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One of the principal advantages of electron momentum spectroscopy (EMS) is that peaks in the
binding-energy spectrum can be assigned with greater certainty than in photoelectron spectroscopy,
through a comparison of the EMS triple-differential cross sections with the theoretically calculated
spherically averaged momentum distributions (MD’s) of Dyson orbitals. While the target Hartree-
Fock approximation is commonly used to calculate the Dyson orbital MD’s for this purpose, a
computationally less demanding method would allow the advantages of EMS to be extended to
larger molecules. This paper considers the use of Kohn-Sham density-functional theory for this
purpose. Although Dyson orbitals are not among the quantities that can be calculated exactly (in
the limit of the exact exchange-correlation functional) within the framework of Kohn-Sham density-
functional theory, the Kohn-Sham equation can be regarded as an approximate form of Dyson’s
quasiparticle equation, with a local self-energy. The well known shortcomings of this approach
for estimating ionization potentials and band gaps do not a priori imply a corresponding problem
with the orbitals. After discussing these formal considerations, we introduce the “target Kohn-
Sham approximation” as a means of approximating Dyson orbitals by Kohn-Sham orbitals. The
quality of this approximation for the calculation of MD’s is assessed by comparison with high-quality
configuration-interaction calculations, the target Hartree-Fock approximation, and experiment, for
several small molecules. The quality of the target Kohn-Sham approximation MD’s is found to be
comparable to that of the MD’s from the target Hartree-Fock approximation, with evident practical
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implications for EMS.

PACS number(s): 31.20.Sy, 34.80.Gs, 33.10.Cs, 33.60.—q

I. INTRODUCTION

Electron momentum spectroscopy (EMS) is a tech-
nique similar to photoelectron spectroscopy but with the
important difference that in EMS the target molecule
is ionized by an electron rather than by a photon. A
detailed study of the kinematics of the incoming elec-
tron and two outgoing electrons in this binary (e, 2e)
scattering experiment allows additional information to
be obtained from EMS which cannot now be extracted
from photoelectron spectroscopy. Not only can a binding-
energy spectrum be obtained in this manner, but the
triple-differential cross section for each peak in the
binding-energy spectrum can be determined. This cross
section is proportional to the spherically averaged mo-
mentum distribution (MD) of the Dyson orbital for that
ionization event. Comparison of the shapes of the triple-
differential cross sections with the MD’s from theoretical
calculations of the Dyson orbitals thus allows EMS to as-
sign peaks in the binding-energy spectrum with greater
certainty than is possible in photoelectron spectroscopy.
Once this assignment has been made, quantitative as-

1050-2947/94/50(6)/4707(22)/$06.00 50

pects of the comparison between the theoretical and ex-
perimental MD’s provide information on the quality of
the theoretically calculated Dyson orbitals. Since the
MD’s probe primarily the low-momentum region, this
technique is particularly useful as a test of the theoretical
description of the large-r region.

The theory of EMS has become well established since
the birth of the experimental technique roughly a quarter
of a century ago [1-13]. Highly accurate Dyson orbitals
can be obtained from configuration-interaction (CI) cal-
culations, and the MD’s of these Dyson orbitals are in
quantitative agreement with experiment. However, this
level of accuracy is computationally demanding, nomi-
nally scaling as O(N®) or worse, where N is the size of
the basis set. This limits the practical utility of CI for
routine EMS calculations to very small molecules. One
way around this problem is to use the Hartree-Fock (HF)
method to approximate Dyson orbitals, through the “tar-
get Hartree-Fock approximation” (THFA). The quality
of the resulting MD’s is, of course, lower than that ob-
tained from CI calculations, but the accuracy is usually
quite adequate for the needs of EMS. Since finite basis set
calculations scale nominally as O(N*), this allows EMS
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assignments of peaks in the binding-energy spectrum for
larger molecules than is possible with CI calculations,
but, especially in view of the need for extended basis
sets for calculating MD’s, this is still too restrictive to
treat many problems of interest to electron momentum
spectroscopists. Thus a computationally less demanding
method is needed in order to realize the advantages of
EMS for larger molecules.

Density-functional theory (DFT) would seem to be a
natural choice, since Kohn-Sham (KS) DFT calculations
which use an auxiliary basis of M « N functions scale
nominally as O(N?3), and the quality of the results for a
wide variety of properties are generally comparable to or
better than Hartree-Fock calculations [14-28]. However,
using KS DFT to calculate MD’s for EMS is not simply a
matter of calculating yet another property from DFT, be-
cause it involves using KS DFT to approximate Dyson or-
bitals. In their formulation of DFT [29], Kohn and Sham
introduced orbitals purely as a convenient mathemati-
cal construct for simplifying calculations rather than as
physically meaningful quantities. The observation that
Kohn-Sham orbital energies provide rather poor esti-
mates of ionization potentials and band gaps only seemed
to emphasize the fictitious nature of these orbitals. How-
ever, there is a formally different approach to DFT in
which the true Kohn-Sham orbitals (i.e., those that would
correspond to the exact exchange-correlation potential)
arise as approzimations to Dyson orbitals [30-33]. Unfor-
tunately, this formal connection says nothing about the
quality of the approximation, which must therefore be as-
sessed computationally, as must the effect of the further
approximation involved in using Kohn-Sham orbitals ob-
tained from approximate functionals. The formal sense
in which the KS orbitals approximate Dyson orbitals (or
equivalently Hartree-Fock orbitals, in the exchange-only
case), as well as the available numerical evidence, is re-
viewed in the next section.

