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The elastic scattering of positrons from the heaviest noble gases has been formulated by using a
parameter-free semiclassical model for the polarization forces in the short- and intermediate-range dis-

tances. The exact Coulomb repu1sive interaction has been obtained from self-consistent-Geld wave func-

tions of near-Hartree-Fock quality and the scattering equations have been solved over a broad range of
collision energies. The elastic integral cross sections agree well with experiments in spite of the great
simplicity of the employed computational model. Angular distributions also compare favorably with

available experiments and the relative importance of various second-order corrections is discussed in re-

lation to their bearing on the Gnal results.

PACS number{s): 34.80.8m

I. INTRODUCTION

The low-energy scattering of positrons from atomic
targets in the gas phase still constitutes a very sensitive
test for atomic interactions and for studying the effects of
a positive probe on the dynamic response functions of
many-electron target systems. In particular, the behavior
of the simpler elastic cross sections, integral and
differential, below the thresholds of the formation of.ad-
ditional bound particles, i.e., of either positronium (ps} or
of positron-atom bound states, is also an ideal ground for
testing possible descriptions of the interaction forces
within nonrelativistic quantum dynamics.

It is well known in fact that the behavior of low-energy
electrons in collisions with atoms and molecules is con-
trolled by three kinds of interactions: electrostatic, ex-
change, and polarization [1-3]. Outside the region
where the target charge density is localized, a region usu-
ally referred to as the "target core," the latter interaction
can be understood as an induced effect arising from dis-
tortions of the molecular electronic wave function by the
charged projectile, be it negatively or positively charged
[4]. Rigorously speaking, this effect arises in quantum
collision theory as virtual excitations of closed electronic
states, including in principle those in the continuum [5].
In practice, however, the infinity of such states precludes
treating polarization rigorously. Considerable effort has
therefore been expended in the past three decades trying
to include it as accurately as possible, albeit not rigorous-
ly.

In the case of the positron projectile, on the other
hand, the absence of some nonlocal effects such as the ex-
change interaction should make the treatment of its low-
energy scattering from many-electron atoms less difBcult
in principle and computationally less demanding in prac-
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tice. The electrostatic interaction can in fact be treated
exactly and therefore the way one handles the polariza-
tion effects plays an essential role in deciding on the qual-
ity of the employed theoretical model.

As in the case of an impinging electron, what makes
this so diScult is not the representation of the distortion
of the target electronic density as function of a charge
fixed some distance away from the origin of all charges
but rather the additional effects which come into play
near and within the target core mentioned before. At
large distances from the core in fact the velocity of the
slow positron can be considered low enough that the
bound molecular electrons respond adiabatically to the
impinging projectile without specific dependence on its
local velocity [6]. As the projectile nears the target, how-
ever, the repulsive Coulomb core further slows it down
while the attraction from the bound electrons increases
and strongly modi6es its asymptotic motion via correla-
tion processes similar to multiple-scattering effects [7].
The polarization potential at short range is therefore not
only energy dependent but also nonlocal. In the case of
the scattering of electrons a further complication comes
from when the projectile's wave function strongly over-
laps the target core: in that instance the scattering elec-
tron loses its identity, the independent-particle model
breaks down, and many-body effects predominate.

In conclusion, in the cases of both electron and posi-
tron scattering one distinguishes a long-range region of
interaction where perturbative polarization effects are
dominant. The ensuing interaction acquires a local form
which is adiabatic on the projectile s velocity and in-
dependent of the sign of its charge [8]. In addition the
intermediate- and short-range regions of interaction are
where nonadiabatic nonlocal e8ects play an important
role and where differences appear between the behaviors
of electrons and positrons as projectiles [9].

In order to devise simpler ways of handling the polar-
ization forces over the whole range of relative distances
various approaches have been tried in recent years, either
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by designing an effective optical-potential form [10—13]
or by developing model potentials that strive to treat the
single-particle aspects of this phenomenon as accurately
as possible while approximating short-range many-body
core-polarization effects [14—16]. Ideally, such model
correlation-polarization potentials should be free of pa-
rameters which need adjustment to experimental cross
sections, and it is in this sense that they are often de-
scribed as ab initio potentials.

