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The dispersion interaction energy for a pair of chiral molecules in their ground states is calculated us-
ing the multipolar form of quantum electrodynamics. The calculations go beyond the electric-dipole ap-
proximation, and the interaction Hamiltonian includes the electric-quadrupole, magnetic-dipole, and di-
amagnetic coupling terms. The energy is calculated using two methods: one with standard fourth-order
perturbation theory and another with a response formalism. In the perturbation approach, the inter-
molecular coupling arises from two-photon exchange whereas in the response method, the energy shift is
calculated from the response of one molecule to the Maxwell fields of the other. In both calculations re-
tardation effects are taken into account. It is shown that the dispersion energy contains a contribution
that depends on the relative handedness of the two molecules. An expression for this discriminatory en-
ergy shift, valid for all intermolecular separations beyond the electron overlap, is presented. In addition
to the discriminatory energy shift, results are presented for the interaction energy shift between a mole-
cule with electric-dipole polarizability and another with magnetic-dipole or electric-quadrupole polariza-
bility. The limiting behavior of these shifts in the near and the far zone is examined.

PACS number(s): 34.20.—b, 33.90.+h, 12.20.—m

I. INTRODUCTION

Early quantum-mechanical investigations of the in-
teractions between neutral molecules separated by dis-
tances beyond the electron overlap were made using
second-order perturbation theory with electrostatic dipo-
lar coupling. The intermolecular energy shift, called the
dispersion energy, showed an R ~% dependence. In these
studies no account was taken of the finite speed of propa-
gation of electromagnetic influences. Casimir and Polder
[1,2], in a pioneering study took account of the speed of
propagation of light and showed that such an inclusion
led to a replacement of the R ~5-dependent dispersion en-
ergy by an R ~7 dependence at large distances. Their pre-
diction was later confirmed experimentally [3,4]. Interac-
tions between chiral (optically active) molecules show an
additional interesting behavior. The dispersion energy
between two chiral molecules contains a contribution
that depends on the relative handedness of the two mole-
cules. The interaction energy between a right-handed
molecule of one species 4 with a right-handed one of
another species B is different from that of the right-left
pair. Such a discriminatory interaction is known as
chiral discrimination [5]. The origins of the discrimina-
tory interaction lie in the low symmetry of chiral mole-
cules and the transitions in these molecules are in general
both electric-dipole and magnetic-dipole allowed.

Previous studies [6,7] of this discriminatory interaction
have been confined to either small intermolecular separa-
tions (near zone) or large separations (far zone). In the
near zone the discriminatory dispersion energy may be
calculated using standard second-order perturba-
tion theory with electric-dipole—electric-dipole and
magnetic-dipole—magnetic-dipole potentials as perturba-
tion. It has an inverse sixth power dependence on the in-
termolecular distance and is given by [6,7]
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where u”™ and m” are the electric- and magnetic-dipole
moments of the transition r<—s with transition energy
E,.. Since an electric dipole is a polar vector and a mag-
netic dipole is an axial vector, it is evident that the re-
placement of one of the molecules by its enantiomer leads
to a change of sign.

In the far zone, where retardation effects are impor-
tant, quantum electrodynamical calculations [6,8] showed
an inverse ninth power on the distance and the energy
shift was found to be
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Again the discriminatory nature of the interaction energy

is self-evident.

In this paper we report a result for the complete
discriminatory dispersion potential for a pair of chiral
molecules in their ground electronic states valid for all
separations outside the electron overlap region. The cal-
culations have been performed using two methods within
the framework of molecular quantum electrodynamics in
the multipolar formalism. Both are extensions of earlier
studies used to derive the Casimir-Polder potential. One
is based on fourth-order perturbation theory together
with the use of diagrammatic techniques [8]. The other
uses a form of response theory [9,10] where the Maxwell
fields in the neighborhood of one molecule are first calcu-

(1.2)
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lated [11] and from the response of the second molecule
to these fields the discriminatory interaction energy is ex-
tracted.

An outline of the two methods is given in Sec. II and
the methods are applied in the subsequent sections to cal-
culate dispersion energies. In Sec. III the discriminatory
interaction energy shift between two chiral molecules is
presented. It is found that the interference between
electric-dipole and magnetic-dipole couplings leads to the
discriminatory shift. The shift is shown to survive ran-
dom orientational averaging. Although the interference
between electric-dipole and -quadrupole couplings also
leads to discriminatory shift for an oriented molecular
pair, the shift vanishes, as shown in Sec. IV, on averag-
ing. Sections V and VI are devoted to nondiscriminatory
dispersion potentials which are of the same order as the
discriminatory potential. It is shown that diamagnetic
coupling can give rise to contributions of the same order.
The asymptotic behavior of the potentials in the small-
and large-R limits is discussed.

