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Interaction potentials for the X 'S and a > states of Na, are constructed and used in calculations
of the elastic scattering of two Na atoms at ultralow temperatures. The sensitivity to retardation effects
(or Casimir corrections) is explored. The calculated elastic and spin-change cross sections are very large,
of the order of 107'2-107!3 cm? at zero temperature. The predicted scattering lengths are both positive,
34.9 a,, for the X '2 state and 77.3 a, for the a °Z;} state. Pronounced shape resonances appear for the
1 =3 and 7 partial waves for the singlet and / =6 for the triplet states.

PACS number(s): 34.40.+n

I. INTRODUCTION

Collision processes at millidegrees Kelvin temperatures
are sensitive to the details of the interaction potentials be-
tween the colliding systems over an extended range of in-
ternuclear distances [1]. Here we explore the simple case
of the elastic scattering at near-zero temperatures of a
pair of sodium atoms for which apparently accurate in-
teraction potentials can be constructed. We include the
retardation effects (or Casimir corrections) and show that
they change the scattering lengths and effective ranges by
little, and move the shape resonances by small amounts.
Finally, we compare our results to those obtained using a
semiclassical derivation [2].

I1. THEORY

A partial-wave expansion reduces the problem of elas-
tic scattering by a potential ¥ (r) to the determination of
the radial solutions u;(r) of the lth partial-wave equation

d? 1(1+1)
__+k2_—2

o - —U(r) |u(r)=0. (1)

Here kK =V'2uE /% is the wave number, where E is the
energy of the relative motion, u is the reduced mass, and
U(r)=2uV (r)/#*, where V (r) is the (asymptotically van-
ishing) interatomic potential. The solutions must be reg-
ular and behave asymptotically as

u (ry= A;[s;(kr)+c;(kr)tand;] , r— o , 2)

where A, is a normalization constant, s;(x)=xj;(x) and
¢;(x)=—xn,;(x) are the spherical Bessel and Neumann
functions, and 8, is the scattering phase shift. Alterna-
tively, we can rewrite u;(r) as

u(r)= A;sinlkr =17 /2+8;), r—ow . (3)

With 4, in Eq. (2) set equal to unity, a useful check is
provided using the integral equation

tand, = —%fowdr s (kPU (Puy(r) @
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The scattering by ¥V (r) is described by the phase shift §;,
and a total elastic cross section may be defined by

o= % 3 @+ 1sin’s, (5)

Sodium atoms in their ground states may approach along
either of the potential-energy curves V,(r) and V,(r),
corresponding, respectively, to the X '3 and a’Z}
states of Na,. Elastic singlet and triplet cross sections
may be defined by

oST= % 12 (21 +1)sin?8> 7T, (©
=0

where S and T stand for singlet and triplet, respectively.
The spin-change cross section is calculated from the
singlet and triplet phase shifts by

0= % 12 (21 + Dsin®(87—85) . (7)
=0

The low-energy scattering is dominated by the / =0 con-
tribution. At values of k close to zero, the / =0 phase
shift 8, can be represented by a power series expansion in
k [3,4]:

k cotdy=——+1r,k2+0(K’) . ®)

The parameters a and 7,, respectively, are the scattering
length and the effective range. In the limit of low ener-
gies,

S—apg?  oT= -
o3=4ma}, ol=4ma?, o,=mlar—ag)?, )

where ag and ar, respectively, are the singlet and triplet
scattering lengths. The scattering length corresponding
to a potential ¥ (r) that decreases at large r as —C, /r"
has been obtained semiclassically by Gribakin and Flam-
baum [2] in the form

T
2(n —2)

tan |®
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where
2/tn=2) | T —3
ne 2>
— m » 2ftC; 2
a=cos (11
n—2 #iln —2) n—1
r
n—2
and
=_;-f°°dr1/—2/,LV(r) , (12)
To

with V(ry)=0. Gribakin and Flambaum have also
shown that the number of bound states n, is given by
d n—1

T 2(n—2)

n,= +1, (13)

where [ ] indicates the largest integer. When [ ] in Eq.
(13) is an integer, the scattering length is infinite, corre-
sponding to the appearance of a new bound state.