The primary goal of the present paper is to investigate
DFT as a potential computational tool for use in EMS.
Yet in assessing the quality of MD’s obtained from KS
orbitals by comparison with those from high-quality CI
calculations and with experiment, the present work also
makes a small contribution to the larger question of the
quality of the approximation of Dyson orbitals by KS
orbitals.

II. THEORY

The formal justification for using Kohn-Sham orbitals
as approximate Dyson orbitals for use in the theory of
electron momentum spectroscopy (EMS) is presented in
this section. The theory of EMS is reviewed first, followed
by the relevant properties of Dyson orbitals in the context
of the quasiparticle equation. The Kohn-Sham density-
functional formalism is then summarized, and the section
ends with a discussion of the sense in which Kohn-Sham
orbitals approximate Dyson orbitals.
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A. Electron momentum spectroscopy

Electron momentum spectroscopy is a binary (e,2e)
experiment in which an electron with initial momentum
po collides with a neutral molecule M in its ground elec-

tronic state \IIE,N), knocking out a second electron,

e + M —- Mt
Po ‘I’((]N)

+ e + e,
N_1) (2.1)
‘I’(I P: P2 -

The final state consists of the cation M in its Ith excited
state ‘II(I -1 , and two electrons with momenta p; and
P2, respectively. The theory of this reaction has been well
studied [1,2]. Under symmetric noncoplanar conditions
and at high enough impact energies for the plane-wave
impluse approximation (PWIA) to be valid, the triple-
differential cross section at knockout energy

2 2 2
Po P11 P2
—wp = — — = — £ 2.2
YISy Ty T (22)
and recoil momentum
P =Po—P1— P2 (2.3)

is given by the generalized overlap approximation (GOA)
[1]. (Atomic units are used throughout the present paper,
so i = m = e = 1.) That is, the triple-differential cross
section is proportional to II(p), the spherically averaged
momentum distribution (MD) of a Dyson orbital,

N(p) = / (pl61)|? S, (2.4)

where p here denotes a plane-wave spin orbital with that
momentum. The Dyson orbital is given explicitly by the
generalized overlap

wz(l)=x/N//-~-/W§N‘1)*(2,3,...,N)

x¥{M(1,2,...,N)d2d3---dN , (2.5)
where the numerals ¢ = 1,2,... represent the space and

spin coordinates of electron . Strictly speaking, the ex-
perimentally measured quantity differs from the triple-
differential cross section due to the finite resolution of
the experimental apparatus and is therefore referred to
as an “experimental momentum profile” (XMP).

The dominant contribution to the MD comes from the
large-r part of the orbital [34]. The asymptotic behavior
of the most diffuse Dyson orbital is largely determined
by the first ionization potential. In the atomic case, the
large-r limit for this orbital is given by [34,35]

Yr(ro) — Cri/vV=2wig=v=2wrr (2.6)
The link between ionization potentials and the large-r
behavior of the other Dyson orbitals is similar but more
subtle [34,35]. This link is especially interesting in view
of the importance of this region for EMS, since it sug-
gests that the quality of the calculated MD, II(p), may
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be correlated with the quality of the ionization potential
calculated in this approach.

Dyson orbitals can be obtained either directly, as solu-
tions of Dyson’s quasiparticle equation (Sec. II B), or in-
directly, by calculating the N- and (N — 1)-electron wave
functions (e.g., by CI or many-body perturbation theory
calculations) and then obtaining the Dyson orbital as the
overlap (2.5). Both approaches give the same result in
the limit of a full treatment of correlation (even if the
basis set is incomplete [36]). Thus we are free to choose
whichever approach is most convenient as a starting point
for developing approximate treatments. The one-electron
picture used in the quasiparticle equation is often con-
venient for the development of approximations [36-38],
and the quasiparticle equation approach is advantageous
for making connections with density-functional theory, as
will be discussed in Sec. IID

Highly accurate Dyson orbitals have been calculated
via the CI method, using the indirect approach, by
Davidson et al. [3-13]. While this type of calculation
leads to momentum distributions in excellent agreement
with measured XMP’s, the cost of this level of accuracy is
prohibitive for all except very small molecules. Although
MD’s of Dyson orbitals obtained by direct solution of
Dyson’s quasiparticle equation have only been calculated
using more limited basis sets and lower order treatments
of correlation [12,39-42] (see also Ref. [43]), it is clear
that both the direct and indirect approaches suffer from
similar computational exigencies with regard to the ac-
curate treatment of correlation, including the need to use
extended basis sets.