II. OUTLINE OF METHODS

A. Perturbation method

The multipolar Hamiltonian for a two-molecule system
is given by
H=H,+Hy+H +H +HE

nt

(2.1

H , and Hy are the Hamiltonians of the molecules 4 and
B located at R, and Rp; H 4 is the second quantized
Hamiltonian of the radiation field; H, and HZ, are the
operators coupling 4 and B to the radiation field. In the
multipolar formalism the field-molecule coupling is ex-
pressed in terms of the coupling of molecular multipole
moments to the electric displacement and magnetic fields

[12-14]. The fields are represented by the mode expan-
sions
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creation operators of a (k,A) mode photon; V is the
quantization volume. The electric and magnetic polar-
ization vectors ¢*)(k) and b(k) and the wave vector k
form a right-handed triad.

In the electric-dipole approximation, the displacement
vector field is assumed to be constant over the molecules;
this corresponds to the neglect of the spatial variations of
the vector potential over the molecules. In this approxi-
mation the radiation-molecule interaction is solely via the
coupling of the electric dipole to the displacement vector
field evaluated at the molecular center. In a higher ap-
proximation, first-order spatial variations of the vector
potential are taken into account; in the multipolar for-
malism this corresponds to the inclusion of the electric-
quadrupole, magnetic-dipole, and diamagnetic coupling
terms. Thus calculations including magnetic-dipole and
electric-quadrupole interactions to second order must
also include the diamagnetic interaction to first order
[10]. The calculations of dispersion energy reported here
include interactions to this order of approximation.
Thus, for the field-molecule coupling we have

H,=H, +HZ 2.4)
where
H{\)=—¢e;'u(4)-dR )—eg '(B)-d(Rp)
—m(A4)b(R,)—m(B)bRy)
_EO QU V d RA) 80 Ql] V d(RB)
(2.5)
and
2
e
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where the a sums are over the electrons. It must be not-
ed that in the multipolar formalism, in contrast to the
minimal coupling formalism, there is no direct electro-
static coupling between the molecules. All intermolecu-
lar interactions between neutral molecules are mediated
by an exchange of transverse photons and the interac-
tions are fully retarded.

The leading contribution to the dispersion interaction
is of fourth order in H\!), corresponding to two-photon
exchange, and the interaction energy between two nonpo-
lar molecules in their ground states is given by
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The ket vector |0) is the ground state of the unperturbed
system with the molecules in their ground states and the
field in the vacuum state. The intermediate states are of
four types: (a) both molecules excited and field in the
vacuum, (b) one excited and one virtual photon present,

(c) both in the ground state with two virtual photons
present, and (d) both molecules excited with two virtual
photons present. Their contributions to the energy shift
are found with the aid of diagrammatic techniques. A
typical two-photon exchange graph is shown in Fig. 1. A
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FIG. 1. Typical diagram with two-photon exchange for cal-
culation of dispersion energy.

virtual-photon exchange is represented by a wavy line
and is given the mode label (k,A). The intermediate
states of molecule A are labeled m and those of B labeled
n. The energy denominators are easily read off the
graphs. For the graph in Fig. 1 the product of the energy
denominators is (E,,o+fick')fick +fick' ) E,,+#ick).
The number of topologically different graphs involving
two-photon exchange is 12. Each graph has a different
set of denominators, independent of the nature of the in-
teraction vertices. The nature of the vertices, however,
depends on the type of energy shift. For example, in the
graphs for the calculation of the Casimir-Polder poten-
tial, all four vertices are of the —e, 'u-d type, whereas
the discriminatory interaction energy calculation uses
one —¢; 'u+d and one —m-b for each molecule. In the
former, where all the vertices are of the same type, 12
graphs contribute. In the latter, the different time order-
ings of the two types of vertices must be taken into ac-
count and the number of graphs increases to 48. In the
calculation of the energy shifts involving H\}), three types
of matrix elements (and their complex conjugates) are re-
quired. We list them here for future use:

((k',A'),(k,A);E;| —€g 'u-d(R)|E,;(k’,A"))

=i % m?,-‘“(k)yf’e"“‘, (2.8)
((k,A"),(k,A); E;| —m-b(R)|E,;(k’,\"))
=i —28—’2’;7,- ml?,.‘“(k)m;'e—"*"‘, 2.9)
(K", M), (k,A) E, | —€5 'Q,; V,d;(R)|E,; (K, "))
- Z’Z’; kzM)gge R | (.10

where p", m;” and Q;7 are the electric-dipole, magnetic-
dipole, and electric-quadrupole transition moments for
the transition s<—r.

In the calculation of some energy shifts the diamagnet-
ic coupling term of the Hamiltonian Eq. (2.6) must be in-
cluded. The diamagnetic coupling is represented by a
two-photon vertex and the two-photon exchange contri-
butions are found from third-order perturbation theory
with the aid of graphs of the type shown in Fig. 2. Typi-
cal matrix elements required for calculations involving
diamagnetic coupling are
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FIG. 2. Typical diagram involving diamagnetic coupling.
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These are used in Sec. V.

