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Relativistic many-body perturbation theory based on the no-pair
Dirac-Coulomb-Breit Hamiltonian: Relativistic correlation energies

for the noble-gas sequence through Rn (Z = 86), the group-IIB atoms through Hg,
and the ions of Ne isoelectronic sequence
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Relativistic correlation energies have been computed for the neutral rare-gas atoms Ne, Ar, Kr,
Xe, and Rn, the group-IIB atoms Zn, Cd, and Hg, and the ions of the Ne isoelectronic sequence with

up to Z = 100 by means of a recently developed relativ'istic many-body perturbation theory based
on the no-pair Dirac-Coulomb-Breit Hamiltonian. Analytic basis sets of Gaussian-type functions
are employed to expand the upper and lower components of the Dirac four-spinors in the matrix
Dirac-Fock self-consistent-Geld and relativistic many-body perturbation procedures. The effects of
the low-frequency Breit interaction on relativistic many-body effects for high-Z neutral atoms and
Ne-like highly ionized ions are examined.

PACS number(s): 31.20.Tz, 31.30.Jv

I. INTRODUCTION

Construction of an efFective many-body theory that ac-
curately accounts for both relativistic and electron cor-
relation eKects in many-electron systems is a challenging
problem. A great deal of effort has been directed to-
ward developing a relativistic many-body theory formu-
lated in particular with discrete basis expansion meth-
ods [1—9]. As Johnson et al. argue [1], one needs a
many-body method that accounts for relativistic and cor-
relation effects at a level of accuracy adequate to exam-
ine the residual quantum electrodynamics (/ED) effects.
The accurate determination of relativistic and correla-
tion energies is also becoming important for calibrating
density-functional theory because of the growing interest
in testing the performance of a variety of functionals for
correlation energy [10].

Electron correlation efFects are corrections to the
independent-electron approximation and their impor-
tance depends on the choice of the model on which they
are based. In nonrelativistic many-body theory, the most
widely used definition of the correlation energy is that
due to Lowdin [ll]: "The correlation energy for a cer-
tain state with respect to a specified Hamiltonian is the
dHFerence between the exact eigenvalue of the Hamilto-
nian and its expectation value in the Hartree-Fock (HF)
approximation for the state under consideration. " Kim
has recently argued [12] that this definition of electron

'Electronic address: yashikawaOupr1. upr. clu.edu
tPermanent address: Department of Physics, Pedagogical

University, Podchorazych 2, 30-084 Krakow, Poland.

correlation energy is inadequate in the framework of rel-
ativistic many-body theory. In relativistic many-body
theory for atoms and molecules, it is appropriate to re-
place the HF approximation by the well-defined relativis-
tic independent-electron model, the Dirac-Fock (DF) ap-
proximation [12]. Unlike the nonrelativistic Schrodinger
Hamiltonian, the relativistic many-body Hamiltonian for
atomic and molecular systems cannot be expressed in
closed potential form. In order to construct relativistic
many-body theories, e.g. , relativistic many-body pertur-
bation theory (MBPT) and coupled-cluster (CC) theory,
it is convenient to express the problem to a desired de-

gree of accuracy in the form of a Schrodinger-like equa-
tion with an efFective Hamiltonian [13,14]. The effec-
tive many-body Hamiltonian approach is attractive be-
cause it conveys the idea that atoms and molecules are
weakly bound inhomogeneous many-electron systems in
which pair production processes are suppressed and par-
ticle number is conserved. With such a relativistic many-
body Hamiltonian, one can employ the techniques de-
veloped in nonrelativistic many-body theories to calcu-
late correlation effects. Relativistic many-body Harnil-
tonians may be derived from first principles, i.e., from
@ED. Depending on the order of /ED effects included,
effective Hamiltonians may be derived in varying de-
grees of approximation. The most commonly used effec-
tive many-body Hamiltonians for relativistic calculations
on atoms and molecules are the no-pair Dirac-Coulomb
(DC) [13,14] and Dirac-Coulomb-Breit (DCB) Hamilto-
nians [13,14]. The relativistic independent-electron mod-
els derived from the no-pair DC and DCB Hamilto-
nians are the Dirac-Fock-Coulomb (DFC) [15—20] and
Dirac-Fock-Breit (DFB) self-consistent-field (SCF) meth-
ods [20—22].