Additional basis functions are also needed for the de-
scription of orbitals in the “large-r region” of space far
from the nuclei which is important for EMS. Thus these
calculations require sufficiently large basis sets to be able
to describe both the energetically important small-r re-
gion and the large-r region which is so important for EMS
but which is relatively unimportant energetically.

B. Dyson’s equation and target approximations

The direct method for obtaining Dyson orbitals and
ionization potentials by solving Dyson’s quasiparticle
equation [44] is reviewed here, as is the important notion
of a target approximation. A wave-function-based expla-
nation of Dyson’s quasiparticle equation may be found
in Ref. [36].

Dyson’s quasiparticle equation,

[hale] + Sxelwn)] ¥1 = wrvr, (2.7)

simultaneously describes vertical ionization of the

molecule M,
M - Mt + e,

- 2.8
) gD (2.8)

and electron attachment,

M +e = M-,

2.9
g™ g+ | (2.9)
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Here,

help] = —1VZ +u(r (2.10)

/ a2
|r - r2|

is the usual Hartree Hamiltonian expressed in terms of
the density p, and v is just the nuclear attraction poten-
tial (plus the external field, if any). The term X, (w) is
the exchange-correlation (xc) self-energy operator which
includes many-body effects such as correlation and relax-
ation [43] and dynamic polarization [37,38] as well as a
correction for the self-interaction error in the Coulomb
part of the Hartree Hamiltonian. Dyson’s equation is a
generalized eigenvalue problem whose solutions fall into
two classes. If the I'th ionization potential and electron
affinity are denoted by Z; and Aj, respectively, the “ion-
ization solutions” satisfy

=-Ip, (2.11)
$r(1) = J_// / oV (2,3,...,N)
xw{M(1,2,. .-dN, (2.12)
while the “electron affinity solutions” satisfy
wr=-Ag, (2.13)
¥1(1) = VN // /w”‘ 2,3,...,N+1)g{M*
x(1,2,...,N+1)d2---d(N +1). (2.14)

There are an infinite number of Dyson orbitals ¥, and
their norms, i.e., the spectroscopic factors Sy, may be cal-
culated from the energy derivative of the xc self-energy,

(2.15)

St = (belo) = [1 _ M] -

(Yr|¥r)

Dyson’s equation must be solved self-consistently because
the xc self-energy Yy (wy) is a function of the orbital

energy wy and the Hartree Hamiltonian iLH[p] depends
upon the orbitals through

ionization

S )P

I

p(1) = (2.16)

The HF equation is a limiting case of Dyson’s equation
where the self-energy is approximated by its exchange-
only part,

ionization

(2.17)

SHF (1) =

defined here by its action on an arbitrary function x.
Since this self-energy is independent of w, the Dyson or-
bitals are normalized to unity [Eq. (2.15)] in the HF ap-
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proximation. It then follows [Eq. (2.16)] that the integral
of the density p gives the number of ionization solutions.
Hence, since the density integrates to the number of elec-
trons, there must be exactly one ionization solution (i.e.,
exactly one occupied orbital) for each electron. The ap-
proximation of the ionization potentials by the negative
of the Hartree-Fock orbital energies is the Koopmans ion-
ization potential,

w; ~ elF (2.18)
The frozen-orbital approximation (FOA) consists of tak-
ing the Dyson orbitals to be HF orbitals,

HF
Y =@ .

Note that, at this level of approximation, the index I,
which labels the many-electron state of the daughter ion
formed, can be replaced by the label ¢ of the orbital out
of which ionization occurs. The FOA is qualitatively in-
correct. Since it gives only N Dyson orbitals, all nor-
malized to unity, it cannot account for the existence of
“satellites,” nor for the intensities, in the binding-energy
spectrum.

While the HF approximation has some value in describ-
ing outer valence ionization, more elaborate and accurate
self-energy approximations [45-50] are needed to describe
the complex many-body phenomena seen in inner va-
lence ionization spectra [4-13]. The corrections to the
HF independent-particle picture of ionization which arise
from the use of better self-energy approximations may be
analyzed using simple Rayleigh-Schrodinger perturbation
theory [43,51]. Any independent-particle Schrédinger
equation

(2.19)

hoi = e

can serve as the zero-order approximation. While the HF
equation is the usual choice in the molecular literature
[45,48,49,50,51], the Kohn-Sham equation is often used in
the solid-state literature [52-58]. Once a choice is made,
Dyson’s equation can be rewritten as

{h + [ xc(wr) — w] } Y1(1) = wrr(1),

where

(2.20)

(2.21)

(2.22)

Note that W = vy if the zero-order Hamiltonian is the
Kohn-Sham Hamiltonian, and that w = EHF if the zero-
order Hamiltonian is the Hartree-Fock Hamlltonian and
differences between the true and Hartree-Fock densities
are ignored. Once again, the index I labels a many-
electron ion state while the index ¢ labels an orbital. The
nonlinear nature of Dyson’s equation means that many
I’s can correspond to the same i. For each zero-order
solution {¢;, ¢;}, the first-order equation