B. Response method

The calculation of intermolecular energy shifts using a
form of molecular response theory is made in two stages.
The operators for the Maxwell fields in the proximity of a
molecule are first calculated using the Heisenberg picture
[11]. These fields are expanded in powers of the mul-
tipole moments. In our present studies we retain terms
up to and including the magnetic-dipole and electric-
quadrupole moments. As pointed out in Sec. IT A, con-
sistency demands the inclusion of the diamagnetic cou-
pling term as well. The second stage involves the calcula-
tion of the response of the second molecule to the
Maxwell fields of the first using the quantum-mechanical
analog of the expression for the classical integration ener-

gy Eq. (2.12)

Aijkdivjdk‘%eijklvidjvkdz‘*' T (2.12)
a;j, Gij» Xij» Aijk> and 6, are the various multipole po-
larizabilities: their detailed forms are given in later sec-
tions. The leading term of the dispersion interaction en-
ergy Eq. (2.12) represents the response of a molecule with
electric-dipole polarizability to the displacement field of
an electric-dipole source. A quantum electrodynamical
calculation using this term gives the Casimir-Polder po-
tential [9]. Higher-order terms of Eq. (2.12) are used in
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the present work to calculate higher multipole contribu-
tions to the dispersion energy shift and in particular
discriminatory interaction energies dependent upon the
relative handedness of the molecules.

III. DISCRIMINATORY

DISPERSION INTERACTIONS
A. Perturbation approach
The leading contribution to the discriminatory disper-

sion energy arises from mixed electric-dipole-magnetic-
dipole interactions. The contributions are of fourth order
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where each molecule is associated with one —g, 'u-d and
one —m-b interaction terms. Forty-eight diagrams al-
lowing for different time orderings of the two types of
vertices contribute to the energy shift. They may be
grouped into 12 sets of 4. The graphs within each set
have the same energy denominators, but differ in the or-
dering of the vertices. For the four diagrams of the type
shown in Fig. 1, with the common energy denominator
(E,otfick')fick +#ick’)(E,,+#ick ), but with different
orderings of the vertices, the contribution to the interac-
tion energy, using the matrix elements Egs. (2.8) and (2.9)
for the electric- and magnetic-dipole couplings, is

il
fik hk'
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where Kk is the unit wave vector and the polarization sums have been performed using
ze,!“(k)z;“(k)=<a,.j—1?,.1?}» , (3.2)
ze“ Kb Mk)=e ik, , (3.3)
;b} (k)bV(k)=(8,—kk;) . (3.4)
The angular integrations can be done with the aid of
B.E)etkR
7 (kR) ——f(s,, ik et RaQ (3.5)
_ smkR coskR  sinkR
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The other 44 graphs may be grouped into 11 sets of 4, each set having a different energy denominator product. The

contributions from these graphs are obtained in a similar manner and summed. In the summation step the energy
denominators are decomposed into partial fractions in 2 manner similar to that used in the Casimir-Polder potential
calculation [15]. The expression for the energy shift, which consists of two parts, one symmetric and one antisymmetric
in k and k' is
/"'1 mnOyIOmml m0
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Integrating over k' and changing the k integral to one
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over an imaginary wave-vector u, we obtain
—2uR " " y . .
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where
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with the dyadics a;; and B;; defined by

a,.,.=(5,.,—1i,.§,.), B,;=(8;—3R.R)) . (3.11)

Before proceeding to examine the asymptotic behavior of Eq. (3.9), we use the response method to derive the energy
shift Eq. (3.9).

B. Response method

Transitions in chiral molecules are in general simultaneously electric- and magnetic-dipole allowed. A consequence
of this is that a chiral molecule possesses a mixed dynamic polarizability tensor G;;(w), an electric-magnetic analog of
the electric-dipole polarizability tensor, defined by

Or,,, r0 Or, r0
Him; m; i
Gilw)= + . (3.12)
g 2 —#iw E,0+ﬁm

In contrast to the electric-dipole polarizability tensor a;;(w), the sign of the mixed tensor G;;(w) depends on the hand-
edness of the enantiomer and it is this property that leads to dispersion interactions that depend on the relative handed-
ness of the molecules. The discriminatory interaction energy, correct to second order in the moments, between two
nonidentical chiral molecules is found from the response of one molecule to the fields of the other. It is given by

AE=Im EGB(a),,,O) ({43030 VM5 0,10) VA5 0,0)0 ) A 30,m0) ]

—Im (3.13)