A number of highly ionized ions have been studied
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using relativistic MBPT [1,3,6,23], CC theory [3,24,25],
configuration-interaction theory [2,26], and multiconfig-
urational SCF methods [12,27] to examine relativistic,
QED, and electron correlation effects. For highly ion-
ized ions, a description of the system in terms of the
DFB SCF wave function plus the second-order MBPT
is sufficient for the study of QED effects [1,6]. On the
other hand, there are only a few published relativistic
MBPT and CC calculations [9,28—31] on neutral heavy
atoms that account for both relativistic and correlation
effects because of the difBculty in evaluating relativis-
tic and correlation effects for truly many-electron high-Z
systems. Applications of relativistic many-body calcula-
tions have been mainly limited to lighter elements and
highly ionized high-Z few-electron ions because appli-
cation to larger systems requires large integral storage
space and computation time. For neutral atoms with a
low nuclear charge Z, the effects of electron correlation
are far more important than relativistic and QED correc-
tions. As the nuclear charge increases, electron correla-
tion is expected to be relatively large and relativistic and
electron correlation effects become intertwined. Except
for the study of Johnson et aI. on alkali metal atoms
[1,3,28], for heavy atoms that contain large number of
bound electrons, few many-body calculations have been
performed to systematically examine the magnitude of
electron correlation and the Z dependence of relativistic
correlation energy. In the present study, we examine the
effects of relativity and electron correlation for heavy-
atom systems by means of a recently developed relativis-
tic MBPT theory [6]. Our relativistic MBPT calculations
are based on DFC SCF and DFB SCF wave functions [20]
derived, respectively, from the no-pair DC and no-pair
DCB Hamiltonians.

In a previous study on highly ionized He-like ions [6],
the low-&equency Breit interaction was shown to cause
significant modification of relativistic many-body effects,
the DC Hamiltonian accounting for only a fraction of the
total relativistic correction to the correlation energy. In
the present study, the effects of the low-&equency Breit
interaction on relativistic many-body effects are exam-
ined for high-Z neutral atoms as large as Rn (Z = 86)
and for Ne-like highly ionized ions. These calculations
were undertaken to develop the computational techniques
necessary to carry out large-scale relativistic many-body
perturbation theory calculations including relativity and
electron correlation for atoms with a large number of
bound electrons by discrete basis expansion in Gaussian-
spinors (G spinors) [6,20]. A relativistic description of
heavy-atom systems has awaited development of a reli-
able procedure for expansion of single-particle spinors in
discrete basis sets [1—6,18—20,22]. We show that a rela-
tivistic MBPT procedure on truly many-electron, multi-
shell systems by a G-spinor expansion method can be
successfully implemented.

II. RELATIVISTIC MANY-BODY
PERTURBATION THEORY

The relativistic many-body Hamiltonian cannot be ex-
pr essed in closed potential foI m. This difhculty has

to do with the requirement of relativistic covariance
in many-body systems and with separation of electrons
&om positrons, which are not considered in low-energy
atomic and molecular electronic structure calculations.
However, relativistic many-body theory may be devel-
oped by employing an effective many-body Hamiltonian
expressed in terms of an effective electron-electron in-
teraction derived with arbitrary accuracy from QED
[13,14,32]. With such an effective Hamiltonian, one
can apply the many-body formalisms developed in non-
relativistic many-body theory to relativistic many-body
systems where relativity and electron correlation are
strongly intertwined.

A. The efFective many-body Hamiltonian

An effective many-body Hamiltonian most commonly
used for relativistic atomic structure calculations is
the time-honored "no-pair" Dirac-Coulomb Hamiltonian
[13,14]

II+ = ) h~(i)+8+ ) V;, l:+,

where (in a.u. ) h~ is the one-electron Dirac Hamiltonian

h~(i) = cn; p;+c (P; —1) + V~(i) (2)

Here n and P are the Dirac matrices. The efFective
electron-electron interaction V+ is given by the classical
instantaneous Coulomb interactions between electrons

C — —1
"U "u

1 2+12 — [~l ' ~2 + (~1 r12) (~2 ' r12)/ 12] (4)
2T$2

to the instantaneous Coulomb operator introduces the
leading effects of the transverse photon exchange in QED
and remedies the lack of covariance of the no-pair DC

Here l:+ ——L+(1)L+(2) .L+(n) with L+(i) the pro-
jection operator onto the space spanned by the positive-
energy eigenfunctions of the DF operator [14]. In this
form, the no-pair Hamiltonian is restricted to contribu-
tions from the positive-energy branch of the DF spec-
trum. In c-number theory, the projection operator takes
into account the field-theoretic condition that the nega-
tive energy states are filled.