The effective range r, can be expressed in terms of the
zero-energy solutions of the partial-wave equation (1). If
vo(r) is the solution of Eq. (1) at kK =0, with the potential
taken to be zero everywhere, and normalized so that

_ sin(kr +38,)

- as k—0, (14)
sind,,

Uo(r)

and if u,(7) is normalized so that at large r

uO(r)~U0(r) 5 (15)
then [4]
= [ 2_ 2
r, 2f0 drlvg—ug] - (16)

If a bound state with binding energy |E,|=#%y*/2u
lies sufficiently near to the dissociation limit, @ and r, are
related by [4]

—%=—y+%r972+ e (17)

III. POTENTIALS

The interaction potentials of two sodium atoms have
been discussed by Zemke and Stwalley [5]. They have
constructed an empirical Rydberg-Klein-Rees (RKR) po-
tential curve for the X '3 state using the spectroscopic
constants of Babaky and Hussein [6] for vibrational levels
between O and 44, and those of Barrow et al. [7] for
45<v <62. We extended the Zemke and Stwalley RKR
curve with Babaky and Hussein data for v =—0.5 and
—0.25 (see Table 3 in [6]). As noted by Zemke and
§twalley, we have to exclude the point at r =12.429 048
A (see Table III in [5]). We then have a RKR energy
curve ranging from 4.la, to 30.0a,. Instead of using
their exponential continuation for small distances, we
completed the data by using a value from Konowalow,
Rosenkrantz, and Olson [8] at 3.8a,, and then deter-
mined the short-range form at that first point
(7 min = 3. 8ay)
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V(r)=Aexp(—Br), r=<rum, (18)

with

and B=—3mF) 1 g

r
min i’ N
r rmm

A =V (r)exp(Br)|

where 8V/ar|,m, is evaluated from a cubic spline fitting

of the data points for V (r).

The experimental data on the a >3 state cover a less
extensive range of . We used the RKR values of Zemke
and Stwalley [5] between 8.07a, and 25a,, derived from
the spectroscopic constants of Li, Rice, and Field [9].
Here again, we exclude a data point at r =11.046 804 A
(see Table V in [5]). We extended this RKR curve in the
short-range region with 11 points from Konowalow,
Rosenkrantz, and Olson ranging from 3.8a to 7.5a, (see
Table III in [8]). The analytical form for the short-range
region is the same as for the X 'Z." state.

At large separations, V,(r) and V,(r) may be written
as a sum of dispersion term r " and an exchange poten-
tial V. (r) which diminishes exponentially. Thus at
large distances

|4

ou (r)|. (20)

For C,, Cg, and C,, we used the values of Marinescu,
Sadeghpour, and Dalgarno [10]. We give them in Table I
and compare their values with other estimates. The value
we adopted for Cg is consistent with experimental mea-
surements of the polarizability of sodium.

The exchange term V. (r) is very important to the
determination of the spin-change cross section, and spe-
cial care is needed if correct cross sections are to be ob-
tained at low temperatures. Zemke and Stwalley [5]
found the form C exp(—pfr) to be a good approximation
between 10a, and 21a, but it must become inadequate at
larger . Smirnov and Chibisov [11] have shown that if
p?/2 is the ionization potential of the atom in a.u., the ex-
change interaction has the asymptotic form

Vexe(P) =3[V, (r) =V, (r)]=5Cr%xp(—Br) , (21)

where
=1 _
a= 2 s (22)
B=2p , (23)
and C(p) is given by
4 T(Lp)
Clp)= 11‘1/ 1+21/2
211 p p
X foldJ’(l—y)m”(l+,v)”2"eXP[(y —1D/p],

(24)

where A is the amplitude of the valence electron wave
function for large 7,

d(r)=Ar'/P~le7pr (25)
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TABLE 1. Dispersion coefficients in atomic units. We used the set of numbers from Ref. [10].