;:i_ 3G 2)[b0dP4um)+ b 4(um)d(®]
0 kA

In Eq. (3.13) molecule A4 has been chosen to be the source and B the test body. The final expression for the energy is of
course independent of this choice. We note that the term dependent on the zero-order field is a self-energy term and is
not dependent on the source 4. Also the term linear in the moments does not contribute to the energy shift as it in-
volves an overall change in the photon number. The first term of Eq. (3.13) represents the response of molecule B
through its mixed polarizability G,}(wmo) at frequency w,,o to the first-order fields associated with the transition m<«0
of 4. The second term represents the response of B to the second-order field 4 and the vacuum field. Using the
electric- and magnetic-dipole-dependent Maxwell fields linear in the moments, derived in Ref. [11], the first term of Eq.
(3.13) is found to be

S GE kil m %S, (agajy +€]Is exRR,) (ﬁikle—aikﬁjl-Bikajl+£ikt8jls§s§r) BuBji
1617282 - kZoR? kmoR* kmoR®
(3.14)

An evaluation of the contribution dependent on the zeroth- and second-order fields of Eq. (3.13) with the aid of the ex-
pansions for the free field and the second-order fields gives
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where a;, . . ., e, are given by Egs. (3.10). It may be  in agreement with previous work [6]. In the near-zone

noted that the contribution Eq. (3.14), dependent on the
first-order fields, exactly cancels the first term of Eq.
(3.15). A similar cancellation has been noted in earlier
calculations on the Casimir-Polder potential [16]. So the
total interaction energy is simply the u-integral term of
Eq. (3.15) and is identical to Eq. (3.9) obtained in Sec.
III A by standard perturbation theory.

C. Complete potential for randomly oriented molecules

Expression (3.9) applies to a molecular pair with fixed
relative orientations and may also be written in terms of
the mixed-polarizability tensor G;; over imaginary fre-
quency as

f du u® ~**RG Micu)Gflicu)

161r
s | ik by |y | em
u’R?  uPR® u*R* u’R® u°R®
(3.16)

or in terms of the rotary strength R;°=Im(u¥m?°). To
deal with molecules in the fluid phase, a rotational aver-
age of Eq. (3.16) is needed. By following the standard
procedure [17], the discriminatory dispersion interaction
energy for two freely rotating chiral molecules valid for
all separation distances beyond the electron overlap is

1
- - 2 “‘Om_mm0| “‘On‘m
187%e3#ic R * mn

fow k2
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+u?)(kl+u?)

uR
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(3.17)

D. Asymptotic behavior

We now examine the asymptotic behavior of Eq. (3.17)
in the limits of large and small intermolecular separation.
In the far-zone limit (kR >>1) the molecular separation
is much larger than the wavelengths of the molecular
transitions. In the denominator of Eq. (3.17) u? may be
ignored in relation to k,,y and k,,. After performing the
u integral, the discriminatory interaction energy in the
far-zone limit is found to be

—#c
3m3e2R

mO On,__n0
AE,, = | e |

[ m ‘m
5 2 ’
m,n mOEnO

(3.18)

limit (kR << 1) it is sufficient to retain the leading term of
Eq. (3.17), namely, the R ~-dependent term, and the ex-
ponential factor can be set to unity. The near-zone shift
is then found to be [7]

'”Om.mm0| ‘”Onmn()!
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To obtain Eq. (3.19) from Eq. (3.17) we have used
1 2 o u’
=— d . 3.20
a+b ﬂ'fo @i ud) b +ud) (3.20

We mention in passing that the near-zone result Eq.
(3.19) can also be obtained using second-order perturba-
tion theory with static dipole-dipole coupling potentials

_ u,
V()= +(8,—3R.R)), (3.21)
A
Vij(mm)=——2=(5;—3RR)) (3.22)
4172-: c“R

The result for all R is given by Eq. (3.17) and those for
large and small intermolecular separations are respective-
ly given by Egs. (3.18) and (3.19). This interaction po-
tential is discriminatory, dependent upon the relative
chirality of the molecules of the pair. The polarizability
tensor G;;(w) changes sign with enantiomer since u, a po-
lar vector, is antisymmetric to inversion, in contrast to
m, which is symmetric. For molecules with absolute
configurations R and S, the 4 (R)-B(R) and 4 (R)-B(S)
interactions differ in sign. Since the rotary strength may
be either greater or less than zero, it is not possible to
determine the absolute sign of the interaction when the
molecules are chemically distinct. For chemically identi-
cal molecules, however, the energy shift for opposite iso-
mers is attractive, while that for like isomers is repulsive.
The R ~° far-zone and R ~° near-zone results agree with
those of Mavroyannis and Stephen [6] and Craig, Power,
and Thirunamachandran [7].