Because the electron-electron interaction is approxi-
mated by the classical instantaneous Coulomb interac-
tions, the no-pair DC Hamiltonian is deficient in that it
is both noncovariant and inaccurate for precision calcu-
lation of fine-structure separations and binding energies
of the inner-shell electrons [33,34]. A higher approxima-
tion involves modification of the instantaneous Coulomb
interaction V, -. The modification is derived from field
theory and leads to a well-defined QED perturbation se-
ries with a, the fine-structure constant, as an order pa-
rameter. Adding the low-&equency Breit interaction
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Hamiltonian [13,14]. Inclusion of the Breit interaction
in the efFective electron-electron interaction results in an
efFective Hamiltonian that contains all effects through
order a2 [13]. Sucher argued that the no-pair Dirac-
Coulomb-Breit Hamiltonian [13]

II, =) a (i)+z, ) v,, r.„
i i)j

(5)

where

yCB T ~ +B.
U 'V (6)

provides a satisfactory starting point for calculations on
many-electron systems in the sense that it treats the elec-
trons relativistically, treats the most important part of
electron-electron interaction nonperturbatively and puts
the Coulomb and Breit interactions on the same foot-
ing in DFB SCF and MBPT calculations [5,6]. In the
present study, the instantaneous Coulomb and frequency-
independent Breit interactions are treated as an integral
part of the two-electron interaction in both the DFB SCF
and MBPT calculations [5,6] in order to study the elec-
tron correlation induced by the Breit interaction.

The efFective electron-electron interaction in the many-

body Hamiltonian depends on the gauge employed and
many-body corrections evaluated numerically in terms of
the low-frequency forms of the Coulomb- and Feynman-

gauge interactions may be different in no-pair theory.
There is justification for choosing the Coulomb-gauge
Breit operator in Eq. (4) in the no-pair N-electron
Hamiltonian rather than the simpler Gaunt interaction
in the present study. In a recent study, Sucher [13] an-

alyzed the apparent gauge dependence of the effective
potentials between electrons derived in the Coulomb and
Feynman gauges and indicated that the Feynman-gauge
form of the interaction should not be used in no-virtual-
pair calculations because the leading-order relativistic
effects are incompletely determined. The addition of
the low-&equency Breit interaction to the instantaneous
Coulomb interaction provides covariance of the efFective

many-body Hamiltonian to first order and increases the
accuracy in fine-structure splittings and inner-shell bind-

ing energies [33,34].

B. Relativistic correlation

As Kim recently argued [12], this definition of electron
correlation energy is inadequate in the framework of rel-

Electron correlation effects are corrections to the in-

dependent electron approximation and their importance
depends on the choice of the approximation in which
they are calculated. In nonrelativistic many-body cal-
culations, the correlation energy E~ „ is defined as the
diff'erence between the exact eigenvalue of the N-electron
Schrodinger Hamiltonian E R

t and the nonrelativistic
single-configuration HF energy EH~.

NR NR
Econ r = Eexact E&I'

ativistic many-body theory. In relativistic quantnm the-
ory for atoms and molecules, it is most convenient to
replace the HF approximation by the well-defined rela-
tivistic independent-electron model, the Dirac-Fock SCF
method. This choice has the advantage that, as the speed
of light tends to infinity, the DF method smoothly ap-
proaches the HF method. Since relativistic N-electron
Hamiltonians are approximate and take a variety of forms
depending on the degree of approximation with which
they are derived &om /ED, relativistic correlation en-

ergy must be defined in terms of the effective Hamilto-
nian used to construct the relativistic many-body theory.