Source C6 Cg C[o
Marinescu, Sadeghpour, and Dalgarno [10] 1472 111877 11065 000
Tang, Norbeck, and Certain [12] 1510+40 111 400=+4,400 10720 000690 000
Maeder and Kutzelnigg [13] 1540 109 800 10 360000
Konowalow and Rosenkrantz [14] 1680 164 000
Li, Rice, and Field [9] 1637133 157 000+4,700

We determined A by using a model potential method [10]
and obtained 0.751 16 in agreement with the value 0.751
recommended by Smirnov and Chibisov [11]. In Fig. 1
we compare the various values of V, (r) that have been
suggested. There are significant differences. The ab initio
calculations [8,14] and the empirical RKR curve [5] ap-
pear to be consistent neither with the fit reccommended by
Zemke and Stwalley [5] nor with the fit of Smirnov and
Chibisov [11], from which we differ only slightly. How-
ever it is only the last ab initio point at 21a, with which
we disagree.

In Table II we list the parameters of the several recom-
mended fits. Differences between the values derived from
our fit and from those of Konowalow and Rosenkrantz
[14], Li, Rice, and Field [9], and Zemke and Stwalley (5]
become serious at separations beyond 20a,.

Retardation effects (or Casimir corrections) become
important at very large distances. They affect the
dynamical part of the potential, the dispersion terms.
The exchange term, being an overlap of the atomic wave
functions, is not modified by the time delay in the photon
travel between the two atoms. The C, /r" terms take the
form [15]

The functions f¢(r), f3(r), and fy(r) have been calculat-
ed by Marinescu, Babb, and Dalgarno [15]. Asymptoti-
cally they decrease as » .

The adopted hybrid potential curves of the singlet and
triplet states are illustrated in Fig. 2. The differences be-
tween the curves with and without Casimir corrections
are too small to be shown in Fig. 2.

Our adopted potentials yield a value of 6022.023 cm ™!
for the dissociation energy of the X '3 state, in close
agreement with the value of 6022.03 cm ™! of Zemke and
Stwalley [5] and of 6022.6+1.0 cm™! of Barrow et al.
[7]. For the a 3% state, we obtained 174.083 cm ™! for
the value of the dissociation energy, in close agreement
with the value of 174.45+0.36 cm™! of Li, Rice, and
Field [9], and of 173.84 cm ! using numbers from Zemke
and Stwalley [5].

IV. ZERO ENERGY LIMIT

We solved Eq. (1) by the Numerov method, with au-
tomatic step size selection. We found that a more stable
phase shift is obtained at low energies by substituting the
solution into the integral Eq. (4) [16], rather than by

Cqs Ciy Cyp Cs Cs Cuo fitting to the asymptotic form. We determined the
’;?‘*’—rg"*‘_‘rm —felr )_rT+f s(r )F_'"f 10(7) L0 scattering lengths and effective ranges by fitting the
scattering phase shift §, to the effective range expansion
(26)  (8). We also calculated the scattering lengths using Eq.
001 T T T T T T T T
this work —
from RKR data [5] -----
Zemke & Stwalley [5] -----
0.001 | abinitio [8,14] ©
b
L
0.0001 |
[
.
£
g FIG. 1. Exchange term for
é’» Na,: the RKR and Zemke and
g 107 ¢ Stwalley fit are from [5].
a
1077 -
1078 |
10—9 1 1 1 1 1 1 1 1

14 16 18

Distance r (a.u.)
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TABLE I1. Parameters for Ve (r), in a.u. TABLE III. Scattering lengths and effective ranges, in a.u.
Source C/2 a B a r,

This work 00123 4.693 1229 State Eq. 8 Eq.(10) Eq (8 Eq. (16)

Smirnov and Chibisov [11] 0.0125 4.59 1.252 X 12; no retardation 34.936  35.615 184 1875

Zemke and Stwalley (5] 7.0896 0.0 0.81173 with Casimir  34.995 178 177.5

Li, Rice, and Field [9] 4.30 0.0 0.7662

Konowalow and Rosenkrantz [14] 0.345 0.0 0.649 @33} no retardation 77.286  76.580 62 62.5
with Casimir  77.352 61 60.7

(10), and effective ranges using Eq. (16). We adopted an
atomic mass of 22.989 77 g/mole and a reduced mass of
20953.879 58 electron masses, corresponding to the col-
lision of two Na atoms.

