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Collision-induced absorption by Hz pairs in the fundamental band at 78 and 298 K
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Measurements of the binary collision-induced absorption in hydrogen gas in the fundamental
band of H2 (near 2.3 tom) are obtained at temperatures of 298 and 78 K. Agreement is observed
with existing measurements and with an ab initio quantum calculation of the spectral pro6le which
is based on the isotropic interaction approximation. The comparison suggests that such calculations
may be used to generate the most reliable predictions of the binary spectra of hydrogen over the
range of temperatures considered here.

PACS number(s): 33.10.—n, 33.20.Ea, 33.70.Jg, 96.35.Hv

I. INTRODUCTION II. EXPERIMENTAL RESULTS

Compressed gases composed of nonpolar molecules like

H2 absorb infrared radiation [1,2]. Absorption continua
are observed in various rotovibrational bands which are
forbidden in the noninteracting molecules. Collision-
induced absorption arises &om dipole moments induced
by molecular interactions. For interacting H2 molecules,
dipole moments are induced mainly by polarization of a
molecule in the quadrupole field of another molecule, and
by exchange forces. Since molecular hydrogen is the most
abundant constituent in the atmospheres of the major
planets, the collision-induced absorption spectra of H2
pairs are an important source of thermal emission and
absorption [3,4]. The detailed knowledge of the spectral
absorption profiles of the rototranslational and funda-
mental bands of H2 is of considerable interest in astro-
physics. For example, the spectrum of Jupiter shows a
strong absorption between 2 and 2.3 pm which is due
mainly to collisional H2 —H2 complexes [5], and the prop-
erties of the atmospheres of various cool stars are to a
large extent controlled by collision-induced absorption
by H2 pairs [6]; a small fraction of the H2 pairs exist
as bound van der Waals molecules [7].

Since the first observations of the collision-induced fun-
damental band of hydrogen by Welsh et al. [8] many ex-
perimental and theoretical studies have been undertaken;
roughly nine hundred original papers have appeared in
the field since 1949 [9,10]. Although the interaction-
induced spectra of hydrogen in the fundamental band
have been extensively investigated at room temperature
[11—14] and near 78 K [11—17], we have not found in the
literature listings of the absorption coefficient as function
of frequency. Actually, the spectral profiles are often re-
produced in small figures which do not lend themselves
to an accurate reading of the collision-induced absorp-
tion coefficients. Listings of data of the kind are, how-
ever, necessary for the comparison of measurement and
theory and also for all modeling attempts of planetary
and stellar atmospheres.

In previous papers [18,19], we measured and analyzed
the collision-induced spectra of H2-H2 and H2-He com-
plexes at room temperature and wavelengths of 2 and 5

tom by using a high pressure cell attached to a Czerny-
Turner grating spectrometer. In this work, we present
the results of similar measurements performed with a
Fourier transform (FT) spectrometer in the fundamental
band of pure hydrogen at ambient and liquid nitrogen
temperature.

A. Experimental arrangement

The spectra were recorded with the help of a Bruker
IFS 66V FT spectrometer with a resolution of 0.5 cm
full width at half maximum (FWHM). We used an optical
filter to work in the frequency range from 2000 —6000
cm . The spectroxneter was accurately calibrated with
lines of CO in the fundamental band. Thirty-two scans
were superimposed to yield each interferogram and we

used a four-term Blackmann-Harris apodization function.
The high-pressure absorption cell has an optical path-

length of l = 215.4+0.1 cm. The pressures were measured
with a 0—160 bar strain-gauge-type pressure transducer
(accuracy O. 1%% full scale) as previously described [20].
The ambient temperature is kept constant and the gas
temperature was estimated to be known to k2 K; at the
low temperature the uncertainty is +1 K.

High-purity () 99.9999%) hydrogen gas was purchased
and used without further purification. No catalyst was
used in this work which is concerned with "normal" hy-
drogen, i.e., hydrogen with an ortho- to para-H2 abun-
dance ration of 3:1. The densities p (in amagat units) of
H2 were obtained kom the initial pressure and tempera-
ture of the gas by using the equation of state Tables [21].
The density of the hydrogen is known with an accuracy
of 1'%%up.
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B. Experimental procedure

The absorption coefBcient o.(v) at the wave number v
is obtained &om

where l is the optical path length and Io and It, are the
transmitted intensities of the empty and the pressurized
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cell, respectively, at &equency v. More precisely, we ob-
tained for each absorption measurement of the cell filled
with hydrogen of the pressure P a "background" spec-
trum of the cell filled with the same pressure P of he-
lium, but no signi6cant difference was observed between
the spectra recorded with an empty cell and one filled
with helium. In order to eliminate data affected by any
slow drift of the source intensity, we accepted only such
measurements for which the background spectra recorded
before and after the sample spectrum were the same.

