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Convergence of bound-electron —positron pair production calculations
for relativistic heavy-ion collisions
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Large-basis coupled-channel Dirac-equation calculations of bound-electron-positron pair production
in relativistic heavy-ion collisions are presented. The relative importance of the enhancement of the
coupled-channel calculations over corresponding calculations performed in perturbation theory is shown

to decrease with increasing basis size, indicating a systematic reduction of this effect of nonperturbative
enhancement with improving convergence of the calculations. The total nonperturbative enhancement
of the cross section is shown to be about 7 b for Pb' + on Pb' + at the Brookhaven Relativistic Heavy-
Ion Collider, only some 6% over perturbation theory.

PACS number(s): 34.90.+q, 25.75.+ r

I. INTRODUCTION

In a previous series of papers [1—3], we have addressed
the problem of reliably calculating the probability for
bound-electron-positron pair production in relativistic
heavy-ion collisions. Apart from the intrinsic physics in-
terest of this problem, there is a practical reason to be in-

terested in these calculations: pair production with the
electron captured into a bound state of one of the pair of
fully stripped ions in a collider such as the Brookhaven
Relativistic Heavy-Ion Collider (RHIC} provides an im-

portant limit on the beam lifetime; change of the charge
of an ion leads to the loss of that ion from the beam. We
were originally led to examine this problem by results [4]
of nonperturbative coupled-channel calculations in a lim-
ited basis that found, at beam kinetic energies of 1.2 and
2.6 GeV/nucleon for the smallest impact parameter,
bound-electron-positron production probabilities that
exceeded corresponding probabilities obtained in first-
order perturbation theory by about two orders of magni-
tude.

We were faced with several formidable challenges at
the time we began to attack this problem. One was that
the previous nonperturbative calculations were per-
formed at relatively low relativistic energies (e.g. , y =2.3)
using techniques appropriate for those energies, while we
had to consider ultrarelativistic energies (y=23000} of
one ion viewed from the rest frame of the other in RHIC.
A second major challenge was that we really had no mea-
sure of how large a Hilbert space would be needed to ob-
tain meaningful nonperturbative calculations at such
large energies. Nevertheless, the problem was pursued
because there was not even a crude estimate of the mag-
nitude of the nonperturbative bound-electron —positron
pair production at RHIC.

'Present address: Renaissance Tech Corporation, 25 East
Loop Road, Stony Brook, NY 11790.

Our first significant result [1] was establishing that the
cross section for very high energies (high equivalent fixed
target y ) was of the form

0.= A lny+B,

where A and 8 are independent of energy (y) and we

neglect small terms of order iny/y . The A 1ny term
comes from the large impact region of the interaction,
with A entirely determined by perturbation theory and
1ny expressing the increasing impact parameter cutofF'

with increasing y. The energy independent B expresses
both the perturbative and nonperturbative contributions
at smaller impact parameters; there is no dependence on

y for nonperturbative impact parameters.
En route to obtaining the result expressed in Eq. (1), we

had first obtained closed forms for the multipole decom-
position of the interaction in the asymptotic (large-y )

limit. We then showed that the y dependence of the
asymptotic form could be removed by a gauge transfor-
mation.

We have already presented a Brief Report [2] of the use
of the asymptotic forms of the interaction to perform
coupled-channel calculations in bases extended to
~~+5, E~14.4m, c . In that work, we also showed the
gauge nonindependence of calculations done in a truncat-
ed basis space for both asymptotic (high-y) interactions
and an exact interaction at y =2.3; for the impact param-
eter b=0, we showed that the subtraction of a gauge in-

variant lny term caused great changes in computed cross
sections for the limited basis of Ref. [4]. The paper of
Rumrich and Greiner [5] had previously examined in a
forrnal way how invariance is spoiled by an incomplete
basis.

Since our calculations in the larger basis of the prelirni-

nary report indicated that the nonperturbative contribu-
tions were only on the order of 10% of the total cross
section for bound-electron —positron pair production, we

next decided that it would be a worthwhile effort to bring
the uncertainty in the calculated perturbative cross sec-
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tion in the large impact-parameter region below the es-
timated nonperturbative contribution to the cross section
[3].

The present paper comprises an updated description of
the convergence of the bound-electron —positron produc-
tion in ultrarelativistic heavy-ion reactions. Following
this Introduction, we describe in Sec. II the specific de-
tails of the interaction and of our solution of the
coupled-channel Dirac-equation calculations. Section III
presents our latest numerical results; we show the con-
tinuing improved convergence with the basis expanded to
Ed+16m, c, ~~+8 (7936 channels). Since our calcu-
altions have concentrated on only the lowest bound-state
E electron plus any continuum positron pair production,
we discuss in Sec. IV the small contribution of non-E
electron-positron pair production. We return to the rela-
tively low-energy y=2. 3 zero impact parameter case in
Sec. V; we demonstrate that by a straightforward expan-
sion of the number of basis states, one finds that the
enhancement over perturbation theory has been reduced
to a factor of 9 from the "about 2 orders of magnitude
enhancement" reported with a more severely truncated
basis [4]. In the last section of the main text, we show the
unimportance of the projectile form factor along with es-
timates of screening effects at fixed target energies. Ap-
pendix A provides the derivation of the exact multipole
decomposition of the interaction for b =0 valid for any
y, which was utilized in Sec. V. Appendix B provides a
comparison of the interaction form of Appendix A with
the large-y forms.

II. COUPLED-CHANNEL CALCULATIONS:
TECHNICAL DETAILS

is that, due to the inherent cancellations, one must take
particular care to obtain numerical accuracy; failure in
proper cancellation naturally leads to overpredicted nu-
merical results. Consequently, in this section we not only
describe the interaction and the equations that were
solved, but we also lay out several computational tech-
niques that were necessary to attain the requisite accura-
cy.