IV. INTERACTION BETWEEN TWO MOLECULES
WITH MIXED ELECTRIC-DIPOLE-ELECTRIC
QUADRUPOLE POLARIZABILITIES

Electric-quadrupole interactions are of the same order
as magnetic-dipole interactions. We now calculate the
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energy shifts dependent on the mixed electric-
dipole—electric-quadrupole interactions and examine
whether discriminatory energies analogous to those cal-
culated in Sec. III exist. The calculations follow the same
pattern and an outline of the calculations using the two
methods is given.

AE 22Al]k(wm0)[d“)(y" mO)de(”(Q’ m0)+d“)(Q’ mO)Vk

4773

A. The complete potential

As in Sec. III B, the energy shift is found from he
response of one molecule to the fields of the other. The
dispersion energy correct to second order is obtained
from

(.u'! mO)

+ V(11500 A Qs 0mo) + V[ (Q3 0,00 (115010)]

2
2 €50 k,A

where the fields are those of A4 evaluated at the position
of the test molecule B. Using the electric-dipole- and
electric-quadrupole-dependent first-order and second-
order displacement fields [11] in Eq. (4.1), we obtain

zu?nQJnO OmQ
—2uR

+u2)(k

81r3e%hc
x eo
Iy

Pijklmn

) kmOknO

Qijklmn Rijklmn Sijklmn

2p2 + 3p3 + 4p 4 + Sps
u“R u°R u”R u’R
Tijklmn + Uijklmn Vijklmn
u6R6 u7R7 uSRS

X

+

4.2)

Explicit expressions for the tensors Pjjmy, - - -
are given in the Appendix.

The energy shift Eq. (4.2) has also been calculated us-
ing fourth-order perturbation theory. The calculation
follows the same lines as in Sec. III A, after replacing the
magnetic-dipole interaction by the electric-quadrupole in-
teraction terms of Eq. (2.5). The number of graphs is
again 48 and each diagram contains one electric dipole
and one quadrupole vertex of each molecule. The
relevant contributions from the diagrams are found with
the aid of the electric-dipole and -quadrupole matrix ele-
ments Egs. (2.8) and (2.10). Collecting terms from the 48
diagrams and integrating over k' leads to the shift Eq.
4.2).

’ Vijklmn

B. Asymptotic limits

In the far zone, the energy shift shows an R ~° depen-
dence and is given by

fic
2567738(2,R 9
X [45P;jximn + 15Qijkimn + OR jkimn
+38; +2Tijklmn +2Uijk1mn +4V1 jklmn ] ’
4.3)

AEgp,=— A5.(0)4,4,(0)

ijklmn

where A, (0) is the static mixed polarizability tensor

3 A5 (0)[d{0V,dP(uQ)+dP(uQ)V,d|” +V,d[dP(uQ)+ V,d P (uQ)d”]

4.1

Orn r0
or!
A,.,.k(0)=2zi‘E—”‘— : (4.4)
r r0
In the near zone, the shift Eq. (4.2) shows an R ~® depen-
dence, as expected, and is

1 QOOMQ

AE\;= Vi .
NZ 16#28(2)R 8 mzm Em0+En0 ijklmn

(4.5)

The near-zone result Eq. (4.5) may also be obtained with
second-order perturbation theory and the electrostatic
potentials coupling two electric dipoles (3.21), an electric
dipole and an electric quadrupole (4.6), and two electric
quadrupoles (4.7):

Q Jjk

uk(.U'Q)_ 4meoR* [_3(5ijﬁk+8jk§i+8ikﬁj)
+15R,.R;R, ], 4.6)
Q./08
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+15(8,R, R, +8, R,R,+5,R,R,
+58,R,R,+6,R,R,+6,RR))
—105R,R,R,R,] . @.7

Expressions (4.2), (4.3), and (4.5) hold for oriented mole-
cules and are discriminatory since the tensor ,u,?'Qj’,? de-
pends on the handedness of the molecule. However, they
vamsh on random orientational averaging since the ten-
sor u¥Q10 does. This behavior is in contrast to that
found in Sec I11, where the discriminatory shifts depen-
dent on mixed electric and magnetic interactions survive
random averaging. Thus Eq. (3.9) is the sole contribution
to the discriminatory energy shift to this order for a pair

. of randomly oriented molecules.