In the present work we discuss a model potential to
treat both polarization forces in the long-range region
and correlation-polarization forces in the intermediate-
and short-range regions of interaction for the scattering
of slow positrons from complex, rare-gas atoms in their
ground electronic states. We will show that such a poten-
tial requires very little computational effort for its im-

plementation and can provide very good results for the
heaviest rare gases for which ab initio results are seldom
available, due to the complexity of treating correlation
via Cl expansions, and for which rather complicated
model potentials have been previously suggested.

The following section discusses the general outline of
our model and its specific derivation. Section III presents
our computational results for krypton and xenon. Our
final conclusions are collected in Sec. IV.

II. THE SEMICLASSICAL MODEL

The chief interest of our present treatment of
correlation-polarization forces is to find a description, in

simple terms, of the field experienced by the impinging
positron as it penetrates the atomic electrons of the tar-
get. The asymptotic form of such a field is simply given

by the well-known second-order perturbation expansion
formula [4]

al q
V' '(r )= —g for r ~~

Pol P ~ 2l + 2
1=1 &rp

for a spherical potential, where r represents the coordi-
nate of the positron, q is the charge of the projectile, and
the a& are the multipolar static polarizabilities of the tar-

get atom. In most treatments [1] only the lowest-order
term is kept in expansion (1), thereby viewing the target-
electron distortion as resulting from the formation of an
induced dipole that leads to the familiar r asymptotic
form of the potential with the scalar, atomic dipole polar-
izability al, =aD as its only coefficient. It is also one of
the aims of the present study, as we shall see below, to
analyze the effects of the higher-order terms which can be
included in Eq. (1) on the computed positron-atom cross
sections below the threshold of Ps formation.

In our previous studies on the use of this model for
electron-atom scattering processes [17,18], we analyzed
higher-order perturbation terms and examined the effects
of third- and fourth-order contributions [19]on the com-
puted elastic cross sections, integral and differential, for
He, Ne, and Ar targets. In the case of positrons as pro-
jectile, however, one should keep in mind that the strong
Coulomb repulsion from the nuclei of complex atoms,
such as those examined here, plays a rather important

role in keeping the slow positron away from the inner
core of the bound electronic density. As a consequence,
it is the outer region of such a density that is mostly sam-
pled by the impinging projectile at low energies, hence
the likely dominance of the contributions to polarization
forces which come from the lower orders of the perturba-
tion expansion and which go to zero in the asymptotic re-
gion at the slowest rates. We therefore feel that the
second-order contributions implied by expansion (1) will

be the most important to analyze for low-energy positron
scattering processes. As we shall see, they are also the
ones which have been most often considered in previous
studies via model potentials [15].

The main drawback of Eq. (1), however, is that it fails
to correctly represent the true short-range behavior of
polarization forces since it diverges at the origin. The
present approach provides instead a smooth modification
of the divergent series in Eq. (1) without having to invoke
any adjustable parameters for its implementation. Our
present method originates from a semiclassical model re-
cently applied to the Hz+ molecule [20], where an analo-
gous problem occurs in connection with the Heitler-
London perturbation calculations of the chemical-bond
total energy. More recently, we have demonstrated that
the previous approach could be successfully applied to
the cases of both electron and positron scattering from
the two-electron He atom [17] and we have further ex-
tended successfully the use of such a global model to the
scattering of electrons from many-electron atoms [18].

The essential point of our treatment simply consists in
noting that, as the relative target-to-projectile distance is
reduced, the interposed electronic charge density goes to
zero and consequently the corresponding long-range po-
larization potential will tend to vanish [8]. In the case of
an impinging positron, this amounts to saying that the
short-range correlation of its motion with that of the
bound electrons will effectively reduce the overall attrac-
tive potential given by the long-range terms of Eq. (1). A
practical ansatz for the total correlation-polarization po-
tential V,' ' over the full range of relative distances could
thus be given by the expression

V,'~'(rz ) = — g f 'z&'+z(rq )&z,&(r~ ),
(21+2)

where

(2)

al
P~~ P 2I + 2r

(3a)

and

0 as r '+ +' with l'~ j. when r ~0
f( ) (r )' 21+2 ~ 1 when r ~~.

P
(3b)

Thus the correcting functions which we are searching for
are required to go to zero at short distances and to ap-
proach unity at large distances from the origin.