In the present study, we employ in our MBPT cal-
culations two different efFective N-electron Hamiltoni-
ans, the no-pair DCB Hamiltonian and the no-pair DC
Hamiltonian. With respect to the two effective many-
body Hamiltonians, we can define the DCB correlation
energy (E++P ) as the difference between the exact eigen-
value of the DCB Hamiltonian (E, +) and the DFB
SCF energy (Escs~ric~l) and the DC correlation energy
(E++„)as the difference between the exact eigenvalue of
the DC Hamiltonian (EP~+,~) and the DFC SCF energy

(EscF(Dc)))

DCB DCB
@cot'v' @exact E~CI' (DCB) ~

~DC ~DC
~ccrc v ~exact E~C+(DC) '

The difference between the DCB correlation and the DC
correlation, i.e., EBR ——E, „—E, „, is the relativistic
many-body shift due to the low-frequency Breit interac-
tion.

C. Matrix Dirac-Fock-Breit SCF method

The relativistic independent-electron models derived
&om the no-pair DC and DCB Hamiltonians are the
DFC and DFB SCF methods. Variation of the energy in
terms of the DC and DCB Hamiltonians leads to pseudo-
eigenvalue equations of the form [15]:

(10)

where I' is the efFective one-electron Hamiltonian for the
DFC or DFB SCF equation, solved self-consistently. The
efFective one-electron Hamiltonian for the rth symmetry
takes the form [15—20]

t' V„+V" cFI„+U"= l(cll++Usr, V +Uss 2c2

with II„= d/dr + e/r —and II+ = d/dr + z/r Here.
&P„„(r) l

Q„„(r))
'

where P „(r) and Q „(r) are referred to as the large and
small component radial functions, respectively. VN(r) is
the nuclear attraction term
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V~(r) = Z—/r for r ) R
—(Z/2R)(3 —r'/R ) for r ( R.

The nucleus is modeled as a sphere of uniform proton
charge distribution. Z is the nuclear charge. B is the ra-
dius of the nucleus and is related to the atomic mass
A by the relationship B = 2.2677 x 10 A /3. U

(A, B = L or S) is the one-body mean-field potential and
accounts approximately for electron-electron interaction
in the SCF scheme.

The no-pair DCB Hamiltonian in Eq. (5) may be used
for variational calculations in place of the no-pair Dirac-
Coulomb Hamiltonian. The low-&equency Breit interac-
tion, which gives the leading correction to the instanta-
neous Coulomb interaction in quantum electrodynamics,
is a two-body potential of the same general form as the
instantaneous Coulomb interaction and is easily incorpo-
rated in the matrix DFB self-consistent field procedure
[5,6,20].

In our matrix DFB SCF calculations, both I„„(r)and

Q„„(r) are expanded in terms of a set of Gaussian-type
functions {X„;)and {X„,) (19—22]:

(15)

tial that the basis sets for upper and lower components
are chosen to satisfy the boundary conditions near the
origin to ensure that the basis functions behave properly
in the high-Geld region and that the computed energy
converges to the physical solution from above as the ba-
sis set is enlarged. With the basis-set expansion in Eqs.
(14) and (15), the SCF equation is cast in matrix form

F„C„=S„C„K„.

Detailed accounts of the matrix DFC and DFB SCF for-
malisms have been given in previous publications [6,20]
and are not repeated here.

D. Relativistic MBPT scheme

Relativistic MBPT based on the algebraic approxima-
tion provides a tractable scheme for calculating relativis-
tic correlation eEects in atoms and molecules. Our G-
spinor basis set expansion method not only applies to
molecules in a straightforward manner, but also provides
a compact representation of the Dirac spectrum. It there-
fore lends itself to comutationally eScient application
of relativistic MBPT [6]. The "no-pair" DC and DCB
Hamiltonians may be expressed as normally ordered
products of the spinor operators (r+s] and (r+s+ut],

where

and

Nlrl"I exp( —(„;r ) for K ( 0
Wl, r"+' exp( —(„;r ) for r. ) 0 (16)

where

and

ri8

(rs
~~

tu) = (rs
~

tu) —(rs
~

ut)

(r s
~
tu) = dzidz2$„(zi)P, (z2)V, 2 P, (z, )g„(z2).

Here the {C~„;)and {t s„,) are linear variation param-
eters. NL, and Xs are the normalization factors.