Wi = € + (¢l Sxc(w?) — b]s)

can be solved for a set of wy)

(2.23)

. This corresponds to the
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experimentally observed fractionation of principal ion-
ization transitions into many “satellite” processes. Each
value of wy) can then be used to generate a first-order
solution for the corresponding Dyson orbital and spec-
troscopic factor,

€rFE; i) . )
(1) ¢1+ Z (;br ¢7‘|Exc(‘."’~€) w|¢t> , (224)
() _ i) -1
s = [1- @S wilea] (2.25)
where
B = 9P /5P (2.26)

is a renormalized Dyson orbital. Since the derivative

(¢i|i);c(w§-’))|¢i) < 0, Eq. (2.25) indicates that the spec-
troscopic factors are less than 1, though spectroscopic
factors near unity are typical for the outer valence re-
gion where the self-energy is normally a relatively slowly
varying function of energy.

Most of these features are preserved in the simpler
“target approximation” commonly used to analyze EMS
experiments. This simply assumes that the first-order

terms in Eq. (2.24) can be neglected, with the result

that the renormalized Dyson orbital z/;Y)
equal to ¢;, or equivalently

is approximately

Y1~ /5P ;. (2.27)

Since the HF approximation is the zero-order approxi-
mation generally used for this purpose, this is usually
called the “target Hartree-Fock approximation” (THFA)
[1). An important consquence of the target approxima-
tion follows from the fact that the occupation number
n[x] of any orbital x can be evaluated as an expectation
value of the one-electron reduced density matrix -,

mn=[/vunmrnwmwn (2.28)

using the expression for the density matrix in terms of
Dyson orbitals,

ionization

S w1,
I

Combining the target approximation [Eq. (2.27)] with
these expressions gives

(2.29)

ionization

gl = . S, (2.30)
I
which is close to unity in most cases,
ionization
(2.31)

S s
I

This allows the experimental determination of spectro-
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scopic factors in the following fashion. First a zero-order
orbital ¢; is assigned to each observed binding energy
by comparison of the shape of the XMP at that binding
energy with that from the theoretically calculated MD.
The spectroscopic factors Sf,') can then be assigned from
the relative intensities of the XMP’s associated with the
same zero-order orbital, using the “normalization” rela-
tion (2.31).

Although Eq. (2.27) is reminiscent of the FOA, the tar-
get approximation is in fact qualitatively much more sim-
ilar to the first-order solution of Dyson’s equation. In the
FOA, each occupied orbital ¢; corresponds to a single ob-
servable ionization transition with a spectroscopic factor
of unity and an ionization potential (—¢;). In contrast,

the target approximation allows the ionization process

to be decomposed into several transitions w}i), given by

Eq. (2.23), each with spectroscopic factors less than unity
[Eq. (2.25)], consistent with the picture arising from the
perturbation analysis of Dyson’s equation and with the
experimentally observed facts.

C. Kohn-Sham density-functional theory

Kohn-Sham (KS) density-functional theory (DFT) is
a computationally less demanding alternative to conven-
tional ab initio electronic structure methods. The KS
formalism is briefly summarized here with emphasis on
similarities and differences between the KS equation and
Dyson’s equation. More complete reviews of DFT can be
found in Refs. [59-61].

Basing their method on an existence proof due to Ho-
henberg and Kohn [62], Kohn and Sham [29] proposed
determining the total energy FE and density p of a sys-
tem of N interacting electrons in an external potential
v by minimizing a functional which we shall write in its
spin-density variant as

1 N
3 IV + [otept)a
+% / / ﬂ(—lr)—lp;@dld2+Exc[p], (2.32)

where the KS orbitals X5 have been introduced as the
orbitals of a fictitious system of noninteracting electrons
whose densities sum to the exact total density,

Elp] = -

N
p(1) = 18 (2.33)

i=1
Note that p(1) depends on both the space and spin co-
ordinates of electron 1; hence Ex.[p] = Exc[p',p!] is a
spin-density functional. The four terms in Eq. (2.32) rep-
resent, respectively, (i) the kinetic energy of a fictitious
system of noninteracting electrons with orbitals ¢XS, (ii)
the potential energy of the electrons in the external po-
tential (i.e., the nuclear attraction potential in molecu-
lar applications), (iii) the Coulomb repulsion energy, and
(iv) the “exchange-correlation (xc) energy” (which in-
cludes both a correction for the self-interaction error in
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the Coulomb term and the difference between the kinetic
energies of the true interacting and fictitious noninter-
acting systems, as well as exchange and correlation.) No
computationally practical exact form is yet known for the
xc energy, so this term is approximated in practice. Min-
imization of the total energy subject to the constraint of
orthonormal orbitals gives the Kohn-Sham equation

(hulp] + vee(L; )55 (1) = £565(1),  (2.39)
where $Enclp]
. _ p.<+ p

vxe(150] = (1) (2.35)

is the KS xc potential. (The notation vy.(1l;p] means
that vy, is a function of the space and spin coordinates of
electron 1 and a functional of p.) Note that vy (1) is a lo-
cal potential (i.e., just a multiplicative operator), though
vxc(1; p] may be either a local or a nonlocal functional
of p. Equation (2.34) is precisely the orbital Schrodinger
equation for the KS fictitious system of noninteracting
electrons.

