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Elastic scattering of two Na atoms
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Interaction potentials for the X 'Xg and a X„+ states of Naz are constructed and used in calculations

of the elastic scattering of two Na atoms at ultralow temperatures. The sensitivity to retardation effects

(or Casimir corrections) is explored. The calculated elastic and spin-change cross sections are very large,
of the order of 10 ' -10 ' cm at zero temperature. The predicted scattering lengths are both positive,
34.9 ao for the X 'Xg+ state and 77.3 ao for the a X„+ state. Pronounced shape resonances appear for the

I =3 and 7 partial waves for the singlet and I =6 for the triplet states.

PACS number(s): 34.40.+n

I. INTRODUCTION

Collision processes at millidegrees Kelvin temperatures
are sensitive to the details of the interaction potentials be-
tween the colliding systems over an extended range of in-
ternuclear distances [1]. Here we explore the simple case
of the elastic scattering at near-zero temperatures of a
pair of sodium atoms for which apparently accurate in-
teraction potentials can be constructed. We include the
retardation efFects (or Casimir corrections) and show that
they change the scattering lengths and effective ranges by
little, and move the shape resonances by small amounts.
Finally, we compare our results to those obtained using a
semiclassical derivation [2].

II. THEORY

A partial-wave expansion reduces the problem of elas-
tic scattering by a potential V(r} to the determination of
the radial solutions ui(r) of the Ith partial-wave equation

d 2 I (I +1)+k2- —U(r) ui(r) =0 .
dr2 r~

Here k =&2IsE /iii is the wave number, where E is the
energy of the relative motion, p is the reduced mass, and
U(r) =2p, V ( r)/fi, where V (r) is the (asymptotically van-
ishing) interatomic potential. The solutions must be reg-
ular and behave asymptotically as

u&(r) = At[st(kr)+ci(kr)tan5i], (2)

ui(r }= At'sin(kr In /2+5i ), —

With At in Eq (2) set eq. ual to unity, a useful check is

provided using the integral equation

where At is a normalization constant, st(x)=xjt(x) and
ct(x)= —xnt(x) are the spherical Bessel and Neumann

functions, and 51 is the scattering phase shift. Alterna-
tively, we can rewrite u&(r) as

o = g (21 +1)sin 5 '4m

1=0
(6)

where S and T stand for singlet and triplet, respectively.
The spin-change cross section is calculated from the
singlet and triplet phase shifts by

o =
z g (21+1)sin (5, —5, } .

I=p

The low-energy scattering is dominated by the 1 =0 con-
tribution. At values of k close to zero, the 1=0 phase
shift 5p can be represented by a power series expansion in
k [3,4]:

k cot5p= ——+—,'r, k2+0(k3) .1

The parameters a and r„respectively, are the scattering
length and the efFective range. In the limit of low ener-
gies,

4~as o.i=4sra o =sr(a a)—S— 2 T 2 2

where az and aT, respectively, are the singlet and triplet
scattering lengths. The scattering length corresponding
to a potential V(r) that decreases at large r as —C„/r"
has been obtained semiclassically by Cxribakin and Flam-
baum [2] in the form

The scattering by V(r) is described by the phase shift 5i,
and a total elastic cross section may be defined by

o,i= g (21+1)sin 5i .4m

k I =p

Sodium atoms in their ground states may approach along
either of the potential-energy curves Vs(r) and V„(r),
corresponding, respectively, to the Xirs+ and a3X+
states of Naz. Elastic singlet and triplet cross sections
may be defined by

tan5t = ——f dr st(kr)U(r)ut(r) .
0

(4)
a =a 1 —tan tan

7l 2 2(n —2}
(10)
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where V(r)= A exp( B—r), r ~r (18)

a =cos
+2p, C„
iil(n —2)

n 3
2/(n —2) I

n —2

n —1r
n 2

and

4=— r —2@V r
e)

&p

(12)

with V (rv ) =0 Gr. ibakin and Flambaum have also
shown that the number of bound states n& is given by

n =
b

n 1

2(n —2)
(13)

sin(kr +5v)
vo(r)= . as k~0,

sin50

and if uv(r) is normalized so that at large r

us(r) —vv(r),

then [4]

r, =2 r uo —uo

(14)

(15)

(16)

If a bound state with binding energy ~EI, ~=R y /2p
lies sufBciently near to the dissociation limit, a and r, are
related by [4]

1——= —y+'r y +2 (17)

where [ ] indicates the largest integer. When [ ) in Eq.
(13) is an integer, the scattering length is infinite, corre-
sponding to the appearance of a new bound state.