The second-order perturbation energy due to the
Coulomb interaction between a continuum electron and
the bound electron of the H atom target has been given
long ago by Dalgarno and Lewis [21] in a simpler form
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which uses the closure approximation

J,= & @, I VIV, &
= ——'

l &(t, l v'l(t), &
—

1 &(t, l vip, & I'],

for the one-electron target atom can be written in our
case as

1 1V=+———
7

rp r].
(5)

where P& is the first-order target wave function and Po is
the unperturbed wave function. According to those au-
thors [21], Eq. (4) is exact at any given r for some value
of s such that —,

' & s & 2 [20]. Within the familiar
random-phase approximation [4] the quantity s describes
the average excitation energy. The perturbation potential

I

where r is the distance of the scattering positron from
the nucleus and r,. its distance from the bound electron.
If we denote by rb the coordinate of the bound electron
with respect to the nucleus, then the interaction of Eq. (5)
can be rewritten as a multipolar expansion

V = g VI (rb, r~, cos8)= '

1=0

]
1 rb

PI( cos8), r~ & rb
p 1=1 p

1

1 1 rp+———g —PI( cos8), rb & r,
rp rb 1 0 rb

(6)

(7)

where 8 describes the angle between rb and r~. We can
now make use of the familiar polarized orbital approxi-
mation [22,23], whereby the dominant part of the pertur-
bation interaction is assumed to come from that spatial
region where rb ~

rp and the bound charge distribution to
be considered is only the one contained within the sphere
of radius r . One can therefore write the interaction in
an approximate form by keeping only the contribution
from Eq. (6),

J2 = V~~I ( rp )

2
rb

Ps( cosy) P j .
rp

(8)

V~I(;)= r „., f, Po("b)"b d"b s

2r
(9)

where the k1 factor contains a11 the necessary normaliza-
tion factors [20]. If we now compare the above result
with Eq. (3a), then we obtain

al =ki f po(rb }rb
+ drb, (10}

0

where the integration runs over the whole range of the
radial variable for the bound electron for which the tar-

To consider the positron as a pointlike projectile fixed in
space and not affecting the potential calculation with
change overlap effects or with the further interaction
from Eq. (7) amounts to using some classical picture in
our model, hence its being called a semiclassical model,
as discussed in [20].

Because of the orthogonality of the P1's, all the cross
terms in / of Eq. (8) will vanish and the sign of the poten-
tial will not depend anymore, in the second-order term,
on the sign of the impinging projectile [17]. One can now
rewrite Eq. (8) as given by, for a one-electron target [20],

which then allows us, by using Eqs. (2) and (9)—(11), to
obtain an explicit expression for the damping function of
Eq. (2}

a I ( &p )=f2I +2 ( &p )a( (12)

with

JoPo "b "b rb
(13)

which now behaves asymptotically as required by condi-
tions (3b}. We therefore see that the present model sim-

ply employs the electronic density of the target atom to
scale the asymptotic polarization potential coeScient into
the short-range and intermediate-range regions where Eq.
(1) is no longer valid. The basic assumption is therefore
classical in nature, in the sense that the only target
charge distribution being considered for the scaling is the
one up to the local position of the impinging positron,
now treated as a fixed pointlike particle.

The final correlation-polarization potential of Eq. (2}
can also be written explicitly as the sum of the contribu-
tions from the first three leading terms of the second-
order expansion (1}, in the case one wishes to include
more contributions from that expansion

V' '(r }= f (r ) f' '(r }- —CXD a&
cP P 4 P 2 4 6 P 2 6r r

ft )(„ CXp

P 2 8r
(14)

get has nonvanishing charge density po(rb ). One can also
define an r~-dependent polarizability coeScient by writ-
ing an approximate expression for it [20]

PaI(r )=ki po(rb)rb'+ drb,



4822 F. A. GIANTURCO AND D. De FAZIO 50

where the further two coefKicients correspond to the
quadrupole and octupole static polarizabilities a& and ap,
respectively [19],and the individual scaling functions can
be obtained from numerical integrations of Eq. (13).

Higher-order terms can also be obtained and have been
discussed by us for electron scattering processes [17,18],
but, as we shall see below, they are not expected to im-

prove on the present model unless many more terms are
included in the treatment. Therefore we will not explicit-
ly include them in the present work.

