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Muon transfer and elastic scattering in t+ dp collisions
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Muon transfer and elastic scattering in low-energy collisions of t + dt's(ls) are studied by the
hyperspherical coupled-channel method in which many closed channels are explicitly coupled to
obtain converged cross sections. A hybrid procedure of the diabatic-by-sector and the traditional
adiabatic-basis-expansion methods is developed for solving a large set of coupled equations in8uenced
by the nearly singular nature of couplings induced by numerous avoided crossings. It is shown that
the adiabatic states belonging to the n = 2 excited states in the separated-atom limit contribute
signi6cantly to the muon transfer. The discrepancy between the previous hyperspherical calculation
of Fukuda et al. [Phys. Rev. A 41, 145, (1990)] and other existing theoretical calculations has been
resolved by taking into account the couplings with these excited states.

PACS number(s): 34.70.+e, 36.10.Dr

I. INTRODUCTION

Muon transfer between hydrogen isotopes in thermal-
energy collisions

t+ dp(ls) m tp(ls) + d

plays an important role as a trigger process in the chain
cycle of the muon catalyzed fusion (txCF) [1]. Although
this process is similar to the electron transfer in low-

energy ion-atom collisions, there exists a distinct differ-
ence owing to the heavy mass of the leptonic particle.
The standard perturbed stationary method, in which the
electronic states of the diatomic molecule of the fixed nu-
clei are used as basis functions for the expansion, breaks
down since it does not explicitly take into account the
finitude of the nucleon masses and hence does not satisfy
the correct boundary conditions of the entrance and the
exit channels in the sense that the ground-state energies
of the atoms dp, and tp are degenerate in this representa-
tion. Their precise binding energies differ by 48 eV, which
is much larger than the kinetic energy of the projectile
in a thermal energy region. A large number of adiabatic
basis functions, including continuum states, is needed for
the expansion to remedy this defect in the framework of
the traditional adiabatic-state expansion [2].

Kobayashi et al. [3] developed an alternative type
of adiabatic basis expansion in which molecular states
are constructed in Jacobi coordinates and the bound-
ary conditions are fulfilled exactly. Kamimura applied
the Kohn-Hulthen-Kato-type variational method using
Gaussian basis functions [4]. These two methods gave

cross sections consistent with each other. Another ap-
proach that is also formulated in Jacobi coordinates is
the hyperspherical coupled-channel (HSCC) xnethod. In
this method, the two sets of Jacobi coordinates of the
entrance and the exit channels are unified into a six-
dimensional spherical space. Fukuda et aL [5] applied the
HSCC method to the process (1) and obtained transfer
cross sections smaller than those of the two aforexnen-
tioned methods by a factor of 2. The problem of which
value is closer to the real cross section has been unsettled.

Recently the present authors successfully applied the
HSCC method to positronium formation from a hydro-
gen atom [6]. We have demonstrated that the forma-
tion cross sections agree well with other elaborate vari-
ational calculations and the hyperspherical approach is
a powerful and reliable tool for rearrangement collisions
of Coulomb three-body systems. The physical situation
of the positronium formation process is somewhat differ-
ent from that of the system (1). One particle is lighter
than the other two by only one order of magnitude in the
system (1), while one particle is heavier than the other
two by three orders of magnitude in the positronium for-
mation. However, the validity of the hyperspherical rep-
resentation is not expected to be worse for the system
(1). The HSCC method is hopeful for general rearrange-
ment collisions since it has a conspicuous merit that the
coupled differential equations do not have a nonlocal po-
tential. The clarification of the discrepancy between the
HSCC calculation and the others is required not only for
the importance in the application to the pCF, but also
for the understanding of the mechanism of rearrangement
collisions.
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II. THEORY

We denote the internal coordinates of dp and tp, by
rT and r~ and the position vectors of the triton and the
deuteron measured &om the centers of mass of the atoms
dp and tp by RT and R~, respectively. The hyperradius

p is related to the 3acobi coordinates as follows:

vp = vTRT + mTpT = v~Bp + m~'p~,2

Mgm„mT—
Mg+ m„

Mgm„mp— )Mg+ m„
(Mg+ m„)M,

vz' =
My+ M, +m„

(4)

and

(M( + m„)Mg
vg =

Mg+ Mg+ m„
(6)

In the above equations, Mg, Mq, and m„are the masses
of a deuteron, a triton, and a muon, respectively. Here-
after, unless stated explicitly otherwise, we use the re-
duced muon atomic unit (m.a.u. ) in which the reduced
mass