The e5'ective range r, can be expressed in terms of the
zero-energy solutions of the partial-wave equation (1}. If
vo(r) is the solution of Eq. (1) at k =0, with the potential
taken to be zero everywhere, and normalized so that

with

A = V(r)exp(Br)
~
„and B =—8 ln V(r)

min Br min

(19)

where dV/dr ~„ is evaluated from a cubic spline fitting
min

of the data points for V(r }.
The experimental data on the a X„+ state cover a less

extensive range of r. We used the RKR values of Zemke
and Stwalley [5] between 8.07av and 25ttv, derived from
the spectroscopic constants of Li, Rice, and Field [9j.
Here again, we exclude a data point at r =11.046 804 A
(see Table V in [5]). We extended this RKR curve in the
short-range region with 11 points from Konowalow,
Rosenkrantz, and Olson ranging from 3.8av to 7. 5av (see

Table III in [8]). The analytical form for the short-range
region is the same as for the X 'Xg+ state.

At large separations, Vs(r) and V„(r) may be written

as a sum of dispersion term r "and an exchange poten-
tial V,„,(r) which diminishes exponentially. Thus at
large distances

C6 C8 C10
6

+ s +
iv +V,„,(r)

r r r
(20)

For C6, C8, and C10 we used the values of Marinescu,
Sadeghpour, and Dalgarno [10]. We give them in Table I
and compare their values with other estimates. The value
we adopted for C6 is consistent with experimental mea-
surements of the polarizability of sodium.

The exchange term V,„,(r) is very important to the
determination of the spin-change cross section, and spe-
cial care is needed if correct cross sections are to be ob-
tained at low temperatures. Zemke and Stwalley [5]
found the form C exp( f3r) to be a good —approximation
between 10ao and 21ao, but it must become inadequate at
larger r Smirno. v and Chibisov [11]have shown that if

p /2 is the ionization potential of the atom in a.u. , the ex-

change interaction has the asymptotic form

III. POTENTIALS V,„,(r) =
—,
'

[ V„(r) V~(r)] =—,'Cr'exp( —Pr ), —(21)

The interaction potentials of two sodium atoms have
been discussed by Zemke and Stwalley [5]. They have
constructed an empirical Rydberg-Klein-Rees (RKR) po-
tential curve for the X 'X+ state using the spectroscopic
constants of Babaky and Hussein [6] for vibrational levels
between 0 and 44, and those of Barrow et al. [7] for
45 u ~ 62. We extended the Zemke and Stwalley RKR
curve with Babaky and Hussein data for u = —0.5 and
—0.25 (see Table 3 in [6]). As noted by Zemke and
Stwalley, we have to exclude the point at r =12.429048
A (see Table III in [5]). We then have a RKR energy
curve ranging from 4.lao to 30.0ao. Instead of using
their exponential continuation for small distances, we
completed the data by using a value from Konowalow,
Rosenkrantz, and Olson [8] at 3.8ao, and then deter-
mined the short-range form at that first point
(r;„=3.8ao)

where

7a= —1,
2p

P=2p,

(22}

(23)

where A is the amplitude of the valence electron wave
function for large r,

P(r)= Ar'~t' 'e (25)

and C(p) is given by

"(2p)
C( )=

21+1/p 1+1/2p
P

X f dy(1 —y) ~ ~(1+y)' ~exp[(y —1)/p],
0

{24)
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TABLE I. Dispersion coeScients in atomic units. We used the set of numbers from Ref. [10].