Klahn and Morgan [35] have shown that the rate of
convergence of a variational calculation is determined by
how quickly the basis functions replicate the analytic
structure of the unknown function one is trying to ap-
proximate. In matrix Dirac-Pock calculations, it is nec-
essary to use spinor basis functions which correctly re-
late the spinor components in a given potential [5,6,20].
This is vital to ensure that the solution converges to the
physical result from above as the basis set is enlarged.
Our t -spinor functions mimic exactly the behavior of the
wave function in the high-Beld region near the origin of
a uniformly charged spherical nucleus [20], precisely the
reason why G-spinor expansions exhibit fast and smooth
convergence when the nucleus is so modeled [20]. Unlike
the S-spinor basis functions [5], the exponent of r in the
G-spinor basis functions does not depend on the speed of
light. Therefore, our G spinors that satisfy the boundary
conditions associated with the finite nucleus automati-
cally satisfy the so-called kinetic balance condition for
finite e [20]. For an unbounded Hamiltonian, it is essen-

Here f„and (rs~l)ltu) are, respectively, one-electron DF
and antisymmetrized two-electron interaction matrices
over the DF four-component spinors r, s, t, and u. Nor-
mal ordering implies that, in the vacuum state, anni-
hilation operators are moved to the right of creation
operators as if all anticommutators vanish. The Fermi
level is shifted to the highest occupied positive energy
state. The creation operator then appears to the right
of a normally ordered set when it refers to an occupied
positive-energy state, while the annihilation operator re-
mains on the right for a positive-energy virtual state. In
this form the no-pair Hamiltonian is restricted to contri-
butions from the positive-energy branch of the spectrum.

In q-number theory, negative-energy states are taken to
be filled in the true vacuum state and relativistic MBPT
is conveniently described within the particle-hole second-
quantized formalism in which the occupied positive-
energy state as we11 as the negative-energy continuum
are taken to be below the Fermi level [5,6]. A formal-
ism given by Grant and Pyper [36] was used to evaluate
the necessary Breit interaction integrals for the MBPT
calculations. Goldstone diagrams have been summed to
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compute relativistic correlation corrections up to second
order. We evaluate only the positive-energy intermedi-
ate contribution of the second order-energy correction. In
the no-pair approximation of Sucher [13],our relativistic
MBPT thus yields a many-body perturbation expansion
which contains the same diagrams as those from the non-
relativistic Schrodinger Hamiltonian in expansions based
on Hartree-Fock wave functions [5]. Virtual spinors used
in the study were calculated in the field of nucleus and
all electrons (V~ potential).

Contributions ft. om the negative-energy states are of
the order of a3 and are neglected here. In our DFB
SCF calculations, the one-Coulomb and one-Breit pho-
ton diagrams are summed through all orders since the
single-particle basis is determined self-consistently. Thus
the most important consequence of treating the low-

frequency Breit interaction self-consistently is the sim-
plification of relativistic many-body perturbation theory,
which results from the cancellation of these classes of dia-
gram through all orders of perturbation theory [5,6]. The
use of the two-body interaction operator that includes
both the instantaneous Coulomb and low-frequency Breit
interactions in the self-consistent field and MBPT calcu-
lations leads to a theory which accounts for all corrections
to order a2 [5,6,13].

In a recent study [9], Eliav, Kaldor, and Ishikawa have
developed a relativistic coupled-cluster algorithm based
on the G-spinor expansion method and applied it in cal-
culations of ionization and transition energies of Au. Be-
cause such all-order calculations become increasingly dif-
ficult for atoms with many bound electrons, we used a
partial-wave expansion with L =3 and correlated only
the 4s4p4d4f5s5p5d electrons in Au, keeping the inner-
shell electrons &ozen in the relativistic CC scheme, ac-
counting only for valence-electron correlation. The rela-
tivistic CC method involves summation of certain classes
of diagrammatic terms through infinite order and be-
comes computationally prohibitive for all-electron cor-
related calculations on heavy atoms. On the other hand,
the finite-order MBPT provides a powerful approach to
the all-electron correlation problem, recovering the bulk
of correlation energy in finite order. It remains useful
even if the number of electrons in the system becomes
very large. For heavy-atom systems, therefore, relativis-
tic MBPT appears to be one of the most promising ap-
proaches to accounting for electron correlation.

TABLE I. Basis set for Hg. Exponents of the basis func-
tions are speci6ed by x.
Exponent

33723176.0
5516822.4
1355483.5
383787.47
115889.46
37855.841
13685.687
5472.5852
2377.9943
1094.6624
520.42181
251.24947
122.12994
59.531589
29.506942
14.412245
6.9610937
3.4002906
1.6986682
0.80853674
0.36385964
0.14602676
0.06935530
0.03689019
0.01962140

S1/2
X

Symmetry

pl /2, 3/2 d3/2, 5/2
X X

X X

X X

X X

X X

X X

X X

X

X

fs)~,7(2
X

X

X

X

X

X

X

g, h, i

Included in DF calculations, but excluded in MBPT calcu-
lations.

shows the well-tempered basis set employed in the SCF
and MBPT calculations on Hg.