We should point out that various approximations have
been either used or implied in deriving Eqs. (4}, (8), (11),
and (14), which describe our present model, and the scope
of our comparison with experiments is essentially to see
how realistically it will be able to describe integral and
differential elastic cross sections given the various
simplifications that were needed for its derivation. That
it will turn out to yield a rather reasonable picture for
complex systems is an indication of the basic validity of
the approximations made.

One further aspect of our derivation from the treat-
ment for chemical bonds [20] requires the extension of
our formulas to the many-electron atomic targets which
are our main concern in the present work. So far, in fact,
the interaction has been obtained via a semiclassical mod-
el discussed earlier [17,20] for one-electron target atoms.
The simplest generalization therefore is obtained, as dis-
cussed in Ref. [18], for targets with an arbitrary number

N, of bound electrons by assuming that (i) the ensuing
effective potential can still be considered as spherical and
(ii) it is given by the polarized-orbital approximation. It
therefore follows that the scaling of our previous poten-
tial to the actual N, -electron density within the sphere of
radius r provides the expression

N
V~ (r~)=f, '(r~)V, (r~), (15)

where V, (rz ) is given by Eq. (6) and the scaling factor is

obtained as

fO'PN (rb)rbdrb
f, '(rp)=

f 0 p~ (rb)rb«b
(16)

where p~ (rb ) is now the ground-state charge density of
e

the target atom with N, bound electrons. By inserting
this result in Eq. (8), the final correlation-polarization po-
tential contributions of Eq. (14) become further modified
accordingly and can now be written down as follows for
the case in which the first three coemcients of the
second-order adiabatic, asymptotic potential are includ-
ed:

ap
(f 8 )2f (2) (r )'s 28

Pp

This correlation-polarization potential now behaves
correctly over the whole range of r values and holds for
N, -electron targets. In the following section we will

show the application of the present effective potential to
positron scattering from Kr and Xe targets.

III. THE SCATTERING CALCULATIONS

As mentioned in our previous papers [17,18], the
knowledge of the ground-state electronic densities for the
target atoms was taken from linear combination of atom-
ic orbitals wave functions published earlier [24], where
they were given by near-Hartree-Fock nonrelativistic cal-
culations for the bound electrons. In the case of scatter-
ing of electrons, it has often been suggested that if one
wishes to include relativistic effects, then it is best to go
directly to a Dirac formulation for both the structure and
the scattering parts of the problem [25,26]. In the case of
positron scattering, on the other hand, the static poten-
tial is repulsive and no exchange terms appear in the in-
teraction. Both these effects mean that the impinging
positron, especially at low collision energies below Ps for-
mation, does not penetrate deeply enough into the atom
to significantly "feel" the inner orbitals, which would be
most affected by relativistic corrections [27]. We there-
fore carried out the scattering calculations within a non-
relativistic treatment, as recently done by other calcula-
tions on the same systems [28].

The numerical methods employed in calculating elastic
cross sections, integral and differential, have been dis-
cussed before in connection with the study of electron-
atorn scattering processes [29] and will not be repeated
here in detail. The coupled differential equations were
solved numerically for each partial wave and for all the
examined collision energies. The radial solutions were
propagated using a Numero v's algorithm with an
energy-dependent radial mesh, with step size ranging
from 10 ap up to 10 'ap. The positions of the outer
matching radii were tested against the stability of the cal-
culated phase shifts and were typically at around 200ap,
leading to a numerical error of less than 0.1%. Individu-
al phase shifts were directly computed up to 1=15, while
an effective-range formula [30] was employed for higher 1

values. For computing differential cross sections (DCSs)
the number of partial waves included was extended up to
1=500. While convergence at most angles was achieved
with I,„=100, the higher angular momenta were neces-

sary to obtain stable results in the small-angle scattering.
In order to assess the reliability of the present model,

we show in Fig. 1 the computed DCSs for scattering of
positrons from N, at 13.6 eV, i.e., below the threshold of
Ps formation. The calculations were carried out at the
simplest level of the V,' ' potential presented in our work,
i.e., by including only the dipole polarizability term in

Eq. (14}. One clearly sees that they agree remarkably
we11 with the most recent experimental data on this sys-
tem [31], as well as the more complicated polarized
orbital calculations done earlier on by McEachran, Ray-
man, and Stauffer [32].