Marinescu, Sadeghpour, and Dalgarno [10]
Tang, Norbeck, and Certain [12]
Maeder and Kutzelnigg [13]
Konowalow and Rosenkrantz [14]
Li, Rice, and Field [9]

1472
1510+40
1540
1680
1637+33

111877
111400+4, 400
109 800
164000
157000+4, 700

11065 000
10720000+690000
10360000

We determined A by using a model potential method [10]
and obtained 0.751 16 in agreement with the value 0.751
recommended by Smirnov and Chibisov [11]. In Fig. 1

we compare the various values of V,„,(r) that have been

suggested. There are significant differences. The ab initio

calculations [8,14] and the empirical RKR curve [5] ap-

pear to be consistent neither with the fit recommended by
Zemke and Stwalley [5] nor with the fit of Smirnov and

Chibisov [11],from which we differ only slightly. How-

ever it is only the last ab initio point at 2lao with which

we disagree.
In Table II we list the parameters of the several recom-

mended fits. Differences between the values derived from

our fit and from those of Konowalow and Rosenkrantz

[14], Li, Rice, and Field [9], and Zemke and Stwalley [5]
become serious at separations beyond 20ap.

Retardation effects (or Casimir corrections) become

important at very large distances. They affect the

dynamical part of the potential, the dispersion terms.
The exchange term, being an overlap of the atomic wave

functions, is not modified by the time delay in the photon
travel between the two atoms. The C„Ir" terms take the

form [15]

C6 C8 C&0 C8 Cio
+ + f,(r) +fs(&) +f lo(r) (o ~

6 P8 110 P6 T T

(26)

The functions f6(r), fs(r), and f,o(r) have been calculat-
ed by Marinescu, Babb, and Dalgarno [15]. Asymptoti-
cally they decrease as r

The adopted hybrid potential curves of the singlet and
triplet states are illustrated in Fig. 2. The differences be-
tween the curves with and without Casimir corrections
are too small to be shown in Fig. 2.

Our adopted potentials yield a value of 6022.023 cm
for the dissociation energy of the X 'Xg state, in close
agreement with the value of 6022.03 cm ' of Zemke and
Stwalley [5] and of 6022.6+1.0 cm ' of Barrow et al.
[7]. For the a X„+ state, we obtained 174.083 cm ' for
the value of the dissociation energy, in close agreement
with the value of 174.45+0.36 cm ' of Li, Rice, and
Field [9],and of 173.84 cm ' using numbers from Zemke
and Stwalley [5].

IV. ZERO ENERGY LIMIT

We solved Eq. (1) by the Numerov method, with au-
tomatic step size selection. We found that a more stable
phase shift is obtained at low energies by substituting the
solution into the integral Eq. (4) [16], rather than by
fitting to the asytnptotic form. We determined the
scattering lengths and effective ranges by fitting the
scattering phase shift 5o to the effective range expansion
(8). We also calculated the scattering lengths using Eq.

0.01
this work

0.001

0.0001

10
E

(D

C
10

O
X

LU

FIG. 1. Exchange term for
Na~: the RKR and Zemke and
Stwalley fit are from [5].

10 7

10

1O-'
10 12 14 16 18

Distance r (a.u. )
20 22 24
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TABLE II. Parameters for V,„,(r), in a.u. TABLE III. Scattering lengths and efFective ranges, in a.u.

Source

This work
Smirnov and Chibisov [11]
Zemke and Stwalley [5]
Li, Rice, and Field [9]
Konowalow and Rosenkrantz [14]

C j2

0.0123
0.0125
7.0896
4.30
0.345

4.693
4.59
0.0
0.0
0.0

1.229
1.252
0.811 73
0.7662
0.649

State

187.5
177.5

184
178

a 'X„+ no retardation 77.286 76.580
with Casimir 77.352

62
61

62.5
60.7

Eq. (8) Eq. (10) Eq. (8) Eq. (16)

X 'Xg no retardation 34.936 35.615
with Casimir 34.995

(10), and effective ranges using Eq. (16). We adopted an
atomic mass of 22.98977 g/mole and a reduced mass of
20953.87958 electron masses, corresponding to the col-
lision of two Na atoms.