A. Large y asymptotic form of the interaction

In the consideration of the electromagnetic interaction
of relativistic heavy ions, one may assume straight-line
trajectories, fix a coordinate system on one of the ions,
and then express the interaction of the moving ion (pro-
jectile) as the Lorentz transformed Coulomb potential

aZ (1—u~a, )
V(p, z, t)=

[[{b—p)/y] +(z —v t) ]'~

Here p, z, and t are the coordinates of the moving paten-
tial source (projectile) relative to the fixed target, b is the
impact parameter, perpendicular to the z axis along
which the projectile travels, a, is the Dirac matrix, and

Zz, v~, and y are the charge, velocity, and y factor for
the projectile (y= I/Ql —v ). The y that appears here
is that appropriate to a frame in which one of the ions is
at rest: y=2y«~ —1. y«b, the energy of each colliding
beam in RHIC, is a little more than 100, so that
y-2X 104.

In the limit of large y and impact parameter not too
large, there are closed forms [1] for the multipole decom-
position of the potential Eq. {2),

It is evident from previous calculations of bound-
electron —positron pair production with heavy ions that
the process is quasiadiabatic, that is, flux is seen to flow
into positron excitations and reach a maximum at about
the time of ion-ion closest approach, and then much of
the flux flows back out of the excitations by the time the
reaction is finished. This means that in perturbation
theory there is effectively a large cancellation between
negative and positive time contributions to the amplitude
for producing positrons. There is an analogous cancella-
tion in the full coupled-channel calculations. The result

Mt rt= dQ&P
1

[[(b—p)/y]2+(z —u~t) j

V(p, z, t)=aZ„{1—u a, )+Mt (r, t)&P (e,g)

=aZ~(1 —v~a, )g VP(r, t) .

For m )0, the asymptotic form is

(3)

MP{r,t)=
pm 01

'X, m

2 2
m/2

2m r —t
b2

t &r &)/b'+t'

2m b

m r 2

m/2

+b +t &r.

This expression is valid for positive m and t. Negative m and t expressions are given by symmetry.
For m =0, the asymptotic form is
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2QI —,r &t

M'(r r)= X . I' — 21n2y+ln
T T b2

(5)

PI

I

21n2y —2 g —,+b +t &r,
m-—i~

valid for positive t, with the negative t form again to be
obtained from symmetry.

B. Gauge transformations of the interaction

If one makes a gauge transformation on the wave func-
tion,

—i y(r, t),I,i (6)

then the Hamiltonian is modified by the addition of the
two terms to give

i Bg' By(r, t)K (t) ' —aVy(r, —t)
Bt Bt

The use of

y& =2 In2yaZ~8(z t)— (8)

removes the y-dependent part of the asymptotic (large-y)
form Eq. (5} of the interaction, (2 In2y )aZ (1
—a, )5(z —t).

However, one can do better and find a gauge transfor-
mation that removes both the y dependence and the lnb
dependence of the interaction. The use of

In[y(z vent)+—Qy (z v t) +b ]—

adds to the interaction V(p, z, t),

aZ 1—
P a,

VP

&m.(21 + 1) t
r r

0, r & +b'+r'
X . r2 —t2—ln, +b +t &r.

b 2

(10}

Note that both these transformations affect the m =0
part of the interaction only.

An additional computational advantage of the form
Eq. (10) is that the large positive and negative time con-
tributions inherent in the term Q, (t/r) of Eq. (5) have

Q(z v~ t) +b /y—
The large-y expression for the m =0 gauge transformed
interaction then becomes

I

been removed. Instead of needing to solve the equation
beginning at t = —100 up to t =+100, as is necessary
with the untransformed interaction, we now find it
sufficient to begin at t = —16 and go to t =16. (Units of
time are the Compton wavelength of the electron,
K, =film, c =386 fm, divided by the speed of light c.)
The paper of Toshima and Eichler [6] previously utilized
a similar transform to solve the diSculty in calculations
with interactions that drop off as slowly as I /t. It is the
gauge expressed in Eq. (10) that we utilize in the extended
calculations reported in Sec. III; the results displayed in
Tables I and II were calculated in this gauge.

C. Dirac equation and its solution

We wish to solve the time-dependent Dirac equation

i ' =[Ho+ V(p, z, t)]g(r, t)
. B (r, t)

P(r, t)=g a](t)Pk(r)e
k

(12)

Pk includes the bound electron states, continuum elec-
tron states, and states in the negative energy continuum.
The Dirac equation then becomes a set of coupled equa-
tions in the time-dependent amplitudes of the basis set:

(t) i (E~ —Ek )t= —l ya](t}(yf'~ V(p, z, t}~yk )e

(13)

where the bracket indicates integration over the three
spatial coordinates. Continuing to follow Ref. [4], we

represent the positive and negative continuum states as
wave packets:

EI, +hE/2

k +g+ Ek —hE/2kE (r)= &F(r)dE . (14)

for a single electron.

Ho=a p+P —ZTe /r

is the Hamiltonian of an electron in the rest frame of one
of the completely stripped ion. V(p, z, t } given above is
the time-dependent classical field due to the other collid-
ing ion.