The scattering lengths and effective ranges for the
X '3[ and a*Z; states are presented in Table III. The
close agreement between the calculations of a from Egs.
(8) and (10) and of r, from Egs. (8) and (16) confirms the
accuracy of the numerical integrations of the partial-
wave Eq. (1). The size of the scattering lengths and
effective ranges is closely related to the position of the
last vibrational bound states of the energy curves, as can
be anticipated by inspection of Egs. (10) and (13) or (17)
which, consistent with Levinson’s theorem, show that as
the binding energy of the highest level tends to zero, the
scattering length tends to * infinity.

We have obtained the vibrational bound-state energies
with zero angular momentum. They are listed in Table
IV for the highest-lying levels, together with the experi-
mental data [6,9]. We found 66 bound levels for the
X 12; state, and 16 bound levels for the a SEj state. We
confirmed that we had discovered all the bound levels by
calculating their total number for each potential using
formula (13) of Gribakin and Flambaum ([2]. The table
also includes the upward shifts in the energy levels that
occur when the Casimir modification of the long-range

interaction is taken into account. The shifts are every-
where less than 1073 cm ™.

The binding energies of the highest bound levels corre-
spond to values of ¥ of 0.0824 and 0.0282 a.u., respective-
ly, for the singlet and triplet states. The scattering lengths
derived using Eq. (17) are not useful estimates because
yr, is large compared to unity, and neither value of y is
within the domain of convergence of Eq. (17).

The values obtained for the scattering lengths are
determined by the quantity ®. For the X '3 state,
®=66m+0.5506, which implies that the potential well is
just deep enough to acquire the last bound state and is far
from acquiring another. Then tan(® —7/8) from Eq. (10)
with n =6 lies on the positive branch and (10) gives a
scattering length a smaller than the average value
@=42.3612a,. For the a33} state, ®=157+2.8548,
which indicates that the potential well is close to accom-
modating an additional bound state. Then tan(®—7/8)
is on the negative branch, and (10) gives a larger value
than a.

The effective range depends on the overlap of the wave
functions vy(r) and uy(r). Figure 3 shows the two wave
functions for the singlet and triplet cases. The larger
value of r, for the X 'S state comes from the larger lobe
of uy(r) after vy(r) crosses the r axis, when compared to
the a 32 state.

0.1 T =T T T
] singlet —
i triplet -----
0.08 | ] 1
0.06 | \ \ .
—~  0.04F ‘ 4
s \ FIG. 2. The adopted poten-
c y tial energy curves of the X '3
> \ § 35+
0.02 \ and a °Z states of Na,.
0+
-0.02 7
-0.04 . L L y
0 5 10 15 20 25

Distance r (a.u.)



tion (17) indicates qualitatively the effect of Casimir
corrections. They lift the last bound-state levels and ac-
cordingly increase the scattering length, and by causing
the potential to go to zero at a faster rate they produce
smaller effective ranges.

Calculations of the triplet scattering length for Na
atoms have been reported recently by Moerdijk and
Verhaar [17]. Taking account of uncertainties in the
a 33} interaction potential, they concluded that
45a,<ar<185a,. Our valueis 77.3a,.

V. HIGHER PARTIAL WAVES

With increasing energy, higher angular momentum
waves contribute to the scattering. Figure 4 illustrates
the variation with energy of the individual partial-wave
cross sections for the X 12; state. The total elastic cross
section in units of a3 is also presented in Fig. 4. The total
cross section is constant at low velocities, where only s-
wave scattering is significant. For very low energies, the
s-wave cross section is constant and then increases slowly
before decreasing at higher energies. This behavior can
be explained by the values of a and r,. For [ =0, Eq. (6)

becomes

-4
k*+k%cot?s,

T .
o3= Fsmzﬁo

27

Using the effective range expansion and retaining terms
up to the order of k2, we find