The scattering lengths and effective ranges for the
1 + 3 +X Xs and a X„states are presented in Table III. The

close agreement between the calculations of a from Eqs.
(8) and (10) and of r, from Eqs. (8) and (16) confirms the
accuracy of the numerical integrations of the partia1-
wave Eq. (1). The size of the scattering lengths and
e8'ective ranges is closely related to the position of the
last vibrational bound states of the energy curves, as can
be anticipated by inspection of Eqs. (10}and (13) or (17)
which, consistent with Levinson's theorem, show that as

the binding energy of the highest level tends to zero, the
scattering length tends to + infinity.

We have obtained the vibrational bound-state energies
with zero angular momentum. They are listed in Table
IV for the highest-lying levels, together with the experi-
mental data [6,9]. We found 66 bound levels for the
X 'Xg state, and 16 bound levels for the a X„+ state. We
confirmed that we had discovered all the bound levels by
calculating their total number for each potential using
formula (13) of Gribakin and Flambaum [2]. The table
also includes the upward shifts in the energy levels that
occur when the Casimir modification of the long-range

interaction is taken into account. The shifts are ever-
where less than 10 cm

e every-

The binding energies of the highest bound levels corre-
spond to values of y of 0.0824 and 0.0282 a.u., respective-
ly, for the singlet and triplet states. The scattering lengths
derived using Eq. (17} are not useful estimates because
yr, is large compared to unity, and neither value of y is
within the domain of convergence of Eq. (17).

The values obtained for the scattering lengths are
determined by the quantity 4. For the X'Xg state,

=66++0.5506, which implies that the potential well is
just deep enough to acquire the last bound state and is far
from acquiring another. Then tan(4 —m. /8) from Eq. (10)
with n =6 lies on the positive branch and (10) gives a
scattering length a smaller than the average value
a =42.3612a&. For the a X„+ state, 4=15vr+2. 8548,
which indicates that the potential well is close to accom-
modating an additional bound state. Then tan(4 —n /8)
is on the negative branch, and (10} gives a larger value
than a.

f
The effective range depends on the overlap of the wawave

unctions uo(r) and uo(r). Figure 3 shows the two wave
functions for the singlet and triplet cases. The larg

1 +
arger

value of r, for the X Xs state coines from the larger lobe
of uo(r) after uo(r) crosses the r axis, when compared to
thea X„+ state.
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FIG. 2. The adopted poten-
tial energy curves of the X 'Xg+

and a X„+ states of Na2.
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TABLE IV. Energies of X'X~ and a X+ highest vibrational levels in cm '. Theory (a) is without
retardation, and theory (b) is the retardation correction.

a X+
Q

Theory

Expt. [6] (a) (b) Expt. [9]

56
57
58
59
60
61
62
63
64
65

5940.2058
5962.6055
5980.8684
5995.1549
6005.7479
6013.0942
6017.8555

5940.1880
5962.5881
5980.8325
5995.1109
6005.7081
6013.0439
6017.8067
6020.4606
6021.6504
6022.0011

+ 1.229(—4)
+ 1.229(—4)
+ 1.229(—4)
+ 1.229(—4)
+ 1.229( —4)
+ 1.228( —4)
+ 1.254(—4)
+ 1.185(—4)
+6.685(—5)
+1.669(—5)

6
7
8
9
10
11
12
13
14
15

5972.32
5984.68
5994.11
6003.57
6010.38
6016.01
6019.41

5972.1799
5984.3137
5994.5464
6003.3288
6010.5687
6015.8063
6019.2227
6021.1887
6022.0572
6022.2655

+3.247( —4)
+3.246( —4)
+3.239(—4)
+3.225( —4)
+3.251(—4)
+3.086(—4)
+2.363(—4)
+ 1.516(—4)
+6.779(—5)
+7.902(—6)