It is useful to make a distinction between exact DFT
and the approximate DFT necessarily used in practical
calculations. In exact DFT, the xc potential is (by def-
inition) the local potential whose orbital densities sum
to the exact total ‘density of the interacting system. In
contrast, practical KS DFT uses approximate functionals
which contain errors affecting the xc potential and hence
the calculated orbitals, orbital energies, charge density,
and total energy. Exact DFT is not merely a hypothetical
construct. Sham and Schliiter observed that the defini-
tion of the exact vy, permits the calculation of “exact”
xc potential functions (but not functionals) from densi-
ties obtained in many-body Green function calculations
[32,63-68], thereby allowing the study of the exact KS or-
bitals and orbital energies. This may also be done via the
optimized-effective-potential (OEP) approach [31,69-80].
The concept of exact DFT is useful for purposes of dis-
tinguishing between properties or limitations inherent in
DFT and those arising from the quality of an approxi-
mate functional. The discussion in this and the following
subsection will be in terms of exact DFT.

There is an obvious superficial resemblance between
the KS equation and Dyson’s quasiparticle equation.
However, while the KS equation is the orbital equation
for a fictitious system of noninteracting particles moving
in the local potential [v + [ p(2)/r12 d2 + vx], Dyson’s
equation refers to quasiparticles moving in a potential
with an orbital energy-dependent nonlocal contribution
Yxc(wr). Consequently, there are only N orthonormal KS
orbitals, while the Dyson orbitals are neither orthogonal,
nor normal, nor finite in number. Nevertheless, the two
equations share a few properties in common which are
worth pointing out. Both have orbital solutions whose
densities sum to the exact total density [Egs. (2.16) and
(2.33)]. This alone indicates that the KS and Dyson or-
bitals can differ by no more than a phase factor in regions
of space dominated by only a single orbital from each set.
In particular, this must be true for the highest occupied
molecular orbital (HOMO) in the large-r limit, since all
other orbitals must die off more quickly [34,35],
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ld)%(S)MO(l)lz 2.36
[nomo () — 1. (2.36)

A corollary [35] which follows from examination of the
asymptotic behavior of the charge density is that both
the KS and Dyson HOMO energies must equal the neg-
ative of the first ionization potential provided the or-
bital energy zero is chosen so that the xc potential van-
ishes asymptotically. The equality of the KS and Dyson
HOMO energies is an example of a property which holds
for exact DFT but which is generally not found in prac-
tical DFT calculations with the approximate functionals
presently available.

D. Approximate Dyson orbitals from DFT

The computational advantages of DFT make it an at-
tractive possibility for the calculation of MD’s for use
with EMS. However, the question of principle regard-
ing the use of KS orbitals to approximate Dyson orbitals
should be addressed first. This is properly done in the
framework of exact DFT.

It is widely appreciated that, in the KS approach to
DFT, the orbitals of a fictitious noninteracting system
were introduced purely as a formal device to facilitate the
treatment of the kinetic energy functional. Thus, Kohn
and Sham did not consider these orbitals to be physically
meaningful. This view seemed to be corroborated by
the fact that the eigenvalues of the KS equation were
found not to be good approximations for the ionization
potentials and electron affinities, a problem which is most
pronounced when approximate functionals are used but
which persists in exact KS DFT [66,77,81].

However, there is another approach to DFT in which
the KS equation is derived as an approximation to
Dyson’s quasiparticle equation. This is an outgrowth of
Slater’s initial concept [82] of v, as a local approxima-
tion to the nonlocal exchange operator in the Hartree-
Fock approximation. From this point of view, there is
no reason to think that the KS orbitals should be de-
void of physical significance. In this approach, one starts
with Dyson’s equation and finds the local (in both space
and time) potential which best approximates Pye(w), in
a well-defined variational sense. The resulting potential
is known as the optimized effective potential (OEP). In
their seminal paper, Sharp and Horton [30] and subse-
quently Talman and Shadwick [31] gave an expression
for this OEP in the exchange-only case. Casida [33] has
recently generalized this approach to treat the correlated
case as well. In both cases, the resulting OEP can be
identified with the exact KS vy, (or v;) derived by Sham
and Schliiter * [32,33]. Thus, the KS equation is the vari-

!This identification holds within the linear response approx-
imation to the Sham-Schliiter equation (see Ref. [33]). This
approximation is routinely used in calculations of the exact
vxe (Or vg), and its acceptance is implicit in the acceptance
of OEP calculations as giving the exact KS x(c) potential
[31,66,67,69-81,83-85].
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itionally best local approximation to Dyson’s quasipar-
icle equation, so in this sense it is natural to consider
XS orbitals and orbital energies as approximate Dyson
orbitals and orbital energies. Note that, unlike the total
energy and charge density, the individual Dyson orbitals
and orbital energies are not among the quantities which
are obtained exactly in “exact” KS DFT; it is the true
KS orbitals and orbital energies which here arise as ap-
prozimations to the Dyson orbitals and orbital energies.
The question then becomes whether this approximation
is good enough to be useful.