We expand the solutions [4] of the Dirac equation
P(r, t) in a time-independent basis of eigenfunctions of
Ho.
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TABLE I. Results of coupled-channel calculations (Pb+Pb case) for bound-electron —positron
cross-section contributions at various impact parameters b and basis truncations. The cross-section
contribution (in barns) at each impact parameter is obtained by Eq. (19), except at b =0 where it ob-
tained from Eq. (20). Below each listed number of barns for the coupled-channel result is the corre-
sponding result (in parentheses) calculated in perturbation theory.

annels

2
3.6
334

4
12.0
1700

5
14.4
3040

6
14.4
4312

7
16.8
6272

8
16.8
7936

0.162$ c
62.5 fm

0.324k c
125 fm

0 648XC
250 fm

1.295Kc
500 fm

2.59Kc
1000 fm

5 18Ac
2000 fm

10.36%c
4000 fm

20.72~c
8000 fm

0.25
(0.01)

1.78
(o.o3)

2.81
(0.13)

2.78
(0.55)

2.18
(1.36)

3.93
(1.77)

2.68
(1.78)

2.01
(1.78)

1.83
(1.77)

0.14
(0.03)

0.91
(0.13)

2.26
(0.52)

4.49
(1.80)

6.59
(3.54)

7.75
(4.32)

6.70
(4.34)

4.99
(4.29)

4.46
(4.29)

0.12
(0.03)

0.60
(0.20)

1.66
(0.62)

3.67
(2.10)

6.12
(4.07)

8.49
(5.05)

8.04
(5.07)

6.01
(4.99)

5.24
(5.01)

0.12
(0.04)

0.43
(0.21)

1.33
(0.67)

3.32
(2.26)

5.98
(4.41)

8.62
(s.s7)

7.80
(5.59)

6.22
(5.50)

5.66
(5.49)

(0.04)

(0.23)

1.29
(0.76)

3.24
(2.51)

6.08
(4.82)

9.15
(6.14)

8.48
(6.18)

6.89
(6.07)

6.24
(6.04)

(0.04)

(0.24)

(0.80)

(2.63)

6.12
(5.08)

9.49
(6.58)

8.73
(6.64)

7.18
(6.50)

6.63
(6.47)

In our calculations utilizing the limited basis of Ref. [4],
we kept the width of the wave packets the same at
0.2m, c . In the larger bases, we set the widths of the
wave packets at 0.2m, c for ~E~ &2m, c, at 0.4m, for
2m, c & ~E~ &4m, c, and at0 Sm, c .for ~E~)4m, c .

To evaluate the time-dependent matrix elements, we of
course need the Dirac wave functions of the basis. We
obtain these following the conventions of Rose [7]. The

continuum radial wave functions can be expressed in
terms of confluent hypergeometric functions, and these
are evaluated using the code [8] wcLBES distributed by
CERNLIB.

The coupled-channel equations are integrated with ini-
tial conditions specified by the index j,

TABLE II. Nonperturbative enhancement of bound-electron-positron pair production (Pb+Pb
case). Diferences between coupled-channel calculations and perturbation-theory calculations of Table
I tabulated for the convenience of the reader.

action
2

18%
4

43%%uo

5

50%
6

55%
7

61%
8

65%

0
0.162kc
0.324K,c
0.648~c
1.295Kc
2.59~c
5.18~c
10.36Kc
20.72KC

0.24
1.75
2.68
2.22
0.82
2.15
0.90
0.23
0.06

0.11
0.78
1.84
2.69
3.04
3.43
2.36
0.70
0.17

0.09
0.40
1.04
1.57
2.05
3.44
2.97
1.02
0.23

0.08
0.22
0.66
1.06
1.57
3.05
2.21
0.72
0.17

0.53
0.73
1.26
3.00
2.30
0.82
0.20

1.04
2.91
2.09
0.68
0.16

Sum 11.05 15.12 12.81 9.74 &9.14 & 8.44
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The af(t) determine a single electron during the collision.
Since we neglect the electron-electron interaction, their
only inhuence on each other is through the Pauli princi-
ple. Then we are solving a one-particle equation, and the
final state is constructed as a Slater determinant of these
one-particle solutions. However, one can show [9] that
the number of negative sea electrons N excited into a va-
cant level g may be expressed

(16)

a (s~2

j(F
(17)

Thus our initial condition is an electron in the E orbit for
the calculations here reported. The actual numerical
solutions of the equations for the coupled amplitudes Eq.
(13) are carried out using the Bashforth-Adams-Milne
predictor-corrector method [10].

D. Large negative and positive time corrections
to numerical calculations in the untransformed gauge

where F is the Fermi level, Ez= —m, c . Each of the a~

corresponds to a coupled-channel calculation with the
electron in one particular negative sea initial state (and
the rest of the negative sea vacant}. Thus one should do j
coupled-channel calculations where j is the number of
positron states in the model space. If one is interested in
only the population of one final state for the electron
(e.g., the ls bound state), then one can use time reversal
to write

da;(t) (E —E )(.-=—iU();(t)e ' ' a()(t) .
dt

(18)

To lowest order, the largest interaction contribution to
ao(t) is the self-coupling, and we can write

dao(t) (zZ
i ao(t) —.

dt t

Near some large negative-t starting point t;„,
~ao(t;„)~ =1, we can arbitrarily choose the background
phase, and the sole effect of the self-coupling is to pro-
duce a phase that varies as aZI, lnt,

—iaz ()n( —(nt;„)
ao t =e

From Eq. (18),

finds that other m =0 interactions, V( ( r, t), have terms of
longest range going as 1/t '+'. Therefore, one can show,

in general, that for large t and m =0 transfer, the time-

dependent coupling in Eq. (13}goes as

exp[i(E, E(—, )t] g
(

where I represents the angular momentum transfer com-
ponents contributing.

We write the coupling matrix element

((t);~ V(p, z, t)~(t) ) = U, (t),
where Uo, (t) is a slowly decreasing function of t. For a
given state i, the amplitude at large negative time is

coupled importantly only to the initial state; then

Our large basis, high-y calculations (presented in Sec.
III) were performed in the gauge of Eq. (10) where the
large negative and positive time contributions inherent in
the untransformed interaction have been removed. Nev-
ertheless, we would like to discuss the effect of large time
contributions of the untransformed gauge since that
gauge was utilized in exploratory calculations previously
reported [2] as well as in the low-y calculations reported
here in Sec. V. In the untransformed interaction, Eq. (5),
the large negative and positive time interaction is dom-
inated by the m =0 interaction for t ) r,

a;(t;„)= i f '"Uo—
, (t)e' ' ' ao(t)dt .