V. INTERACTION BETWEEN AN ELECTRIC-DIPOLE
POLARIZABLE MOLECULE AND A
MAGNETIC-DIPOLE POLARIZABLE MOLECULE

A. The complete potential

We now consider nondiscriminatory interactions
which are of the same order as those calculated in the
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previous sections. In this section we obtain the interac-
tion energy for a pair of molecules, one with electric-
dipole polarizability a;; and another with magnetic sus-
ceptibility x;;. This can be evaluated in two ways, de-
pending on which molecule we choose as the source and
which as the test. The result is of course independent of
the choice. Taking A as the magnetic-dipole polarizable
source and calculating the response of B to the Maxwell
fields of A we calculate the interaction energy using

1
AE=— 2—8(2)a,’-jd,~"(RB ) (Rp)

(5.1)
where d“4(Rj) is the displacement vector field of A at
R;. Expanding the field of 4 in powers of magnetic mo-
ments and extracting the relevant terms we have

AE——————ZaU d{V(m;0,,0)d (m;0,,0)

EaB(a) d(od (mm)+d? (mm)d}m].
EOkA

(5.2)

As in the previous sections, the first term of Eq. (5.2),
which depends on the first-order field, exactly cancels
part of the second term, leaving behind only a u-integral
contribution. It is given by

1 0
n, n0._Om,, mO
™) 3Ej,,e,-ksﬁsﬁ, S uipime m"
gofic o

8
6, —2uR
u’e
X du k,,ok
fo k20+u2)(k2 ) m0™n0
1 2 1
X R? + R + R | (5.3)
which after rotational averaging becomes
1 2|“n0|2|mm0|2
36m3edtic’ mn
6, —2uR
® u’e
X du kmok
fo (k2o+u?) (k2 +u?) "0
X | 2 Lol se

+ +
u?R?*  uR®  u*R*

in agreement with previous work [10].

In the perturbation approach, 12 diagrams contribute
to the energy shift. The interaction vertices of A are of
the magnetic-dipole type and those of B are of the
electric-dipole type. The matrix elements are calculated
using Eqgs. (2.8) and (2.9); the polarization sums per-
formed with Eq. (3.3) and the angular integrations with
the aid of Eq. (3.7). The total contribution from the 12
graphs may be written as
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n0, Om__ mO
p"m o m

AE=
km()+kn0)

%ﬁc3 2
’ 13 ’
xfo fo dk dk'k k", (k'R ), (kR)

Kot kot k'
(ot k) k,otk)

(5.5)

1 1
k+k' k—k' |’
Integrating over k' and changing the k integral to one

over imaginary frequency, we find the expression for the
energy shift to be identical with Eq. (5.3).
B. Asymptotic behavior
For kR << 1, Eq. (5.4) becomes
1 ,mm0|2lﬂn0'2

AEN; =
Nz 727725(2,ﬁ2c4R4,§, E,otE,

EE,. (5.6

It should be noted that Eq. (5.6) is not the static limit be-
cause there is no static coupling between an electric di-
pole and a magnetic dipole. Equation (5.6) is retarded
and is the leading term in the small-R limit. In the far
zone, Eq. (5.4) shows an R ~7 dependence and is given by

Th A

5 7 (5.7)
64me3cR’ X

AEg; = (0)a®(0) ,

where x(0) and a(0) respectively are the isotropic static
magnetic-dipole susceptibility and the static electric-
dipole polarizability of molecules 4 and B [6,10]. It
should be noted that in contrast to the attractive nature
of the Casimir-Polder potential, the dispersion energy Eq.
(5.4) is repulsive.

C. Contribution from diamagnetic coupling

The energy shift Eq. (5.3) is incomplete in that no ac-
count has been taken of the diamagnetic coupling term.
This coupling is quadratic in the charge and can there-
fore give an energy shift of the same order as that found
above in Eq. (5.3). The response of B to the part of the
field that is dependent on the diamagnetic source term of
A is given by

2

e
AE= E—_eikpejlp

X},(q,q, AbOb P B (up)+b? (5.8)

Bpupb] .

Using the expressions for the fields found earlier [11], we
obtain

AE=—

eZ

64m’elme?
A On, n0
xz(qiq] Hmln € 1kp€j1pekms51ntﬁsﬁt

2uR

X du
fO (k2 +u?)

1 2 1
qu2+u3R3 u*R*

an() y (5.9)
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which on averaging gives

(g4 =
n
- d -
144173“ 2” 7 f k +u?)
1 2 1
Xlewo | =gzt gt =g | - (5.10)

In the diagrammatic perturbation theory approach, the
interaction vertex of A4 is a two-photon vertex represent-
ing the diamagnetic coupling. Three graphs of the type
shown in Fig. 2 contribute to the energy shift. The sum
is found to be

e2

AE:W(Susjuafg 8:18;Bug —8ig8;u by
+8,,6,,8,5)
X Eu, 17%a19,) R R,
1 sin2kR cos2kR
xJ, k,,o+k ~ kR? T KR? o1
sin2kR 6
+ SI2 ke

Equation (5.11) is the same as Eq. (5.9) when expressed in
imaginary frequencies.