The shortcomings of the KS orbital energies as approx-
imate Dyson orbital energies are well known. Indeed,
Perdew and Levy [86] have pointed out this is to be ex-
pected on the basis of derivative discontinuities in the
xc energy functional. However, this difficulty with the
orbital energies does not imply that the KS orbitals are
necessarily poor approximations to the Dyson orbitals.
While it may seem counterintuitive that the KS orbitals
could be good approximations to the Dyson orbitals when
this is not true for the corresponding orbital energies, the
qualitative description of the localization process given
in the Appendix suggests that, even if the Dyson or-
bitals were directly proportional to KS orbitals, the cor-
responding eigenvalues should differ in order to produce
an orbital-independent local potential vy..

Unfortunately, these formal considerations do not give
any a priori statement as to the quality of the approxi-
mation of Dyson orbitals by KS orbitals, nor any limit-
ing case in which it becomes exact. In order to obtain an
idea of the quality of this approximation, we consider the
available numerical data from exact DFT calculations.
First the exchange-only case. In this case, one measure
of the quality of the OEP (or exact KS) orbitals as ap-
proximate HF orbitals is how well they minimize the HF
energy expression. That is, the difference between the HF
energy expression evaluated with OEP orbitals and the
true HF energy provides a measure of the severity of the
local approximation. Explicit calculations on atoms show
that this energy difference ranges from about 50 ppm for
the lightest atoms to about 5 ppm for atoms with atomic
numbers near 50 [72,77]. This and other calculated prop-
erties [69,70] such as impulse Compton profiles, atomic
form factors, (r?), and dipole polarizabilities, as well as
orbital properties [72] such as {r), (r?), (1/7), and (1/r?)
indicate that the exchange-only Kohn-Sham orbitals are
remarkably close to HF orbitals. A similar conclusion
was reached by Zhao and Parr [87,88] in their direct com-
parison of exact (exchange-only) atomic KS orbitals with
the corresponding HF orbitals. Although much less in-
formation is available in the exchange-correlation case,
some information is available from Green function calcu-
lations on solids [52,53,55], though this is not from exact
DFT. These begin with KS DFT calculations using the
local density approximation (LDA) for the xc energy as
the zero-order description, and then follow up by solving
Dyson’s quasiparticle equation using the GW (i.e., Green
function G times screened interaction W) approximation
[89] for the xc self-energy. Overlaps of 99.9% between the
KS and renormalized Dyson orbitals are found in these
calculations. Thus the numerical evidence is that KS or-
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bitals can serve as good approximations for renormalized
Dyson orbitals.

Now let us clarify the precise sense in which we intend
KS orbitals as approximate Dyson orbitals. Just as in
the HF approximation, there are only N KS orbitals, as
opposed to an infinite number of Dyson orbitals, and the
considerations in Sec. IIB on the frozen-orbital versus
target approximations apply equally to DFT and the HF
approximation. Thus what we are proposing is a tar-
get Kohn-Sham approximation (TKSA) in which each
ionization Dyson orbital is taken to be proportional to
an occupied (canonical) Kohn-Sham orbital [Eq. (2.27)].
The TKSA is expected to break down when the pertur-
bation [f]xc(wf) — Uxc| becomes too large. However, just
as with the target Hartree-Fock approximation (THFA),
this breakdown is most likely to occur for energies wy
where the self-energy is varying rapidly, in which case
the spectroscopic factor will be small [Eq. (2.25)] and
the transition will be difficult to observe experimentally.

As was remarked in Sec. I A, Dyson orbitals may be
calculated either directly, as solutions of the quasiparti-
cle equation, or indirectly via the generalized overlap for-
mula (2.5). Since both approaches yield the same result
in the limit of an exact treatment of many-body effects,
either one may be used as a starting point for approxi-
mations to the Dyson orbital. We have chosen to use the
former (quasiparticle equation) approach, since it lends
itself more readily to approximation via DFT. The latter
(generalized overlap) approach would have required in-
troducing an N-particle wave function in the DFT treat-
ment, as well as doing DFT calculations on excited states
of the daughter ion, with all its attendant formal and
practical difficulties. Or, in order to avoid the problems
of excited states, one would need some sort of Koopmans-
like theorem for DFT, relating the generalized overlap to
the parent KS orbitals, but no such theorem has been
proven to date. In contrast, the approach we have taken
in this paper is based entirely on the quasiparticle equa-
tion. The self-energy is approximated through a local-
ization (OEP) procedure which yields the KS equation.
Thus the (canonical) KS orbitals are just the solutions
of this approximate quasiparticle equation, and, in this
sense, approximate Dyson orbitals. This point of view
has the advantage that the aforementioned problems with
the generalized overlap approach are not encountered.