V. HIGHER PARTIAL WAVES

With increasing energy, higher angular momentum
waves contribute to the scattering. Figure 4 illustrates
the variation with energy of the individual partial-wave
cross sections for the X 'X+ state. The total elastic cross
section in units of ao is also presented in Fig. 4. The total
cross section is constant at low velocities, where only s-
wave scattering is significant. For very low energies, the
s-wave cross section is constant and then increases slowly

before decreasing at higher energies. This behavior can
be explained by the values of a and r, For I =0., Eq. (6)
becomes

s 4~ 2 4~
2

sm $0=
k

(27)

Using the elective range expansion and retaining terms
up to the order of k, we find

The modification in the values of the scattering lengths
and effective ranges due to the Casimir corrections are
very small: 0.17' for a and 5.3% for r, for the singlet,
and 0.085% for a and 2.889o for r, for the triplet. Equa-
tion (17) indicates qualitatively the efFect of Casimir
corrections. They lift the last bound-state levels and ac-
cordingly increase the scattering length, and by causing
the potential to go to zero at a faster rate they produce
smaller effective ranges.

Calculations of the triplet scattering length for Na
atoms have been reported recently by Moerdijk and
Verhaar [17]. Taking account of uncertainties in the
a X„+ interaction potential, they concluded that
45ao & ar & 185ao. Our value is 77.3ao.

4~a
(ka)2+[1——'r ak ]

=4ma [1+ak2(r, —a)] . (28)

Since (r, —a) and a are positive, Eq. (28) is consistent
with the calculated behavior. The s-wave cross section
tends to decrease with increasing energy, but the decrease
is overcome by higher partial-wave contributions which
initially increase with energy from zero before passing
through maxima and decreasing. Oscillations occur
through the addition of a small number of partial waves.
The I = 1 partial wave starts to contribute at
log, oE = —8.5, corresponding to a temperature of 1 mK,
and higher I becomes important at larger energies.
Sharper structures are due to shape resonances. The
most prominent is the f-wave resonance corresponding to
a quasibound state trapped by the I =3 centrifugal bar-
rier. A second resonance is found for I =7. The positions
in the energy spectrum and widths of these resonances
are given in Table V. However, the large contribution of
the partial wave 1=4 is due to a near approach of the
phase shift to a multiple of n.j2 at log, oE = —6.7, as
shown in Fig. 5.

%e illustrate in Fig. 6 the similar calculations for the
a X„+ state. The same general features are found. The
s-wave cross section tends to decrease with increasing en-

ergy, but the decrease is overcome by higher partial-wave
contributions. %'e do not observe the small increase in
the s-wave cross section before the decrease because
(r, —a) is negative while a is positive. Here the I = 1 par-
tial wave begins to contribute at a very low energy
(log,+=—10.5) corresponding to a temperature of 10
pK. The higher partial waves become more important
around log,+= —8.5 or 1 mK. A small resonance ap-
pears in the I =6 partial wave. Its position and width are
given in Table V. Here also, the important contribution
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State I

TABLE V. Resonance energies and widths.

&r
log, oE~ (10 a.u. ) (10 ' .u. ) log |o[T (K)] A (cm's ')

TABLE VI. Spin-charge rate coefBcients. The numbers in
brackets denote rnultiplicative powers.

X 'Xg+ 3 no retardation —7.303
with Casimir —7.302

7 no retardation —6.6454
with Casimir —6.6450

a 'X„+ 6 no retardation —6.6571
with Casimir —6.6568

49.77
49.89

226.26
226.46

220.24
220.39

161.5
164.4

3.402
3.416

54.90
55.10

—5

—3
—2
—1

0
1

6.7[—13]
2.1[—12]
8.2[ —12]
4.4[ —11]
1.7[—10]
2.1[—10]
3.5[—10]
4.6[—10]

0.5
(a) u(r)—

v(r)----

0

M

0
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(D)
(6

(D
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C
K
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-3.5

0.8

20 40 60 80
Distance r (a.u. )

100 120 140

u(r)
v(r)-----

FIG. 3. The wave functions
uo(r) of the X 'Xg (a) and a 'X„+

(b) states of Na2 for k~0, to-
gether with the zero-potential
solutions vo(r). The scattering
length is the intersection of vo(r)
with the r axis.
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FIG.~ 4 The individual
1-wave cross sections and

the total cross section for the
scattering in the X'g+ t tstate as
functions of collision energy.
The logarithmic scales in Figs.
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FIG. 6. The individual

partial-wave cross sections and
the total cross section for the
scattering in the a X„+ state as
functions of collision energy.