A similar set of comparisons is shown in Fig. 2, where
the DCSs for the argon atom are presented at two
different collision energies: at 5 eV (top) and at 8.7 eV
(bottom). The experimental points are from Ref. [33].
When we consider the lower-energy data (top part of the



POSITRON SCATTERING FROM KRYPTON AND XENON 4823

0.5—
2
OJ

III

o 0.4—
O
lII

C
0.3

III
C
O

vl 02
III

8

0.1
lLI

C3 0
0

e'- Ne 13.6 eV

I I I

50 100 150
6, ~ (degrees)

FIG. 1. CComputed and measured differential cr
for positron scatterin f

e i erential cross sections
ing rom neon at 13.6 eV of collisi

The solid line gives our
co fusion energy.

(14), while the experiment 1

our present calculations with a o
perimenta points are from Ref. [33].

A ntegral cross sections

Having established in the reviousp i analysis of our re-

present semiclassical d 1,

e an Ar the general ood ugoo quality of the
ssica model, we can now o on

ine its performance f th 1 tioe or t e calculations g
o e eaviest rare gases Kr and Xe as ground-

2.0-
L
CQ

l/l

CV 00
O

~~
C

e'- Ar 5 eV

terms in Eq. (1) should be included. This
'

11 k"'wn "'ult 'nd h
~ ~

u an t e inclusion of nonad'

has important conse
oe cients beyond the di ole ol'p e po arizability
consequences on the final re

trons. One should therefore sus ep t that our simple mod-
e s ort-range correction ro

cellation hs w en usin onl a
produces here some can-

lead d'a ing ipole coeScient.
g y adiabatic terms beyond th e

figure) we see that the V,' ' potential o
wi its quadrupole and op octupole contributions.

o i ine shows in fact our calculations wi

a e ine reports calculations with

aD an a& coefficients. Finall the
1 1 1 11

rt

agreement with the
' '

ex e
'

inc u e t e ao coefficient in E

t-57' d h h
e position of the ex e

'

a w- g api e e' an with the low-an
is rat er good when onl the d upo e

o e, potential and is not chan ed
much by the further add't f

ange very

ty coefficient in Eq. (14).
a ition of the octu olep polarizabili-

The cornmparison of our calculated cross sect'
further experiments at a h h
in the bottom part of Fi . 2. H

s a a ig er collision ener i
ig. . Here again the use of V' '

and the maximum in t
inimum

lo 1 od d b o d
um in t e cross sections are h

eral simplicity of our t t
y our model. Considerin

ou t o e ion e8'ects andour reatment of cor
pu a iona ease with whic"

tained, it is cert
'

ich our results are ob-

, i is certainly very reassurin that w
to experiments and erf
the more sophisticated 1 1

an per orm, in the corn arisonp
'

n, aswellas

, th kd 't f
a e ca culations of Ref. '25 .

eatures has been re-e existence of such f
e experiments, to ossib e

~

po po
' eas ic c annels on the elastic D g3

Ice our elastic calculations do ot

th th
' t t 7

e act t at they show dec
p g'men s at .7 eV is in kee

'

an somehow confirms that t
correlation-polarizat

s at the present

scribe short-range eff t
za ion potential can r lrea istically de-

of the measured DCS
nge e ects on the elastic crcross section part

when the comple 't f h
re . Our results also

'

exi y o the tar et
indicate that

g atom increases, more

ill

O
~~
LJ 1.0-
Vl
III
O
l
O- 0.5-
~~
C
Ol
I
Ol

c) 0 I

50 100
&,,~ (degrees)

I

150

~ 1.5-a
4J
I/I

cj

O
I/I—1.0—

Vl
C
O

~~
CJ
4I

lA
N

o 0.5

e'- Ar 8.7eV

a
~~
C
OI
L.
Ol

o 0
0

I I

50 100

6, (degrees)

I

150

FIG. 2. CComputed and measured differenti
for positron scatterin f

re i erential cross sections

ergy of S eV and (botto )

a ering rom argon atoms (tos op) at a collision en-

ottom) at a collision ener of 8.
cient only in Eq. (14).