The Dirac-Fock SCF and MBPT calculations were also
performed by excluding the Breit interaction. These are
the matrix DFC SCF and MBPT calculations based on
the DC Hamiltonian. The speed of light was taken to
be 137.0370 a.u. The nonrelativistic limit was simulated
by setting the speed of light c = 104. The nuclei are
modeled as spheres of uniform proton charge in all the
calculations. The use of the finite nuclear model of uni-
form proton charge distribution in our study is crucial
because the G spinors satisfy the boundary conditions
associated with the finite nuclear model [20].

E. Computation III. RESULTS AND DISCUSSION

Matrix DFB SCF and MBPT calculations on the
noble-gas atoms Ne, Ar, Kr, Xe, and Rn and the group-
IIB atoms Zn, Cd, and Hg are performed by using large
well-tempered basis sets of G spinors. For the Ne-like
ions with Z up to 100, large even-tempered basis sets
of G spiaors are employed. The order of the partial-
wave expansion (L ), the highest angular momentum
of the spinors included in the virtual space, is L = 6
throughout this study. The well-tempered basis-set ex-
ponents were taken &om the works of Huzinaga and
Klobukowski [37]. Parameters of the even-tempered ba-
sis sets [38) were optimized in the present study. Table I

Table II displays the SCF energies (Esca) as well as
the second-order correlation energies (E2) for the noble-
gas atoms Ne, Ar, Kr, Xe, and Rn and the group IIB
atoms Zn, Cd, and Hg. In each entry in Table II, the SCF
energy (EscI;~~z~) and the second-order correlation en-
ergy (E2~~~l) obtained in the nonrelativistic (NR) limit
are given in the first row. In the second row, the DFC
SCF energy (Esc~~~c~) and the second-order Coulomb
correlation correction (E2~Licl) are given. The DFC and
instantaneous Coulomb correlation energies were com-
puted with the DC Hamiltonian. The DFB SCF energy
(Esc~~~c~l) as well as the second-order correlation en-
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TABLE II. SCF and second-order correlation energies.

Atom Atomic Method Eg~ a-

mass
20.18 NR

DC
DCB

10 Ne -128.5470878 -0.3831882
-128.6919254 -0.3833856
-128.6752847 -0.3852591

18 Ar 39.95 NR
DC
DCB

-526.8173311 -0.6972791
-528.6838208 -0.6981223
-528.5514977 -0.7060424

30 Zn 65.39 NR
DC
DCB

-1777.844400
-1794.610963
-1793.849916

-1.6506117
-1.6611270
-1.6875521

36 Kr 83.80 NR
DC
DCB

-2752.047329
-2788.861465
-2787.435574

-1.8354321
-1.8468226
-1.8878912

48 Cd 112.41 NR
DC
DCB

-5465.098845
-5593.319974
-5589.481095

-2.6181147
-2.6539737
-2.7362939

54 Xe 131.29 NR
DC
DCB

-7232.069451 -2.9211312
-7446.887980 -2.9587009
-7441.118205 -3.0674532

80 Hg 200.59 NR
DC
DCB

-18408.53586
-19648.84818
-19626.21565

-5.0862400
-5.2894722
-5.5722140

86 Rn 222 NR
DC
DCB

-21866.11626 -5.3920715
-23601.96583 -5.5874268
-23572.61431 -5.9400218

ergy (E2fDc~l) based on the DCB Hamiltonian are given
in the third row.

The DFC SCF energy —128.691925 a.u. of Ne com-
puted with our G spinors is in excellent agreement with
the value —128.69194 a.u. , obtained with Desclaux's nu-
merical finite difference method [39]. For Rn (Z = 86),
the heaviest atom considered in the present study, the
DFC SCF energy —23601.9658 a.u. computed with
our G-spinor basis set compares well with the numeri-
cal finite-difference result —23601.974 a.u. , with a dif-
ference of only 0.008 a.u. While the difference between
the nonrelativistic HF and relativistic DFC energies (i.e.,
the relativistic energy lowering) in Ne is small, on the or-
der of 0.1 hartree, the difference rises to 1736 a.u. for
Rn. The variational Breit-interaction energy, which is
the difference between the DFB and DFC SCF energies,
also is very small for Ne ( 0.017 a.u. ). For Rn, however,
the variational Breit-interaction energy increases to 29.35
a.u.