I (E,. —Eo)t
The rapidly changing factor is e ' ', while Uo, (t)
and ao(t) are rather Sat. For a Pb target aZ~ =0.6, and

the derivative of a at t = —100 is —0.006i. In con-0 min ';(E E )t
trast, the smallest value of the derivative of e
(when E, is the first excited bound-electron state) is 0 15i.
for Pb. Then, integrating by parts and neglecting

dUO, ldt(t) and daoldt,

V,'(r, t)= Y (e)2v'm Q, (t/r) .
—&21 +1

r
a;(t;„)=—

(E; —E() )

(Recall that there is no t & r interaction for m%0.} There
is a similar Q((t lr) dependence in the exact b =0 expres-
sion of Sec. V. The problem here is that even in calcula-
tions that go from very large negative time to very large
positive time (e.g. , t = —100 to t =+100), one must
carefully approximate contributions from even larger
negative and positive times to obtain calculations of
sufBcient accuracy. For the monopole interaction,

V()( )
1 1+t/r

2r 1 —t/r
l r' r4=—+ + +3t'

Thus the self-coupling matrix element has a long-range
part equal to aZ /t By analyzi. ng Q((t/r) for 1&0, one

i (,E,. —Eo)t
U();(t;„)e

(E; —E() )

since Uo;( —ao ) vanishes sufficiently quickly. This for-

mula provides the initial value for all a; (except i =0) at
the t;„when we begin the numerical solution of the cou-

pled equations. In a similar way, we may obtain a form
that permits the continuation of a, (t) from t,„ to ao in

terms of the numerical solutions at t,„. We have

da,(t),(E E ),
i + U(—t)e ' ' a (t) .

dt

If we assume U, , (t) and a, (t) are slowly varying, then
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E(E,. —E )1

a, (~)—a, (t,„)=++
J l J

These connecting forms have been tested by direct nu-
merical calculations.

E. Singularity at r = t for m =0

The asymptotic formulas for the m =0 potential con-
tain an integrable singularity that goes as —ln(t r) —for
r &t and as ln(r t) for —r ) t (where, as we previously
noted, we need only consider positive t, using symmetry
and the same forms for negative t) If.we consider the an-
alytic integration of in(t —r) over r from the singularity
at t r to—the limit of one mesh point b,r, we have

Iz = — 1n(t r)dr =——5 ink+5 .

On the other hand, the simple midpoint formula used nu-
merically gives

I = —b, ln —.
N

To improve accuracy in the numerical calculations, we
want to efFectively use the average value of —in(t r)—
over the mesh point, which has the singularity at one end
(I„/6), rather than the midponit prescription (IN/5).
In practice, we correct this first mesh point for the error
in ln(t r}by addi—ng in the difference:

5)„=(Iq IN)/b = ——ln2+1=0. 307 .

Note that the correction of the mesh point value is in-
dependent of the mesh, and that this error goes linearly
with mesh size if it is not removed.

For r & t we must consider Q&(t/r), which has a piece
equal to —ln(t r}, an—d the correction is made in the
same way. Likewise, for t &r & t/b +t, we must con-
sider

ln =ln(r t ) —r +t +in(r —t},$2 $2

and the corresponding correction

5&„=ln2 —1 = —0.307

is equally easily made.

III. COUPLED-CHANNEL CALCULATIONS:
NUMERICAL CONVERGENCE AND THE JOINING

TO PERTURBATION CALCULATIONS
AT LARGE IMPACT PARAMETERS

The total cross section for bound-electron —positron
pair production is given by the classical expression

o =2m f P(b}b db,
0

where P(b) is equal to N„of Eq. (17} obtained in a
coupled-channel calculation for the straight-line trajecto-
ry of the particular impact parameter b. We have shown
[1—3] that for those trajectories for which perturbation

theory applies, P(b)-1/b . In order to match up with
the perturbational results most smoothly, we have chosen
a rough logarithmic scale (except near b =0) to perform
our coupled-channel calculations, with the impact pa-
rameter b being doubled for each mesh point over the re-
gion of interest. Then the contribution to the total o. of
the mesh point at some b0 should be weighted by
(2nboln2}, since

~Zb, 'o db
ho(bo)=2m f P(b)b db=2mbzoP(bo) f

(19)

P(b =0—)bG
2

(20)

Perturbative and coupled-channel calculations were
carried out at b0=0, 62.5, 125, 250, 500, 1000, 2000,
4000, and 8000 fm for various truncations of basis. We
utilized the manifestly beam-energy-independent gauge of
Eq. (10) for the m =0 part of the interaction. Perturba-
tive calculations at these small impact parameters were
carried out using techniques identical to those used for
the coupled-channel calculations, but with all but lowest
order couplings appropriately suppressed. We discuss
below the joining of these low impact-parameter calcula-
tions with perturbation-theory calculations [3] that ex-
tend to the largest appropriate impact parameters, ener-
gies, and angular momenta.

We have previously presented a preliminary report [2]
of results that include bases up to ~= +5,
E =+14.4m, c . In order to further investigate the de-

gree of convergence of our calculations, we have extend-
ed the basis to ~= +6, E =+14.4 for all impact parame-
ters and to a =+8, E=%16.8 for b & 250 fm.

Table I summarizes the results of the impact-
parameter coupled-channel calculations. Especially at
the lowest impact parameters, one sees that the enormous
ratio of the results with coupled channels to those based
on perturbation theory obtained at the smallest basis is
greatly reduced with increase of basis. The approximate
constancy as a function of impact parameter of the per-
turbative results for b & 1000 fm indicates the onset of the
region where the perturbative P(b)-1/b is valid. The
smallest basis shown (~~+2, E—++3.6m, c ) is the
same basis as used by Rumrich er al. [4] for their Pb+Pb
calculations at y=2. 3. These authors investigated the
impact-parameter dependence of the coupled-channel
calculations and perturbation-theory calculations out to
about b =500 fm. (At such a small y the impact parame-

Acr(bo) =2nboP(bo)ln2 .