(Mg + Mg)m„
m =

Mg+ Mg+ m„
(7)

is set to unity in place of the electron mass in addition
to h = e = 1. The scale of the length is smaller and the
scale of the energy is larger, by a factor of 200, than those
of the ordinary atomic unit. After separating the center-
of-mass motion of the total system, the Hamiltonian of
the collision system is written as [6]

1 t'd'
H = ——~, + ——~+6 &(p, A)

2v (dp' pdp)

with

A2
h g = +V(p, O),

where A is the five-dimensional grand-angular-
momentum operator and the variable 0 represents the
set of five angular variables in the hyperspherical space.
The arbitrary parameter v is chosen to be the reduced
mass between d and t, namely,

MgMg

Mg+ M]

in the practical calculations. V(p, 0) is the sum of the
Coulomb interactions among the three particles and the

where v is an arbitrary parameter that is a dimension of
mass, ml and m~ are the reduced masses of the atoms
dp and tp, and vT and vp are the reduced masses for
the relative motion in the initial and the final channels,
respectively,

adiabatic Hamiltonian h g contains p as a parameter.
The adiabatic basis functions are the eigenfunctions of
h, g

As stated above the diabatic-by-sector method has a
merit that the coupled equations can be solved easily
even when nonadiabatic couplings among the adiabatic
potential curves are nearly singular, but it also has a
peculiarity that the couplings among the basis states de-
crease less rapidly with the increase of the hyperradius

p than the ordinary nonadiabatic couplings. The leading
term of the coupling matrix elements in the diabatic-
by-sector representation behaves asymptotically as 1/p .

The slow decay of the couplings sometimes brings about
difficulty in accurate numerical solution of the coupled
equations when the collision energy is extremely small.
The traditional adiabatic treatment is more suitable for
thermal energy collisions if no avoided crossing occurs.

Figures 1 and 2 show the adiabatic potential curves for
the total angular momenta J = 0 and 1. The lowest curve
corresponds to the final channel and the next curve to the
initial channels. Noting that there is no avoided cross-
ing between these two main channels, we have adopted
a hybrid scheme in which the ordinary adiabatic repre-
sentation is used for states that have no avoided crossing
with others, while the locally diabatic representation is

used for the other states

yk( g) V '(P ~)
v *(p~, ~)

if y, has no avoided crossing
otherwise.

(14)

The representation of each state is chosen independently
in each sector. The adiabatic representation is used in

h-~v' =
I

U*(s) —,
I v,8Va')

We have obtained the eigenvalues and the eigenfunc-
tions of the above equation by diagonalizing the adiabatic
Hamiltonian at each p in terms of Sturmian orbitals. We
do not mix the hyperspherical harmonics, which are the
eigenfunctions of the grand-angular-momentum operator
A, with the trial functions in the present calculations
since it turned out that their contribution is small for
the system dp + t.

In a previous study of positronium formation [6] the
scattering equation

(H —E)C (p, 0) = 0

was solved by utilizing the diabatic-by-sector method [7]
to overcome the numerical difficulty caused by sharply
peaked nonadiabatic couplings in the vicinity of avoided
crossing points of the adiabatic potential curves. In this
method, the entire region of p is divided into a large num-
ber of small sectors and the scattering wave function is
expanded in terms of basis functions that are diabatic
locally in each sector. The diabatic basis functions were
chosen to be the eigenfunctions of the adiabatic Hamil-
tonian h g(p, 0) at a fixed point pl, in each sector

p, (p1„0).
- F,"(p)

p
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E
0.001

0.01

0.1

Process
elastic

transfer

elastic

transfer

elastic
transfer

A=1
1.82
1.7a

8.57
9.1
2.39
23a
2.69
2.9
4.43
0.819

n=2
1.65

13.6

2.19

4.25

4.16
1.29

1.64

14.0

2.17

4.40

4.13
1.34

1.63

14.2

2.15

4.44

4.12
1.35

Fukuda, Ishihara, and Hara [5].

TABLE I. Convergence of the elastic and transfer cross
sections for J = 0 in units of 10 cm . The labels of the
states mean that all the states with the principal quantum
number n and below in the separated-atom limit are coupled
fully in the calculations. E is the center-of-mass collision

energy in eV.