The DCB second-order correlation energies E~~D~~~
range from —0.38319 a.u. for Ne (Z = 10) to —5.5722
a.u. for Rn (Z = 86). Because large G-spinor basis
sets were employed to saturate the occupied and vir-
tual spaces in each symmetry, the correlation energies
obtained have converged at least to five figures within

the i limit (L = 6). The effect of enlarging the basis
sets appears only in the sixth figure or higher. Figure 1
shows the variations of the NR, DC, and DCB second-
order correlation energies of the neutral atoms as a func-
tion of nuclear charge Z. The correlation energies in the
neutral atoms increase almost linearly as Z increases, the
least deviation from linearity being the NR correlation
energies. The DCB correlation energies show the largest
deviation from the linearity.

The difFerence E2fDci —Es~N~l is the relativistic DC
many-body shift that increases in absolute value as Z
increases. This increase arises from the use of relativis-
tic single-particle states, but the same two-body inter-
action, i.e., the classical instantaneous Coulomb interac-
tion. The difFerence E2fric~l —E&~N~l in correlation
energies is the relativistic DCB many-body shift that
arises from the use of relativistic single-particle states
and the low-&equency Breit interaction in addition to
the classical instantaneous Coulomb interaction in the
two-body interactions. Quiney, Grant, and Wilson [5]
performed relativistic MBPT calculations on Ar employ-
ing S spinors with L (3 and found that the rela-
tivistic DCB many-bo dy shift E,~~c~l —E2~~~l is one
order of magnitude larger than the relativistic DC many-
body shift E2~Dc~ —Eq~~~~ In our. relativistic MBPT
calculations on Ar using up to L~ = 6, the relativis-
tic DCB many-body shift E2fDc~l —E2~~gl is 0.08763
a.u. , an order of magnitude larger than the relativistic
DC many-bo dy shift Es(vc) —E2(NRl (=0.00843 a.u. ),
in agreement with Quiney, Grant, and Wilson. The
present results indicate that, for lighter elements, the
no-pair DC Hamiltonian accounts for only a fraction of
the total relativistic correction to the correlation energy
and the Breit interaction results in a significant modifi-
cation in relativistic many-body effects. In heavy neu-
tral atoms, the increase in the DC correlation energies
becomes substantial due to the large number of bound
electrons, e.g. , in Rn, the relativistic DCB many-body
~h~ft (E2(DCB) E2(NR) = 0.548 a.u. ) is only 2.8 ti~~~
larger in magnitude than the relativistic DC many-body
shift (E2(c)c) E2(NR) = 0.195 a.u. ).

A partial-wave analysis of the second-order pair cor-
relation energies for the ground-state mercury atom was
performed to examine differences in pair correlation en-
ergies based on the NR, DC, and DCB Hamiltonians. In
Fig. 2 the differences between the DC and NR pair cor-
relation energies and between DCB and NR pair correla-
tion energies are schematically presented as a bar graph.
The shaded and unshaded bars represent, respectively,
the differences between the DC and NR pair correlation
energies and between the DCB and NR pair correlation
energies for a representative set of second-order pair cor-
relation energies. Pair correlation energies that do not
appear in the figure are negligibly small in the scale em-
ployed. The DC second-order correlation energy E2~D~~
of Hg is larger by 0.203 a.u. in magnitude than the NR
correlation energy. This is the relativistic DC many-body
shift that arises &om the use of relativistic single-particle
states, but the same two-body interaction, i.e., the classi-
cal instantaneous Coulomb interaction. The analysis re-
veals that the DC many-body shift comes mainly &om in-
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FIG. 1. Variations of the NR, DC, and
DCB second-order correlation energies of the
neutral atoms as a function of nuclear charge
z.

creases in the DC pair correlation energies of the valence-
shell electron pairs, e.g. , (5s, 4f), (5p, 4f), and (6s, 5d)
pairs.