C. Intercollisional dips

The Q branch and, to a lesser extent, the S(l) line
show relatively narrow absorption minima ("dips" ) at the
Qi(j) and Si(j) rotovibrational transition &equencies of
the unperturbed Hq molecule (j = 0, 1, . . . ). Van Kra-
nendonk [22] showed that these dips arise &om intercol-
lisional interference efFects. The dipole moments induced
by electronic overlap in successive collisions are strongly
anticorrelated which leads to decreased absorption at &e-
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quency shifts comparable to the reciprocal mean free time
between collisions. These dips arise from many-body in-

teractions and are not considered in detail here as we are
interested in the spectra arising &om binary collisions
only. The dips have been previously analyzed experimen-
tally [19,23] at room temperature and will be revisited at
higher resolution in a forthcoming paper.

$0
] IN I I I

H~-H~ 298K

D. Binary absorption coefHcient 00 0

With the help of spline interpolation of the measured
absorption, a(v), the absorption coefficient was deter-
mined at &equencies spaced 10 cm apart. For each
of these frequencies, we studied [20] the variation of the
absorption coefFicient o. with the square of the hydro-
gen density, p . Within the experimental errors a linear
dependence was found, except in the region of the inter-
collisional dips. This proportionality entitles us to write
the absorption coefficient as a function of the binary ab-
sorption coefficient o.~ &, according to

cx(v) = a( )(v) p

The binary absorption coefficients were determined by a
linear least-squares procedure on the spline interpolated,
a(v) values. The absolute uncertainties of n(s& were es-
timated to be the largest value of either three times the
standard deviation o derived from the least-squares fit,
or 2cr+0.02 a~ ~. We estimate that there is an irreducible
experimental error of 2%. The binary absorption coeffi-
cients a(2&(v) are listed in Table I for the temperature of
298 K and Table II for 78 K, along with their estimated
uncertainties.

E. Comparison arith other measurements

0.1
8800

I I

4000 4400 4800
fiequency fcm 'J

5200
I 0

FIG. 1. Comparison of our measurement at 298 K in
normal hydrogen with existing measurements by Hunt [11]
(~ 300 K), Watanabe [13] (&, 300 K), Hunt and Welsh [12]
(a, 300 K), and Reddy et al. [14] (0, 298 K).

the present experiments for comparison with these mea-
surements. %e note that spectral intensities are given
by the square of the dipole moment so that the numeri-
cal precision of the absorption profiles may be expected
to be in the four percent range if the isotropic potential
approximation —the only significant approximation em-

ployed here does not introduce additional uncertainty.
The results are shown in Figs. 3 and 4. For the com-

parison, we choose a logarithmic intensity scale so that
the wings of the absorption profile may be compared with
the same relative precision as the peaks. The agreement
of theory and the present measurement is generally in
the five percent range or better except, of course, in the
narrow region of the intercollisional dips which are many-
body features that cannot be reproduced from a binary
theory.

Our results of our measurements at room temperature
are compared in Fig. 1 with the measurements of other
authors [11—14]. Similarly, Fig. 2 compares the available
data near 78 K [ll—17]. A generally satisfactory agree-
ment is observed, considering the fact that such data have
often been communicated in small figures only which can-
not be accurately read.

III. THEORY

NNN

I

$0

H~- H~ 78 K

For the computation of the induced dipole moment,
the collisional complex consisting of two H2 molecules
was treated like one molecule in state of the art quantum
chemical calculations. The basis set accounted for 95%
of the correlation energy [24]. The radial, vibrational
matrix elements appropriate for the fundamental band
(v = 0 + v = 1) and their dependence on the rotational
transitions (j ~ j') were determined with a numerical
precision believed to be better than 2%. From these data,
with the help of an advanced, isotropic H2-H2 interac-
tion potential described elsewhere [24], ab initio quan-
tum line shapes were computed at the temperatures of

0.1
4000 4400 4800

fiequency (cm 'J

FIG. 2. Comparison of our measurement at 78 K in nor-
mal hydrogen arith existing measurements by Watanabe and
Welsh [15] (o, 77.3 K), Watanabe [13] (~, 77.3 K), Hunt [ll]
(x, 78 K), Sen et aL [16] (0, 77 K), Watanabe [13] (a, 77.3 K),
and Reddy et aL [17] (+, 77 K).
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FIG. 3. Comparison of our measurement at 298 K with
an ab initio calculation (dots) based on an accurate isotropic
potential.

FIG. 4. Comparison of our measurement at 78 K with an
ab initio calculation (dots) based on an accurate isotropic
potential.

IV. CONCLUSION

Accurate measurements are provided of the binary
collision-induced absorption spectra of compressed hy-
drogen at temperatures of 298 and 78 K which are shown
to be in agreement with the previous measurements.
Spectra computed from the fundamental theory with the
assumption of an isotropic interaction potential are also
in close agreement with the measurement, suggesting
that at these temperatures this approximation is justi6ed
for hydrogen, a result significant for astrophysics where
these spectra must be known reliably for an analysis of

planetary and stellar atmospheres. Work is in prepara-
tion in our laboratories which seems to suggest that the
isotropic potential approximation may not be adequate
for similar systems like Hz-He; that work will be reported
shortly.
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