D. Asymptotic behavior of the diamagnetic term

In the far zone, Eq. (5.10) reduces to

2
3eﬁ aB(O)(qz)A,

AEg=-—2
P2 1287%2mcR’

(5.12)

illustrating that at large intermolecular separations, the
diamagnetic contribution to the dispersion interaction
varies as R ~7. This result may be combined with Eq.
(5.7), where the far-zone limit was also expressed in terms
of the static electric-dipole polarizability of molecule B.
From Egs. (5.7) and (5.12),

7%

A E tot —
64me3cR’

aB0)x'40) , (5.13)

where the new, modified magnetic susceptibility tensor is
defined by
‘A A e’ 2y4
X' 40)=x40)———(g*)*. (5.14)
6m

Although both a(0) and y(0) are positive for molecules
in the ground state, x'(0) may be either positive or nega-
tive depending on the relative sizes of the two terms in
Eq. (5.14). A molecule is termed diamagnetic if y'(0)
<0. Returning to Eq. (5.10) and examining the near-
zone behavior, after the usual approximations, the lead-
ing term is found to be
n0|2<q2>Akn0 .

AEy; = (5.15)

2
—e
2887c%c*mR’® %l"
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Comparing Eq. (5.15) with the corresponding limit Eq.
(5.6) obtained between electric-dipole and magnetic-
dipole polarizable molecules, the ratio of the two is given
by

AENZ(aX)

L 1
AE\(dia) 5.16

In the near zone, where kR < <1, the contribution from
the diamagnetic coupling term dominates the interaction.

VI. INTERACTION BETWEEN AN
ELECTRIC-DIPOLE POLARIZABLE MOLECULE
AND AN ELECTRIC-QUADRUPOLE
POLARIZABLE MOLECULE

A. The complete potential

Magnetic-dipole and electric-quadrupole couplings are
of the same order, and contributions to energy shift from
interactions between a molecule with electric-dipole po-
larizability and one with electric-quadrupole polarizabili-
ty are therefore comparable to those found in the preced-
ing section. In this section we calculate this shift by the
two methods. For the response method we choose mole-
cule 4 with quadrupole polarizability as the source and B
with dipole polarizability as the test. The interaction en-
ergy arising from the response of B to the fields of 4 is
found to be

———zaB(w,,,o)d,.‘“(Q;w,,,o)d;“(Q;m,,,o)

L 508 (0)[d/24P(QQ)+dP(QQ)d¥] . 6.1

Okk

Using the electric-quadrupole displacement fields, evalu-
ated in Ref. [11], and the free field in Eq. (6.1), we obtain

____1__ n, n0
8miedfic ,%,# 0" O

8 ,—2uR
® u‘e
X du k,ok
fo (k2o +u?) k2 +u2) ™00
X Aijklmn + Bijklmn + Cijklmn + Dijklmn
u’R?  u®R®  u*R*  u’R’
E; 'mn Fj; n Gi' mn
+ t]6kI : + l];(lm-l ]Bkl - 6.2)
u°R u'R u°R
Explicit expressions for the geometric tensors

Aijkimn> - - - > Gijkimn ar€ given in the Appendix. As in
previous cases, the contribution from the first-order fields
is exactly canceled by a contribution from the free-
field—-second-order field term, namely, the second term of
Eq. (6.1). It should be emphasized that for a pair of mol-
ecules with one or both in excited states, this cancellation
does not occur; the two contributions in fact reinforce
each other resulting in an additional contribution to the
energy shift. Expression (6.2) is applicable at all separa-
tions outside electron overlap for an oriented pair. To
obtain the interaction for a randomly oriented pair, an
orientational average is performed and Eq. (6.2) becomes
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1
_ | 0ni2 Omym0
72073 e3ic ,,,zn w0

—2uR
u e
Xfo (kZo+u?) (k2 +u?) kmokno
6 36 162 | 504

X

u®R?*  uR?®  u*R* W3R

+ 972 + 1080 4 540 (63)

u®R®  u4'R7  u®R®

The calculation of the dispersion energy using diagram-
matic perturbation theory involves steps similar to those
in the previous sections and details may be found in Ref.
[17]. Suffice it to remark that 12 graphs with electric-
quadrupole vertices for A and electric-dipole ones for B
are used together with the matrix elements Eqgs. (2.8) and
(2.10).

B. Asymptotic behavior

We now examine the asymptotic behavior of Eq. (6.3).
In the far zone, u is small compared with &, and k,4 and
may be neglected. The integral is then easily evaluated
and the shift in the far zone can be expressed in terms of
static polarizabilities as

1593%ic

AEg, = ——————aB0)64, ,(0), (6.4)
F2 o 1280m%2R°® huks
where the static electric-quadrupole polarizability
6;1,2,(0) is defined by
Q0m mQ

m0

This asymptotic result agrees with a previous derivation
[10] where the roles of the two molecules had been re-
versed.