50 ELASTIC SCATTERING OF TWO Na ATOMS 4831
TABLE IV. Energies of X ' and a =% highest vibrational levels in cm™!. Theory (a) is without
retardation, and theory (b) is the retardation correction.
x's} a’sy
Theory Theory
v Expt. [6] (a) (b) v Expt. [9] (a) (b)
56 5940.2058 5940.1880 +1.229(—4) 6 5972.32 5972.1799 +3.247(—4)
57 5962.6055 5962.5881 +1.229(—4) 7 5984.68 5984.3137 +3.246(—4)
58 5980.8684 5980.8325 +1.229(—4) 8 5994.11 5994.5464 +3.239(—4)
59 5995.1549 5995.1109 +1.229(—4) 9 6003.57 6003.3288 +3.225(—4)
60 6005.7479 6005.7081 +1.229(—4) 10 6010.38 6010.5687 +3.251(—4)
61 6013.0942 6013.0439 +1.228(—4) 11 6016.01 6015.8063 +3.086(—4)
62 6017.8555 6017.8067 +1.254(—4) 12 6019.41 6019.2227 +2.363(—4)
63 6020.4606 +1.185(—4) 13 6021.1887 +1.516(—4)
64 6021.6504 +6.685(—5) 14 6022.0572 +6.779(—5)
65 6022.0011 +1.669(—5) 15 6022.2655 +7.902(—6)
. 2
The modification in the values of the scattering lengths oS~ 4ma

and effective ranges due to the Casimir corrections are ¢ (ka)+[1—1Lr,ak?}

very small: 0.17% for a and 5.3% for r, for the singlet,

and 0.085% for a and 2.88% for r, for the triplet. Equa-
o o tor 7e piet =1 ~4ra[1+akXr,—a)] . (28)

Since (r,—a) and a are positive, Eq. (28) is consistent
with the calculated behavior. The s-wave cross section
tends to decrease with increasing energy, but the decrease
is overcome by higher partial-wave contributions which
initially increase with energy from zero before passing
through maxima and decreasing. Oscillations occur
through the addition of a small number of partial waves.
The /=1 partial wave starts to contribute at
logoE =~ —8.5, corresponding to a temperature of 1 mK,
and higher / becomes important at larger energies.
Sharper structures are due to shape resonances. The
most prominent is the f-wave resonance corresponding to
a quasibound state trapped by the / =3 centrifugal bar-
rier. A second resonance is found for / =7. The positions
in the energy spectrum and widths of these resonances
are given in Table V. However, the large contribution of
the partial wave / =4 is due to a near approach of the
phase shift to a multiple of 7/2 at log;,E =—6.7, as
shown in Fig. 5.

We illustrate in Fig. 6 the similar calculations for the
a3} state. The same general features are found. The
s-wave cross section tends to decrease with increasing en-
ergy, but the decrease is overcome by higher partial-wave
contributions. We do not observe the small increase in
the s-wave cross section before the decrease because
(r, —a) is negative while a is positive. Here the / =1 par-
tial wave begins to contribute at a very low energy
(logoE ~ —10.5) corresponding to a temperature of 10
pK. The higher partial waves become more important
around log;oE ~—8.5 or 1 mK. A small resonance ap-
pears in the / =6 partial wave. Its position and width are
given in Table V. Here also, the important contribution
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TABLE V. Resonance energies and widths. TABLE VI. Spin-charge rate coefficients. The numbers in
E r brackets denote multiplicative powers.
r
State Vexe () logioEr (107° aw) (10710 u) logo[ T (K)] R (cm’s™})

xX's} no retardation —7.303 49.77 161.5 —6 6.7[—13]

with Casimir  —7.302 49.89 164.4 -5 2.1[—12]

—4 8.2[—12]

no retardation —6.6454 226.26 3.402 -3 4.4[—11)

with Casimir  —6.6450 226.46 3.416 -2 1.7[—10]

-1 2.1[—10]

a’z} no retardation —6.6571 220.24 54.90 0 3.5[—10]

with Casimir —6.6568  220.39 55.10 1 4.6[—10]

Singlet wave functions

Triplet wave functions

-2.5

-3.5

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

1 1 1 1 L

20

40 60 80 100 120
Distance r (a.u.)