E Method

0.001

0.01

0.1

present
Ka

KITb
MAR
present

Ka
KIT

MAR
present

Ka
MAR

Elastic
J=O J= 1

1.63

2.0
1.56
2.15 1.20[-2]

2.13
2.13
4.12

4.15

1.22 [-2]
8.60 [-2]

9.32[-2]

Transfer
J=O J=1
14.2 3.56[-2]
16. 3.6[-2]

16.0
13.5

5.1
4.9
4.25
1.35
1.6
1.30

1.12[-1]
1.1[-1]

1.13[-1]
3.53[-1]
3.6[-1]
3.54[-1]

Kamimura [4].
Kobayashi, Ishihara, and Toshima [3].' Chiccoli et al. [2].

TABLE III. Comparison with other theoretical cross sec-
tions. Cross sections are given in units of 10 cm . Nota-
tions are the same as in Table I.

up to n = 4. By contrast, the change of the elastic cross
sections is not so drastic for going from n = 1 to n = 2.
The elastic scattering proceeds more adiabatically since
it enters and exits along the same potential curve. Table
II shows the convergence behavior of the cross sections
for J = 1. In this case the convergence is faster than in
the case of J = 0 both for the transfer and the elastic
scatterings. The elastic cross sections have converged for
the n = 1 set while transfer cross sections change by 10%
for adding the couplings with the n = 2 states. We do
not present the elastic cross sections of J = 1 for the
lowest energy since they are too small to be calculated
accurately. We give a rough estimate of 4 x 10 cm
for the elastic cross section at E = 0.001 eV.

In Table III we compare the present cross sections
with other theoretical calculations. The agreement of the
present results with others is generally excellent. Among
them our cross sections are very close to the results of the
multichannel adiabatic representation [2] at all the ener-

gies listed in the table. The disagreement of the previous
HSCC results reported by Fukuda et al. [5] has been re-

solved satisfactorily by the consideration of the couplings
with the excited channels.

Although agreement is improved significantly, it may
not be easy to understand intuitively the large contribu-
tion of the excited states. The adiabatic energy levels of
the excited states are well separated from the two low-

est levels as shown in Figs. 1 and 2. It is to be noted
that the process (1) is entirely a nonadiabatic transition

between levels which have no crossing point. The energy
splitting between the initial and the 6nal states is 48 eV,
which is much larger than the collision energy. The non-
adiabatic transition between the lowest two levels occurs
gradually over a wide range of p and it can be affected
even by the weakly coupled higher levels. The fact that
the transfer cross sections are larger than the elastic cross
sections below 0.01 eV indicates the importance of non-
adiabatic couplings in the collision system of t+ dp. It is
also helpful for the understanding to mention that a huge
number of basis functions is needed, including continuum
states, to get convergence for the calculations of Chiccoli
et aL [2], who used the traditional Born-Oppenheimer
adiabatic states representation.

We have studied the scatterings of an idealized three-
body system in this paper. In the practical situation of
the muon catalyzed fusion, however, the collisions oc-
cur with molecules D2 or DT and the present results are
not directly related to those in the fusion experiments.
Among the modi6cations needed for the realistic prob-
lems, the screening eH'ect by the target electrons is the
most important. According to a previous study [8], the
elastic cross sections are greatly changed below 0.1 eV,
while the effect is much smaller for the transfer cross sec-
tions. We leave the problem of the electron screening and
the molecular structure to a future study.

IV. SUMMARY

0.001
0.01

0.1

Process
transfer
elastic

transfer
elastic

transfer

4.09[-2]
1.19[-2]
1.29[-1]
8.44[-2]
4.06[-1]

n=2
3.66[-2]
1.20[-2]
1.16[-1]
8.56[-2]
3.63[-1]

n=j
3.58[-2]
1.20[-2]
1.13[-1]
8.59[-2]
3.55[-1]

3.56[-2]
1.20[-2]
1.12[-3]
8.60[-2]
3.53[-1]

TABLE II ~ Convergence of the elastic and transfer cross
sections for J = 1 in units of 10 cm . a[b] denotes a x 10 .

Other notations are the same as in Table I.
We have executed large-scale coupled-channel calcula-

tions based on the hyperspherical-coordinate representa-
tion for the collisions of t + dp increasing the number
of basis functions until convergence is achieved. It was

found that the couplings with excited levels have to be
taken into account for the muon transfer and good agree-
ment was obtained for both the elastic and transfer cross
sections with other existing theoretical studies. An alter-
native numerical procedure that possesses both the mer-
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its of the traditional adiabatic-base expansion and the
diabatic-by-sector methods has been proposed for solv-
ing a large set of coupled differential equations for ther-
mal energy collisions. It was confirmed that the HSCC
method is a useful and reliable method for rearrangement
collisions of Coulomb three-body systems.
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