- as e ine, calculations with a and
h d h dl' 1 1

'
e, cacuations with a a aD Q

a points are from Ref. [33].



4824 F. A. GIANTURCO AND D. De FAZIO 50

state atomic targets. The range of energies examined will

be below the respective threshold of Ps formation (-7
eV for Kr and -5 eV for Xe, respectively), where several

experimental data have been available over the years.
The results of our calculations for krypton are shown

in Fig. 3 together with the experimental data [34—36]. It
is interesting to note at the outset the rather wide range
of uncertainty existing between experiments: the squares
are the data from Ref. [35] and the circles are those from
Ref. [37]. Both sets of experiments, however, indicate the
existence of a rather marked increase of the cross sections
below 2 eV of energy.

The calculations reported include, successively, the
contributions of the first three multipolar coefficients of
Eq. (14) for the V( ' potential of the present work. Thus
the solid line shows results with only the dipole polariza-
bility coefficient, the long-dashed line the results obtained
with aD and a& coefficients, and the short-dashed line

the calculations with all three coefficients included. As
expected, the computed cross sections get larger at very
low energy as an increasingly more attractive potential is

employed to treat the long-range part of the polarization
interaction. On the other hand, the first two leading
terms of the second-order contribution to the perturba-
tive treatment of polarization (long-dashed line) provide
very good quantitative agreement with experiments. The
addition of the r coefficient with the octupole static po-
larizability appears to improve agreement with experi-
ments above 4 eV, but yields cross sections which are too
large below that energy. In other words, the inclusion of
higher multipoles in the polarization potential is not
sufficient if one uses adiabatic contributions only, and be-

fore convergence can be reached, one should include the
higher-order terms of the perturbation expansion from
both adiabatic and non-adiabatic effects [28]. These

higher-order coefficients in fact appear with different
signs for the difFerent contributions [18]and therefore are
possibly needed to very high-order before such cancella-
tion effects are all correctly included [9].

An interesting deduction from the present calculation,
however, seems to be that the lowest-order terms of the
second-order perturbative treatment included in our
model are sufficient to provide good accord with experi-
ments, thus allowing us to keep the present model to a
rather simple level by having it include only the lower-
order multipoles appearing in Eq. (1). In other words,
the present semiclassical model provides an effective local
potential in the inner region of interaction which realisti-
cally describes short-range correlation effects on the full

polarization potential by a global scaling function, which
acts only on the second-order lower coefficients included
in Eq. (1). That the global damping of the lowest static
multipoles of that equation is sufficient to provide a reli-
able V, potential seems to be indicated by the calcula-
tions we have shown here and appears to suggest that, in

spite of its approximate nature, our simple prescription
catches the main physics involved in the positron scatter-
ing even from complex targets.

A similar set of calculations was also carried out for Xe
targets and is reported in Fig. 4 together with the experi-
mental data. Here again the existing measurements ap-
pear to span a very large range of uncertainty, especially
in the very-low-energy regime.

The calculations shown involve the V,'
' potential of

Eq. (14) and include the (aD+a&) coefficients in the re-

sults given by the long-dashed curve and all three mul-

tipolar coefficients in the results given by the short-
dashed curve. Both calculations follow very closely the
experimental findings. The computations with the aD
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coefficient only are reported in Fig. 4 by the solid curve
and follow very closely the lowest set of experiments from
Ref. [35]. Here again the comparison with measured
data clearly shows the good quality of our global scaling
model potential, which is applied to the second-order per-
turbative coefficients and only to the lower polarizabili-
ties of Eq. (1).

It is also interesting to note that both the calculations
given by the short-dashed line for Kr and Xe are very
close to the earlier theoretical calculations which em-

ployed a frozen-core version of the polarized-orbital ap-
proximation [28] and which require a more substantial
computational effort than that needed by our present
semiclassical approximation.

B. Differential cross sections

One of the reasons of interest in measuring and com-
puting positron-atom scattering cross sections is connect-
ed with the possibility of observing positron scattering
resonances [38] and absorption effects [33]. Both effects
have been related to the likely modifications of structured
differential cross sections around specific collision energy
values, either below or above the threshold of Ps forma-
tion [39]. Thus it is very important to be able to unques-

tioningly assign to elastic channel only the oscillations
observed below Ps formation and to a coupling with in-

elastic channels its damping as the energy is increased
[40].