Although, in the case of an exact self-energy, the gen-
eralized overlap yields the same Dyson orbital as is ob-
tained by solving the quasiparticle equation, this need
not always be the case for an approximate self-energy.
The generalized overlap and the solution of the quasi-
particle equation are then equally justified, but possibly
different, approximations to the true Dyson orbital. Nev-
ertheless, it is interesting, for purposes of clarifying the
physical picture implied by a given self-energy approx-
imation, to try to understand the relationship between
the generalized overlaps and the solutions of the quasi-
particle equation, within this self-energy approximation.
This relationship is not yet clear in the case of DFT.

In addition to the TKSA whose formal justification has
just been discussed, two ad hoc DFT approximations of
Dyson orbitals are also considered in this paper, in order
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to illuminate different points, each of which might naively
appear to offer some advantages.

The first ad hoc approach is based on analogy with
the Hartree-Fock approximation. In the Hartree-Fock
approximation, Koopmans’ theorem provides the rela-
tion between the solutions of the quasiparticle equa-
tion and the generalized overlaps. Since the Hartree-
Fock method consists of approximating the exchange-
correlation self-energy Y, by the HF exchange operator
Yz, the (canonical) HF orbitals, being solutions of this
approximate quasiparticle equation, approximate Dyson
orbitals. Koopmans’ original formulation [90] of the the-
orem that bears his name concerns a special case in which
the generalized overlap is also equal to the canonical
HF orbital—namely, when the problem is restricted to
the space of the occupied molecular orbitals of the par-
ent species. Then the orbital describing the hole in the
daughter (N — 1)-electron HF wave function is identi-
cal to a canonical HF orbital of the N-electron parent.
Although no variant of Koopmans’ theorem has been
proven for Kohn-Sham density-functional theory, it is in-
teresting to ask what happens if the Kohn-Sham problem
of the daughter is solved in the restricted space of the par-
ent occupied KS orbitals. We term the orbital describ-
ing the resulting hole, the “Kohn-Sham Koopmans’ hole”
(KSKH) orbital. Since these KSKH orbitals are related
to the canonical KS orbitals by a unitary transformation,
they are still KS orbitals, though not necessarily canoni-
cal ones. Symmetry arguments alone suffice to show that
for any occupied orbital whose symmetry representation
is unique among the occupied orbitals (termed “lone sym-
metry states” in Ref. [43]), this KSKH orbital is identical
to the canonical KS orbital. The question is how similar
these orbitals are in the absence of such symmetry con-
straints, and whether this hole (i.e., the KSKH orbital)
provides any better description of the Dyson orbital than
does the canonical KS orbital. This KS Koopmans’ hole
approach still involves the formal difficulty of calculating
excited states in DFT (see, e.g., Ref. [59], p. 204, and
Ref. [60], p. 32). Nevertheless, the analogy with the HF
approximation is interesting.

The second ad hoc approach returns to the quasiparti-
cle equation (rather than the generalized overlap) point
of view, and is aimed at improving the KS eigenvalues
as approximations to the eigenvalues of Dyson’s equa-
tion. As noted previously, the large-r behavior of orbitals
plays an important role in their MD’s, and this behavior
is intimately related to the eigenvalue in Dyson’s equa-
tion [Eq. (2.6)]. This relationship also holds between the
large-r behavior of the KS orbitals and their eigenval-
ues. While this is no problem for the HOMO where the
Dyson equation eigenvalues and the exact KS eigenval-
ues are both equal to minus the first ionization poten-
tial, the eigenvalues and hence the asymptotic behavior
of the other Dyson and KS orbitals are expected to differ.
Note also that even the HOMO KS eigenvalue is rarely a
good approximation to minus the first ionization poten-
tial in practical calculations using approximate function-
als. The Slater-Janak transition state method [91,92],
which consists of solving the KS equations with half an
electron removed from the ith orbital, is a well known
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way to modify the KS equation so that the ith eigenvalue
provides a better approximation to the ith principal ion-
ization potential. (See, e.g., Ref. [93] for an assessment
of the transition state method for calculating ionization
potentials.) If “better” eigenvalues, in the sense of giving
better ionization potentials, imply better orbital behav-
ior in the asymptotic region, then using this “transition
orbital” (i.e., the half-occupied orbital resulting from a
transition state calculation) might be a useful trick for
calculating MD'’s for use with EMS. We will refer to this
as the “transition orbital method” (TOM).

The discussion in this section has been in terms of ex-
act DFT. However, since we are interested in the question
of the practical utility of the approximations discussed
for calculating MD’s for EMS, our computational inves-
tigation of the approximations presented here necessarily
uses approximate functionals. It should be kept in mind
that this introduces a further approximation beyond that
involved in approximating Dyson orbitals by KS orbitals.