In the near zone, the shift shows and R ~® dependence
and is given by

3 " *eRn 0%,
81728(2)R 8 myn EmO+En0

which may also be written as an integral over imaginary
frequencies

9fic

— (6.7)
16m¢3R

AE\;=— f du a®(icu )9;\#;\“(1014)

In Eq. (6.7), alicu) is the electric-dipole polarizability at
imaginary frequency; the electric-quadrupole polarizabili-
ty Opun,licu) is defined by

o%

i + % Kmo - (6.8)

Opurulicu)= e 2

We remark that the near-zone result can also be derived
using second-order perturbation theory using the dipole-
quadrupole coupling potential as the perturbation.
Although the magnetic-dipole and electric-quadrupole
couplings are comparable, the asymptotic behavior of the
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dispersion energy shifts is different in the two cases. In
the near zone, it is the electric-dipole—electric-
quadrupole coupling that gives the dominant contribu-
tion with an R ~® dependence. In the far zone, the
electric-dipole—magnetic-dipole and diamagnetic cou-
plings give the dominant contribution with an R ™’
dependence [Egs. (5.7) and (5.13)].

VII. SUMMARY

Retarded dispersion energies for a pair of chiral mole-
cules have been calculated using the conventional
fourth-order perturbation theory as well as a response
theory. In both cases the interaction Hamiltonian in-
cludes  electric-dipole,  electric-quadrupole,  and
magnetic-dipole couplings. Diamagnetic coupling has
also been included as its contributions can be comparable
to those from multipole interactions. A part of the
dispersion energy is discriminatory in that it depends on
the relative handedness of the molecules. This contribu-
tion is expressed in two equivalent forms: one in terms of
mixed electric-magnetic polarizability tensors at imagi-
nary frequencies and the other in terms of rotatory
strengths. Nondiscriminatory dispersion energies of
comparable magnitude have also been calculated. They
depend on electric-dipole and -quadrupole polarizabilities
and magnetic susceptibilities. The contributions calculat-
ed in this paper are valid for all separations beyond the
electron overlap region. Their asymptotic behavior is an-
alyzed and compared with previous work. A possible
manifestation of discriminatory interactions is the
difference in the enthalpy of solution. Though previous
measurements of differential enthalpy of solution have
been inconclusive, more accurate experimental studies
may confirm the existence of interactions that depend on
the relative handedness of the molecules.
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APPENDIX: TENSOR EXPRESSIONS

In this appendix the expressions for the products of the
geometric tensors that appear in Eqgs. (4.2) and (6.2) are
given. We first define

ay=84—RR)), (A1)
Bu=(8,—3RR)), (A2)
X =8, R, +8,R,, +8,,R,—5RR, R, , (A3
Yiimn =8xBn + (81 R , R, —8,,, R, R))
~(Xgm R+ XuuR,) (A4)
Ziimn = (8108 mn +81mS1nt 81m Sicn ) (AS)
—5(8,R, R, +8,,R R, +8,R R,
+8,, R, R, +8,RR, +5,,R.R)
+35R,R/R R, (A6)
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We note that B;; and X,,, appear in the expressions for
the electric-dipole and electric-quadrupole fields and
Zmn appears in the gradient of the electric-quadrupole
field.

The tensors Ajjximns - - - » Gijkimn that appear in Egs.
(4.2) and (6.2) are given by

Ajjkimn =a,-1ajm§kﬁ,, , (A7)
Bijjkimn =2ailajmﬁkﬁn +ai1ﬁkamn +aijnXi1k , (AB)
Cijkimn =1 jy ﬁkﬁn +4ailﬁkamn

+4a, R, Xy +Xn Xy » (A9)

Djkimn :6(ailﬁkamn +ajmﬁnXi1k + X Xjmn) »  (A10)

Ejjamn =3y Ry Xy + 30, R, Xy +15X 3. X)) 5 (AL1)
Fijktmn = 18Xy Xjmp » (A12)
Gijiimn =X itk Xjmn » (A13)
Hijkimn = —aya,;R,R, (A14)

Lijkimn = _Bilakjﬁmﬁn +ai Yijmn » (A15)
Jijkimn = _Bilakjﬁmﬁn HaytBi) Yijmn @i Zyjmn »
(A16)
Kijitmn =2Bit Yijmn + Bty +Bi) Zyjmn » (A17)
Lijtimn =Bit Yijmn T3y +4Bii)Zyjmn » (A18)
Mjiimn =6BiZijmn » (A19)
Nijkimn =3BiaZijmn > (A20)
Pijtimn = Aijkimn T Hijamn > (A21)
Qijkimn =Bijkimn T Lijkimn » (A22)
Rijkimn = Cijiimn T Jijkimn > (A23)
Sijkimn = Dijitmn t Kijkimn » (A24)
Tijkimn = Eijiimn + Lijkimn > (A25)
Uijkimn = Fijkimn + Mijkimn > (A26)
Vijkimn = Gijkimn + Nijiimn » (A27)
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