The experimental results [39] for positron-krypton col-
lisions are shown, at 6.67 eV, in Fig. 5 together with the
present calculations. Although the experiments are given
on an absolute scale, the authors point out [39] that the
uncertainty in their normalization in the energy width of
the positron beam and in the angular acceptance of their
detector are factors which make the accurate determina-

~ 2.0
O
L
4l
Ih

C4Oa
o 1.5
Ul

~~
C

Ih
Co 10
Ol

V)
I/l
I/l
O

0.5
O

C
tQ
I
4l

I

li
II

e'- Kr 6.67ev

I I

50 100
(degrees)

I

150

FIG. 5. Computed and measured differential cross sections
for positron scattering off krypton at 6.67 eV. The experiments

(P) are from Ref. [39]. The calculations follow the notation of
the preceding ffgures: solid line, aD coeKcient only in Eq. (14);
long-dashed line (aD+a& ) coefficients in Eq. (14); short-dashed

line, all three coefficients in Eq. (14).

O
I
ED

I/I

CV O0

e.0

e -Xe SeV

30
I/I

C

I/I
C
O

2.0
4l

V)
I/I
I/l
O

1.00
C
Cl
I
Ol

0 I I

50 100
6, (degrees)

I

150

FIG. 6. Computed and measured differential cross sections
for positron scattering off xenon atoms. The experiments (P)
are from Ref. [41] while the calculations are from the present

work and follow the notation of Fig. 5.

IV. CONCLUSIONS

In the present work we have applied a simple semiclas-
sical model to the treatment of short-range correlation
effects in the scattering of positrons from the heaviest
rare gases below the threshold of Ps formation. We have

tion of the locations of the maximum and minimum
features rather difficult, as well as to correctly establish
the height of the maximum. Given the above caveat,
therefore, our present calculations are rather close to the
measured data: the computations with aa only are
shown by the solid line and those with (aD+a&) and
with all three multipolar coefficients are shown by the
long-dashed and the short-dashed curves, respectively. If
one normalizes the experimental points to the computed
minimum value around 50', then one finds that the calcu-
lations given by the dashed curves follow very closely the
experiments and reproduce well the strong oscillation in
the measured cross sections. This result is also in agree-
ment with the calculations of McEachran, Stauffer, and
Campbell using the polarized-orbital approximation
[28,39].

Similar calculations for Xe are shown in Fig. 6 for a
collision energy of 5 eV. The measurements come from
the same experimental group of before [41] and are
shown in comparison with our present calculations. Here
again no normalization of measured data to experiments
is attempted; were this done, for example, at the
minimum position, then the calculations including quad-
rupole and octupole polarizability coefficients would fol-
low closely the experimental findings. Our results are
also in accord with the earlier calculations of
McEachran, Stauffer, and Campbell [28] as quoted in
Ref. [41].
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shown that such a model relies on an approximate scaling
procedure for treating polarization forces in the overlap
region, contains no ad hoc empirical parameters, and re-

quires only the knowledge of the target electronic density
to compute a global scaling function for the asymptotic
polarization potentials. Our model is obviously an ap-
proximate effective potential and relies on the accuracy of
the polarization potential to describe high-I scattering
processes as a starting point of its derivation.

The comparison of calculations with experiments also
shows here that the simplest treatment of the polarization
forces, i.e., the second-order perturbative term only and
the lowest multipolar coefficients that contribute to that
term, is sufficient to attain rather good accord with ex-

periments and to avoid the search for the full conver-
gence of the series expansion through the use of many
higher-order terms, both adiabatic and energy-
independent terms, often unavailable for such systems.

The model suggested is physically rather straightfor-
ward to understand and computationally easy to imple-

ment, even for complex targets such as those examined in

this work. In spite of its approximate nature, it appears
to provide a reliable form of a local energy-independent
effective potential to treat correlation effects for the
scattering of positrons and electrons off ground-state
atomic targets. From what has been learned about atoms

[17,1], its extension to molecular systems thus appears
rather promising and is currently under study in our

group.
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