In the perturbative region, where P (bo)-1/bo, the mesh

of successively doubled values of bo gives uniform contri-
butions hn(b} to the cross section o. For the region near
b =0, P(b) is more nearly constant and we take a weight-
ing of n /2b 2o;„,since

b

ho(b =0)=2m f P(b)b db
0

b

=2mP(b =0)f b db
0
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ters contributing to the process are limited to the small-b
region, since the inherent exponential cutoff is at
b-yP«. ) They found that the total cross section calcu-
lated in coupled channels was five times that calculated in
perturbation theory. From this they inferred: "Thus, the
total cross section is underestimated in perturbation
theory by a factor of 5." It is interesting to note that for
their small basis and in the same impact-parameter re-
gion out to b =500 fm, we find that our high-y coupled-
channel cross section also exceeds the corresponding
perturbation-theory cross section by about a factor of 5.
On the other hand, in the most complete basis for which
we have complete calculations for the small impact pa-
rameters x —++6, E~+14.4m, c, the coupled-channel
cross section exceeds that of perturbation theory by only
a factor of —1.5 for this impact-parameter region.

It is in Table II that the increasing convergence with
increasing basis size is most evident. We display in Table
II the difference between the coupled channels and the
perturbational cross sections of Table I. For each basis
labeled by ~ic,„~ there is also listed the fraction of the to-
tal perturbative cross section [3] contained within the
particular truncation of basis; this serves as a measure of
the effective completeness of the basis, and therefore as
an indicator of validity. For the expansion of basis from

„~ =5 (50%) to ~x „~ =6 (55%), the nonperturbative
enhancement decreases for every impact parameter. The
decreasing cross-section enhancement up to the ~a,„~ =8
(65%) basis indicates a probable upper limit of about 9 b
for the nonperturbative enhancement. The fact that the
enhancement is decreasing very slowly for b & 2.59 allows
us to put a probable lower limit of about 5 b for this case.
Thus for all practical purposes we have achieved conver-
gence, the nonperturbative enhancement for ultrarela-
tivistic Pb+Pb K-electron —positron pair production is
7+2 b. Since we have shown that the cross section is of
the form A lny+8 in the large-y limit, with all nonper-
turbative contributions energy independent and con-
tained in 8, this result of 7+2 b nonperturbative enhance-
ment is applicable to both RHIC and the Large Hadron
Collider (LHC).

At this point, we would like to put the 7-b enhance-
ment in perspective by evaluating the total perturbation-
theory cross section for ultrarelativistic Pb + on Pb
K-electron —positron pair production. We follow the
method of joining perturbation-theory results presented
previously [3].

If one examines the results of the last column in Table
I, one finds that the perturbational cross section corre-
sponding to integration over impact parameters from 0 to
b,„ is approximately given by

cr(b,„)=9.41nb, „+3.2 barns, (21)

for b,„&2.55,~. On the other hand, we have the
perturbation-theory results [3], including the highest en-

ergy and angular momentum states for Au + on Au
and U + on U + that are appropriate for large values of
b, b )b;„. Making use of the approximate Z depen-
dence that we found in the cross sections, we can
translate the published results to the case of Pb + on
Pb +; the cross section integrated over all impact pa-

Np 1t 14.3 lny —3 1 barns (23)

Thus at the y of RHIC, we have a perturbative cross sec-
tion of 112 b for Pb + on Pb +; the 7-b nonperturbative
enhancement amounts to only a 6% correction. From
Eq. (23), we may also obtain the corresponding perturba-
tive cross section for LHC of 209 b and the 7-b nonper-
turbative enhancement is only a 3% correction.

Implicit in our treatment is the assumption that the
large energy and angular momentum positrons calculated
only in perturbation theory [3], Eq. (22), are effectively
decoupled from the smaller energy and angular momen-
tum positrons of the present coupled-channel calcula-
tions. One indication of the validity of the decoupling as-

sumption is the slowly decreasing nonperturbative
enhancement exhibited in Table II.

A second indication comes from a more detailed exam-
ination of computer results for the impact parameter of
largest nonperturbative enhancement, b =2.59. If one
considers positron states of energy one unit removed
from the edge of the basis (E = —15.6m, c ), then one

finds that the sum of the probabilities for all the angular
momentum states ~~~

~ 7 in coupled channels is only 1%
greater than the corresponding sum in perturbation
theory. Individual states differ a bit more in coupled
channels and perturbation theory, but none by as much
as 10%. Somewhat greater discrepancies appear at the

edge of the basis (E = —16.4 for all a; ~a~ =8 for
F. = —15.6), presumably due to truncation edge effects.
The bulk of the nonperturbative enhancement comes at
the lower energies, away from the larger energy boundary
of the basis set.

IV. ESTIMATES OF CONTRIBUTIONS
FROM OCCUPATION OF HIGHER LYING

BOUND-KLKCI RON STATES

We have limited our coupled-channel calculations to
the problem of pair production with the electron resident
in the K orbit. This bound-electron state is the N=1,
~= —1 (nonrelativistically 1s) state. The practical and
usual assumption was that this is the dominant contribu-
tion to bound-electron —positron pair production. For
example, the RHIC design parameters assumed an addi-
tional 20%%uo contribution to bound-electron —positron pair
production with non-ground-state electron population.

rameters greater than b;„ is

cr(b;„)=14.31n(ylb;„)—36.2 barns .

