amplitude proportional to 1/Z .

For the hydrogenlike ion group the oscillations are
rather smooth. The oscillations scale exactly and the
results for all the ions coincide at high energies. The os-

cillations of the Li-Li+ cross section are far stronger than
in the H-H+ cross section. The same trend is apparent
in the cross sections of the ions of the corresponding se-
ries. Because of the trajectory effect in the cross section
calculation the amplitude of the oscillations is reduced
at high energies of collision and for small energies the
oscillations disappear, but the inclusion of the trajectory
factor does not remove the oscillatory structure of the
ion-ion cross sections completely. The phase difference

((p) remains almost invariant at sufliciently high scaled
energies so that the oscillations of the various curves al-
most coincide. For the scaled curves of the calculated
cross sections the maxima occur at about ten times the
threshold energy as suggested by Eq. (18).

Our formulas may be useful in the planning of experi-
mental studies of ion-ion charge-exchange cross sections.
For example, oscillations of the charge-transfer cross sec-
tions have been measured [17j for the atom-ion Mg-Mg+,
Be-Be+, Ca-Ca+, and Sr-Sr+ collisions and may be ex-
pected for the respective isoelectronic ion series. The
universal curve that we obtained should be useful in in-
terpreting experimental results for various ion pairs.
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