The relativistic DCB many-body shift (Ez~~c~l-
E2&iv~l = 0.486 a.u. ) in Hg is 2.4 times larger than the
relativistic DC many-body shift E2t~cl E2~~~l =—0.203
a.u. A signi6cant increase in magnitude of the pair corre-
lation energies for the inner-shell electron pairs (1s, 1s),
(2p, 2p), and (2p, 1s), as well as the increase in pair cor-
relation energies in the valence-shell electron pairs, ac-
counts for the large difference of 0.486 hartree between
the DCB correlation energy and the NR correlation en-

ergy. Figure 2 clearly demonstrates that the Breit inter-
action accounts for a significant modification in inner-
shell pair correlation energies, whereas the relativistic
many-body shifts in the valence-shell pair correlation en-

ergies are mainly due to the use of relativistic single-
particle states and the instantaneous Coulomb interac-
tion. Thus relativistic many-body effects on the valence
spinors are almost entirely accounted for by the no-pair
DC Hamiltonian.

The second-order MBPT energies obtained in the
present study represent the bulk of the correlation en-
ergies obtained by employing all-order methods. Bench-
mark single- and double-excitation coupled-cluster cal-
culations [25] on the neutral xenon atom employing a
medium-sized basis set of 14sl3p10d7f6g5h G spinors
(I = 5) gave a DCB correlation energy of —2.696
hartree, whereas the corresponding second-order DCB
correlation energy obtained by using the same basis set
was —2.817 a.u. The DCB second-order correlation en-

ergy represents 104% of the all-order result for Xe, the

0.08

.% 0.(j6

~ 0.04

4 0.02
C4

M
V3

P3

W

FIG. 2. The differences be-
tween the DC and NR pair cor-
relation energies and between
the DCB and NR pair correla-
tion energies.
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Ca' + 40.08 NR
DC
DCB

-640.3840658 -0.3945152
-643.2553506 -0.3953778
-643.0721885 -0.4051025

30 Z + 65 39 NR
DC
DCB

-1552.555556 -0.4038468
-1568.582000 -0.4063782
-1567.884988 -0.4300865

40 Zr + 91.22 NR
DC
DCB

-2864.782277 -0.4085616
-2918.746542 -0.4140520
-2916.978729 -0.4578428

50 Sn + 118 70 NR
DC
DCB

-4577.012941 -0.4114717
-4715.837068 -0.4215601
-4712.211476 -0.4918780

60 Nd + 144.24 NR
DC
DCB

-6689.219431 -0.4133766
-6991.922707 -0.4301778
-6985.390129 -0.5340929

?0 Yb + 173.04 NR
DC
DCB

-9201.367922 -0.4147801
-9792.611477 -0.4410812
-9781.809926 -0.5868727

H "'+ 2OO 59 NR80 g
DC
DCB

-12113.42456 -0.4157677
-13183.10081 -0.45545GO
-13166.27570 -0.6532587

Th + 232.04 NR90
DC
DCB

-15425.33075 -0.4165655
-17258.51144 -0.4753647
-17233.3831G -0.73871?5

1GO Fm + 257.00 NR
DC
DCB

-19137.06139 -0.4172211
-22163.3426G -0.5044448
-22126.87231 -0.8528151

order correlation energ esTABLE III. SCF and second-or e
e-like ions.
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energy even at Z —50. Recently, Johnson, Blundell, and
Sapirstein performed B-spline basis expansion DF SCF
and MBPT calculations on the Li atom and Li-like ions

[1,3]. Their results show that the second-order contribu-
tion of the low-frequency Breit interaction for the Li-like
ions exceeds in magnitude the Coulomb correlation en-

ergy E2~Dc;i in the region Z 74.
Figure 3 reveals that, unlike the He-like ions where

DC correlation energies remain almost constant, the DC
correlation energies in Ne-like ions increase noticeably
as Z increases. For the Ne-like Fm ion (Z = 100), the
computed relativistic DCB many-body shift E2~Dc,~i-
E2~N~~ amounts to 0.436 a.u. , whereas the relativistic

DC many-body shift E2~D~i —E2~~~i is 0.087 a.u. The
results of DFC, DFB SCF, and MBPT calculations show
that the Breit interaction results in a significant modifi-
cation of relativistic many-body e8'ects in highly ionized
¹like ions. The DC Hamiltonian accounts for a frac-
tion of the total relativistic correction to the correlation
energy for highly ionized high-Z species.
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