The incompleteness of the basis in Eq. (21) is now evident

by a co~parison of the coefticient of the lnb term with
that of Eq. (22); the incomplete basis corresponds to 65%
of the perturbative cross section in the large-b region.
We therefore scale Eq. (21) upwards to obtain

cr (b,„)= 14.3 lnb, „+4.9 barns,

and the whole perturbative cross section is just the sum,

for all b values of overlapping validity. Then,
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In order to verify that such an assumption is roughly val-
id, we have performed several perturbative calculations
for non-ground-state electrons.

Our previously reported extensive investigation of the
perturbational cross sections [3] was limited to K-orbit
(a.= —1, N = 1) electron-positron pair production. Using
the same approximation to the perturbational sum used
in Ref. [3] (caption to Fig. 2}, we have now computed the
perturbational (a = —1, N =2 } electron-positron pair
production cross section for continuum positron states up
to K=+40, E = 60m, c for Au + on Au +. The ra-
tio of the ~= —1, N =2 cross section to the correspond-
ing ~= —1, N=1 cross section is 0.17 for the above
summed energy and ~ positron range.

Exploratory perturbative calculations were also carried
out for all the N =2 electron states for the smaller space
of the present paper (in this case, a ~+7, E~ 16.8m, c }.
We find that the ratio of the ~= —1, N=2 electron-
positron cross section to the ground-state-electron-
positron cross section is 0.13 for this basis. Correspond-
ing ratios of ~=+1, N =2 and ~= —2, N =2 cross sec-
tions to the ground-state are 0.04 and 0.02, respectively.

V. CALCULATION FOR THE b =0, y =2.3 CASE
IN AN EXPANDED BASIS

2Q&(t /r) if r (t

X. I

2Pi(t/r) ln2y —g 1/n if r) t .
n=1

(24)

Our analogous but exact expression for the b =0 case is

&m(2l +1)
rU

P

2P&(1/v„)QI(t/r) if r (v~t
X '

2Q, (1/v~)P&(t/r) if r &v~t . (25)

This simple and striking result is proved in Appendix A.
In Appendix B, we show how Eq. (24) approximates Eq.
(25) in the large-y limit. It was use of this simple and ex-
act form for b =0 that facilitated our comparison [2]
with the calculations of Rumrich et al. [4] for small y.

We have now expanded the calculations from their

For the calculation of electron-positron pair produc-
tion in heavy-ion reactions, the situation as b~0 is of
particular interest because it is in this lowest impact re-
gime that the failure of perturbation theory is greatest.
Since the scale at which nuclear effects contribute for two
interacting large nuclei (b & 15 fm} is much smaller than
the atomic scale for electrons and positrons
(R/m, c =386 fm), the b =0 solution should be of interest
as closely approximating the situation at the smallest im-
pact parameter for which nuclear effects are not applica-
ble.

For b =0, the asymptotic interaction Eq. (5} takes on
the simple form, good up to order lny/y:

&m(21+ 1)

original basis to basis sets corresponding to ~~,„~=4 and

~a,„~ =6. Note that for this particular calculation only,
we use an untransformed Lorentz gauge [Eq. (25}],and it
is the same gauge as originally used by Rumrich et al.
Table III displays the results. Our original surmise,
based on gauge noninvariance of the calculations, that
the two order-of-magnitude enhancement over perturba-
tion theory would decrease with use of more complete
bases, has been supported by these calculations in the
original Lorentz gauge, but with expanded basis spaces:
the coupled-channel results decrease with increasing
basis, while the perturbation-theory results must of
course increase. The enhancement for ~a,„~ =6 is down
to a factor of 9 and apparently decreasing with increasing
basis size.

VI. COHERENCE AND THE EFFECTS
OF THE PROJECTILE CHARGE FORM FACTOR

1—K)r
(26)

j is the current operator (a for the electron field, and the
usual form for the nuclear case); b is the impact parame-
ter of the projectile whose path is along the z axis; K, is
the familiar modified Bessel function; b;„ is the
minimum b value for which perturbation theory is valid
and such that b;„))(effe ctive internal variables of the
target, p). We have, then, an effective photon field acting

TABLE III. Results of y=2. 3 coupled-channel calculations
(Pb+Pb case) for bound-electron —positron production proba-
bility at zero impact parameter P(0), and the cross-section con-
tribution (in barns) ho(b =0) as in Table I. Below each listed
number for the coupled-channel result is the corresponding re-
sult (in parentheses) calculated in perturbation theory.

IE...I

Channels

H0)

ha(b =0)

2
3.6
112

0.00347
(0.00007)

0.213
(0.0043)

4
12.0
344

0.00132
(0.00011)

0.081
(0.0070)

6
14.4
636

0.00112
(0.00012)

0.069
(0.0074)

In the body of this work, we have postulated that the
projectile, a fully stripped nucleus, acts as a point source
with Z units of electric charge. That is to say, the
charge form factor has been taken as unity and the prob-
ability of disintegration under recoil effects as zero. In
this section, these postuletes are examined and shown to
be justified as applied here, also pointing to the limits of
validity.