1 1 1 1 1

40 60 80 100 120
Distance r (a.u.)

140

FIG. 3. The wave functions
uo(r) of the X '3} (a) and a °2;
(b) states of Na, for k—0, to-
gether with the zero-potential
solutions vy(r). The scattering
length is the intersection of vy(7)
with the r axis.
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70000 T T T T T

60000

50000

40000

30000

Cross Sections (a.u.)

20000

10000

FIG. 4. The individual
partial-wave cross sections and
the total cross section for the
scattering in the X '2; state as
functions of collision energy.
The logarithmic scales in Figs.
4-8 are to base 10.

log E (a.u.)

from the / =2 partial wave is due to the phase shift ap-
proaching a multiple of 7/2 at log,E = —7.5.

The spin-change cross section is shown in Fig. 7. The
contributions of both the singlet and triplet resonances
are visible, and the same general description is valid.

The effect of the Casimir corrections on the shape reso-
nances is shown in Table V. They move the resonances
by very small amounts, and cause little change in the
width .

VI. TEMPERATURE DEPENDENCE

We assume the velocity distribution is Maxwellian
characterized by a kinetic temperature T, and we define
mean elastic and spin-change cross sections by

F(T)=(kyT)? fo“’dE Eo(E)exp(—E /kzT) .  (29)

15 |

05

Phase shift

L FIG. 5. Elastic scattering
b phase shift as a function of ener-
; gy for the partial wave / =4 of
the X '3 state.

-10 -9
log E (a.u.)
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3 |
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£ 50000 - \ 4 partial-wave cross sections and
& Vo the total cross section for the
é 40000 F A \ § scattering in the a 33F state as
o Co ; \ functions of collision energy.
30000 |
20000 |-
10000 |

The corresponding rate coefficients are given by

8k, T 172

R= F.(T) . (30)
o

Values of the mean cross sections in units of a? are
shown in Fig. 8 for T up to 10 K, and values of the corre-
sponding spin-change rate coefficient in cm®s ™! are listed

in Table VI. The cross sections are large and, because of
the sensitivity to the details of the interaction potentials
[1], they are very uncertain at low temperatures. At
higher temperatures, where many partial waves contrib-
ute, the predictions are more reliable. The influence of
higher partial waves begins to become evident at temper-
atures as low as 1 mK for the triplet case and 10 mK for
the singlet and spin-change cases, as shown in Fig. 8.

20000 T T T T T T T
total —
=0 ----
18000 | =1 e .
=2
=3 ---
16000 + =4 - -- -
1=5
1=6
14000 + =7 - i
3 12000 | 1 FIG. 7. The individual
\é partial-wave cross sections and
;93 10000 + 4 the total cross section for the
@ spin-change process as functions
é 8000 |- E of collision energy.
o
6000 +
4000 +
2000 - )
0 1 | P 1 1
12 -11 -10 -9 -8

log E (a.u.)




90000

50 ELASTIC SCATTERING OF TWO Na ATOMS

80000 g

70000
60000 -
50000 L
40000
30000

20000 |

Temperature Averaged Total Cross Sections (a.u.)

10000

! T
\ singlet —
triplet; -----
\ spin-change: ----- e

FIG. 8. The thermally aver-
aged elastic and spin-change
cross sections as functions of
temperature.
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VII. CONCLUSIONS

The elastic cross sections for the collision of two Na

atoms at ultralow temperatures are sensitive to the details
of the interaction potentials [1] but are probably very
large, of the order of 107 !> cm?. Below 1 mK, the col-
lisions are dominated by s-wave scattering, but higher
partial waves contribute at higher temperatures. Shape
resonances, trapped within the centrifugal barrier, im-
pose structure on the cross sections. The scattering
lengths are predicted to be positive for both singlet and
triplet scattering. The effects of the Casimir corrections

are very small: the scattering lengths increase by 0.1%,
the effective ranges decrease by 3.0%, and the shape reso-
nances are moved slightly in energy.
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