The corresponding rate coefBcients are given by

a„(T) .
7TP

Values of the mean cross sections in units of ao are
shown in Fig. 8 for T up to 10 K, and values of the corre-
sponding spin-change rate coefBcient in cm s ' are listed

in Table VI. The cross sections are large and, because of
the sensitivity to the details of the interaction potentials
[1], they are very uncertain at low temperatures. At
higher temperatures, where many partial waves contrib-
ute, the predictions are more reliable. The infiuence of
higher partial waves begins to become evident at temper-
atures as low as 1 mK for the triplet case and 10 mK for
the singlet and spin-change cases, as shown in Fig. 8.
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FIG. 8. The thermally aver-

aged elastic and spin-change
cross sections as functions of
temperature.
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VII. CONCLUSIONS

The elastic cross sections for the collision of two Na
atoms at ultralow temperatures are sensitive to the details
of the interaction potentials [I] but are probably very
large, of the order of 10 ' cm . Below 1 mK, the col-
lisions are dominated by s-wave scattering, but higher
partial waves contribute at higher temperatures. Shape
resonances, trapped within the centrifugal barrier, im-

pose structure on the cross sections. The scattering
lengths are predicted to be positive for both singlet and
triplet scattering. The eFects of the Casimir corrections

are very small: the scattering lengths increase by 0.1%,
the effective ranges decrease by 3.0%, and the shape reso-
nances are moved slightly in energy.

ACKNOWLEDGMENTS

Dr. M. Marinescu provided valuable advice and re-
marks regarding the Casimir corrections. This work was
supported by the Division of Chemical Sciences, Office of
Basic Energy Sciences, Offtce of Energy Research, U.S.
Department of Energy.

[1]R. C6te. A Dalgarno, and M. J. Jamieson, Phys. Rev. A
50, 399 {1994).

[2] G. F. Gribakin and V. V. Flambaum, Phys. Rev. A 48, 546
{1993).

[3]O. Hinckelmann and L. Spruch, Phys. Rev. A 3, 642
{1971).

[4] C. J. Joachain, Quantum Collision Theory (North-Holland,
Amsterdam, 1975).

[5] W. T. Zemke and W. C. Stwalley, J. Chem. Phys. 100,
2661 (1994).

[6] O. Bababy and K. Hussein, Can. J.Phys. 67, 912 (1989).
[7] R. F. Barrow J. Verges, C. Effantin, K. Hussein, and J.

D'Incan, Chem. Phys. Lett. 104, 179 (1984).
[8] D. D. Konowalow, M. E. Rosenkrantz, and M. L. Olson,

J. Chem. Phys. 72, 2612 (1980).
[9] L. Li, $. F. Rice, and R. W. Field, J. Chem. Phys. 82, 1178

(1985).
[10]M. Marinescu, H. R. Sadeghpour, and A. Dalgarno, Phys.

Rev. A 49, 982 (1994).
[11]B. M. Smirnov and M. I. Chibisov, Zh. Eksp. Teor. Fiz.

48, 939 (1965) [Sov. Phys. JETP 21, 624 (1965)].

[12]K. T. Tang, J. M. Norbeck, and P. R. Certain, J. Chem.

Phys. 64, 3063 (1976).
[13]F. Maeder and W. Kutzelnigg, Chem. Phys. 42, 95 (1979).

[14]D. D. Konowalow and M. E. Rosenkrantz, J. Phys. Chem.

86, 1099 (1982).
[15]M. Marinescu, J. F. Babb, and A. Dalgarno, Phys. Rev. A

(to be published).

[16]R. C0te and M. J. Jamieson (unpublished).

[17]A. J. Moerdijk and B.J. Verhaar, Phys. Rev. Lett. 93, 518

(1994).