As a simple beginning point, recall that in the very
large-y limit, the perturbational expression for a target
excitation, co=Ef —Eo, is written in the target rest frame
as

o =8m(aZ ) f db b f draff'j be'"'$0
min
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on the target: sure sum. Since for any operator 6,

l (COZ CA) Ee
CO y

(27) y I & n lelo& I'= &ole+Olo &
—

I &olelo& I', (32)

Had we gone further back than the very large-y limit, we
would see that the Fourier component that turns into the
effective photon is of the form

we need only simple ground-state properties to complete
the estimate. Expanding in powers of s/b,

l (Q)IU Z COf)
P

j (b —s)
(b —s)' =(j b —j s)

where U is the projectile velocity as seen in the target
frame. We have, then, to ask about the effects on the
projectile of the emission of such "photons. "

Since we know the form factor and photodisintegrabili-
ty of the projectile nucleus as given in its otvn rest frame,
we must transform back to that frame. Transformed
back into the projectile rest frame, the corresponding
"momentum" is co/yP-co/y. In the calculations of this
and related papers, y-2X10, while ~&100m, c . We
immediately see that such recoils are coherently con-
tained in the ground state; since the nuclear form factor
for a momentum transfer of q is approximated by—

q Rp/10
e =F(q) (Rz is the nuclear uniform-density ra
dius), F differs from unity by less than a part in 10

Next we ask about the transverse effects. Since the
effects we are investigating are concerned with b values
much smaller than y/rv, we can use the approximate
form of the interaction

4sP, s2
X + + (6P f +4P2)+ ~,

b b' b

(33)

—,
' &01~'lo&/b' ,'R,'/b 4—

(j b)'/b' (j b)'/b'
(35)

the P„are the usual Legendre polynomials, but written in

terms of the polar angle appropriate to two dimensions
(where they lack orthogonality). Averaging over angle,

2
1

d~ j (b —s) (j b) + 1 s
(34)

2n (b —s) b 2 b"

Recalling that I&OIGIO&l =(j b) /b, we immediately
know that the ratio of incoherent to coherent contribu-
tion is just

j bE)
CO/

j.b
b

(29)

The relative contributions to the overall cross section re-
quire integration over the impact parameter; in rough ap-
proximation,

I
E

&
(x ) = 1/x for x « 1; v'n /2x e "for x » 1.]

In order to include variation over the projectile charge
distribution, we change notation by b~b+s, where b
now denotes the nuclear center and s ranges over its
transverse dimensions. We then have to consider the in-
teraction

j (b —s)
Ib —sl' (30)

Averaging over the orientation of s results in the two-
dimensional version of Gauss's law,

1 fd~j (b —s)
2' (b —s)2

1 ~~b (b —s)
dPj b

2n' (b —s)2

j b b bs cosP—
b +s 2bs cosP—

j.b
b

b)s,
=0, b(s . (31)

Since the minimum value of the impact parameter must
be taken as at least 2R~ in order to avoid counting over
the region of strong nucleon interaction, we see at once,
since b )s, that there is no s dependence and, therefore,
unit form factor for the ground state~ground state pro-
jectile transition. To evaluate the projectile excited-state
contributions, we use the upper limit afforded by the clo-

R'f bd—b, f "bdb ~,
2 R 2/b2.

5 b;„b4 b;„b2 5 ln(y/cob;„)

(The upper limit follows from the cutoff properties of
K&(x) for x »1.) Since for the atomic problem ad-
dressed in this paper b;„—P„ this ratio is —10
Were we to apply the formalism to nuclear electromag-
netic excitation and exclude true nuclear collisions, we
would take b;„&2R ~ (ions of equal A ); then for

y -2 X 10, co-100 MeV, Rz -7.5 fm, the ratio is
~ 10 . The lowest-order approximation, the point
source, for the projectile nucleus seems quite sufficient.

A number of experiments are underway to measure the
process analyzed in this paper —production of a bound-
electron plus positron pair. Since these experiments must
at present use fixed targets (at y = 14 and 200) their mea-
surements necessarily deal with an exciting source that is
fully clothed in its atomic electrons (the bound-e —e+
pair is to be observed attached to the fully stripped beam
ion), shielding considerations are forced upon us.

To connect with the analysis outlined in the previous
pages, we must take the rest frame at the beam ion, the
site of the created bound e, and have the clothed target
particle moving relative to it. Unfortunately, this leaves
us with the cross association of target~beam; the
effective target is that fixed by the observer's counter sys-
tem.
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To obtain a qualitative feeling for the screening prob-
lem, it is useful to begin with the spatial dimensions of
the excitation process. The range of impact parameters
over which there are important contributions is
[y/(co/m, c )]Ac, Ac=A/m, c =386 fm; it will be re-
called that the lny dependence of the cross section comes
about from small probabilities accumulated over a large
impact-parameter region in increments of db/b A. very
important part of the frequency spectrum is that below
—3m, c, lesser but sizeable contributions up to
—10m,c, and a gradual fall off, as 1/aP, so that -80%
of the whole cross section is accumulated below
-20m, c —all from calculations on U-U collisions. At
3tn, c [y/(co/m, c )]%&=4.3K& for y=14, and 62K' for

y =200; at 20m, c, we have to do with 0.7kc for y =14
and 107 c for y =200. Atomic electron orbits range from
the Kc/aZ of a K orbit to nkc/a (n highest principal
quantum number) of an outer electron. Therefore, im-
portant parts of the impact-parameter range are
sufficiently large so that the excited nucleus is seen only
through a considerable density of orbital electrons. In a
Thomas-Fermi atom, half the total electron charge lies
within —180/Z'~ Kc ——30kc for Pb—half the impact-
parameter values of importance at y=200. Were the
electrons to act coherently, those at separations from the
exciter nucleus smaller than the impact parameter would
act as if at the nucleus and screen the nuclear charge.
This is clearly much more important the larger the y

I

APPENDIX A: EXACT MULTIPOLE
DECOMPOSITION FOR 5 =0

Let us consider the b =0 case without any approxima-
tion in 1/y. By definition, we have

MP ( r, t) =fd 0 Yi z

1

[ 2/ z+(. (A 1)

By symmetry, only m =0 is nonvanishing, and we im-
mediately integrate over P,

value.
Not all of the electron interactions will, however, be

coherent. Recall that longitudinal momenta -co/y act
back on the interacting electrons. The larger the co and
the smaller the y, the more effective the recoil will be in
ejecting the electrons from their stable orbits, thus
rendering their response incoherent with respect to that
of the inner nucleus and each other. Such an incoherent
response adds a contribution proportional to the number
of incoherent electrons compared to the Z proportional-
ity of a stripped ion. A coherent electron response would
reduce the nuclear charge. On this qualitative basis, we
would expect from both the impact-parameter depen-
dence and the recoil effects roughly an order 1/Z
correction for smaller y and lower Z, with larger shield-

ing effects at larger y and larger Zp.

m Yi (cos8)d(cos8)
MP(r, t) =5~ 2@v —

& ((r /y )sin 8+(r cos8 v t) )'—i

Let us define x =cos8, and note that 1/y =1—v to rewrite

&2n(21 +1)
MP(r, t)=

rvp & 1 vp +t r —1 —2xt vpr +x

(A2)

(A3)

(A4)

To prove this result it is now only necessary to prove the following identity for the real parameters w and u (it is un-
derstood that one of the parameters, w, is greater than 1, to be associated with the physical value of I/v~):

If we note that the expression is symmetric in 1/v and t/r, then it is clear that the integral over x can be carried out in
closed form for each value of 1, but with increasing complexity with increasing /. However, consideration of the results
of integration for the first few l's suggest a simple and remarkable general result,

2I + I 2Pi(1/v )Q~(t /r) if r (v t

p

P&(x)dx 2Pi(w)Qi(u), u & w, w & 1

& [w2+u2 1 2wux +x2]1/2 2Qi(w)P((u), w & u) w & 1
(A5)

The proof is given in two phases: first for the restricted parameter region, (w& l, u &1); then extended to
(w & l, u 1). For the first phase begin the proof by explicitly carrying out the integral over P in the following expres-
sion

f' dx f'dy
wu —x ++w —1+u —1 cosP

Now recall the identity

Pi(x)dx1=2~f WQ)1—i +w +u —1 —2wux +x
(A6)

i P, (t)dt
Qt(z)= —,

'f, [z off the (1,—1) cut],—&(z —t)'
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and therefore,

1 PI (x)dx
Q&(wu ++w —I+u —1 cosP)= —,

' f—' wu —x + Vw —I+u —1 cosP

But we also have the addition theorem [11]

Q&(wu+')/w —I+u —I cosg)=Qi(w)Pi(u)+2 g QP(w)Pi (u)cosmic, w &u &1 .
m=1

Combining (A7) and (A8), we obtain

=2QI(w)PI(u)+4 g Qi (w)P, (u)cosmic, (w & u) .f P (x)dx
—i wu —x+ w —1 u —Icos/ m=1

Integrating over P, everything on the right-hand side vanishes by orthogonality except the first term,

f 1 P (x)dx
=4mQI(w)PI(u), w & u & 1 .

' wu —x+ w —1 u —1 cosg

(AS)

(A9)

(A10)

Combining (A6} and (A10} now completes the proof of
(AS) for the parameter region (w & 1, u & 1) if one notes
that the expression is symmetric in the interchange of w

and u.
The extension to the parameter region (w & 1, u ~ 1)

proceeds by a straightforward examination of the integral
that appears in (A5). First note that the denominator is
nonvanising over the interval of integration for w &1
(u 01,u = 1); therefore the integrated function is continu-
ous across the boundary between (w &1, u &1) and
(w & 1, u ~ 1). Since the P& are simple polynomials, we
have to do with integrals of the form f+,'x "/MXdx,
X=[w +u —1 —(2wu}x+x ]. The elementary recur-
sion relation,

whether u & 1 or u 1, allows us to write

dx =g ' 2A '"'w'+'u J—28'"'w'u'+'+1

-i vx 1,J
I)J

+C~ .l
+'

w —1
(A14)

APPENDIX B: COMPARISON WITH LARGE-y FORMS

for w &1, u~&1. But this then tells us at once that the
form valid for the domain (w & u & 1) is just the same for
(w &1, w & u, u ~1), proving (A8) for w &1, as desired.
The main result of this Appendix, Eq. (A4), is thus estab-
lished.

f +ix dx 1

v'X n

x =1

x= —1

+x2n —1 f +~x
n v'X

The connection of the exact form, Eqs. (25) and (A4),
to the asymptotic form, Eq. (24), can be easily made. Us-
ing the expansion of PI(z) in powers of (1—z) (8.1.2 in
Abramowitz and Stegun [11]},

P((1 lv )=Pi(1+ I/(2y )+
(w +u —1)f dx,

n X
= I+1(I+I)/(4y )+0(1/y ) . (Bl)

gives us the general reduced form

lid
A'"'w'u J(x&X ~+')

&X
—1

l, J

(A 1 1)
Including the effect of the overall 1/v, we find that the
exact formula for r &u t is [I+(I +l+2)/(4y )] times
that of the asymptotic formula [in conformity with our
previously estimated [1] correction of (b2/t2)(1+1)(1
+2)/2y ].

For r ) U t, one may make the connection in a parallel
manner. In particular, since [11]

+C,',"'w'u J

Noting that in the domain ( w & 1 and w & u }

(&X ~+I}=—2u,

(x &X ~+,' }=2w,

(A12)

(A13)

1/U +1
Ql(1/u~ ) = ,'P, (1/v )ln—

1/v —1

—g (1/n)P„, (1/v )P, „(1/v )
n=1

using

(B2)

dx w+1—=ln—i v'X w —1

1/U +1
ln

1/U —1

1+Up=2 ln2y+2 ln
2

(B3)
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and Eq. (Bl) for the Legendre polymonials, we obtain

I

(1/vr )Qt(1/v )= 1n2y —g (1/n)
n=1

X[1+(l +l+2)/(4y )]
+(l +l —1)/(4yz) . (B4)

Thus for r) v t the exact formula [1+(l +l+2)/(4y )]
times the asymptotic formula, plus a term of order
(l'+l —1)/(4y').

In the asymptotic form, the split between the two re-
gions r ~&u t has been written as r ~&t, dropping the (1/y )

di8'erences.
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