III. COMPUTATIONAL DETAILS

All density-functional calculations reported in this pa-
per were carried out with the computer program de-
Mon [94-96] and will be compared with the highly ac-
curate multireference singles and doubles configuration-
interaction (CI) calculations of Davidson and co-workers
[3-5,9,10,12,13], who used the program MELD [97]. In
order to avoid complicating our comparison between KS,
CI, and HF MD’s with differences arising from the geome-
tries, the present work uses the geometries of Davidson
et al.

deMon belongs to the family of density-functional pro-
grams which use Gaussian orbital basis sets. This has
the advantage that the same orbital basis sets can be
used as in traditional quantum chemistry programs. The
integral evaluation in deMon is carried out analytically
through the use of two auxiliary basis sets, one for fitting
the charge density (used in evaluating the Coulomb inte-
grals) and the other for fitting the xc potentials and xc
energy density. The coefficients of each of these expan-
sions are obtained from a least squares fit, which involves
a grid in the case of the xc potentials and xc energy den-
sity (but not for the charge density fit). Thus the fit
quality depends both upon the quality of the grid and
on the choice of auxiliary basis sets. The auxiliary basis
sets both consist of Gaussian primitives, and are collec-
tively described by the notation (n,m;n,m), where, in
each pair, n denotes the number of s-type Gaussians, and
m denotes the number of “shells” of s-, p-, and d-type
Gaussians sharing the same exponent.

The present calculations use the (4,4;4,4) (heavy
atoms) and (3,1;3,1) (hydrogen) auxiliary basis sets,
which are the best presently available in the deMon li-
brary file. The grid used was extrafine and random, and
the self-consistent field (SCF) convergence criterion was
five successive energy differences of less than 1078 a.u.
The ion calculations done for the KSKH and TOM or-
bitals were started from the parent density, and were con-
verged to five successive energy differences of less than

DUFFY, CHONG, CASIDA, AND SALAHUB 50

10~ a.u. The polarizabilities reported in this work were
calculated by finite difference, with a field strength of
+0.0005 a.u. using the polarizability option in deMon.
The MD'’s (spherically averaged orbital momentum dis-
tributions) were calculated from the orbitals using the
in-house HEMS (H-compiler-optimized electron momen-
tum spectroscopy) program of Ref. [98].

Several exchange and correlation functionals were em-
ployed in this study; these will be distinguished using
the abbreviations LDAx, LDAxc, B88x, and B88x+P86¢.
The “x” refers to the exchange functional while “c” refers
to the correlation functional, so the LDAx and B88x func-
tionals are exchange-only approximations.

The local density approximation (LDA) is the sim-
plest and most widely used functional in the density-
functional literature. In the LDAxc functional, the
exchange-correlation energy density at each point in the
molecule is approximated by that of a homogeneous elec-
tron gas whose charge density is the same as the density
at that point in the molecule. Specifically,

Bule' ') = [l (st oty ds (31)

where e,.(p'(r), p*(r)) is the exchange-correlation energy
density for the homogeneous electron gas with spin den-
sities p'(r) and p*(r) and total charge density p(r) =
p'(r) + p*(r). In the exchange-only case, this reduces to
a simple closed form (the LDAx functional), identical to
Slater’s X a approximation with o = 2/3 [99]. A closed
form for the correlation part is not known. Instead, the
parametrization of Vosko, Wilk, and Nusair [100], is used
in deMon.

The LDA neglects any dependence on the gradients
of the density, and is therefore most justified for slowly
varying densities, though its range of applicability is ac-
tually much wider than this would suggest. The next
higher level of approximation consists of adding gradi-
ent correction terms to the LDA exchange-correlation
energy density. One of the most important shortcom-
ings of the LDA is that it tends to overbind molecules
[101], and many gradient-corrected functionals were de-
signed with this in mind. In principle, gradient correc-
tions should also improve the results for other properties
besides binding energies, though in practice this varies
depending on the functional and the property in ques-
tion. Since the large-r behavior of orbitals is very im-
portant for the calculation of properties such as polar-
izabilities, and MD’s for EMS, it is worth noting that
the LDAx and LDAxc potentials and energy densities vi-
olate the known asymptotic behavior of the exact func-
tionals. The 1988 gradient-corrected exchange functional
of Becke [102] is an improvement in this regard, being
specifically designed so that the exchange energy den-
sity €, has the correct asymptotic behavior, although
the same cannot be said for the resulting B88x poten-
tial. However, the asymptotic behavior of the B88x po-
tential is an improvement on that of the LDAx potential.
The gradient corrections used in the present work are the
B88x functional, for exchange, and the 1986 correlation
functional of Perdew [103] (P86¢c). The P86¢ functional
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is based upon a comparison of wave-vector analyses for
the correlation energy density of molecules and the ho-
mogeneous electron gas [103].

The orbital basis sets used in this work are described
below. All consist of contractions of Gaussian-type or-
bitals (GTO’s), and use sets of six Cartesian d functions.

STO-3G. This minimal basis set, due to Hehre, Stew-
art, and Pople [104], is of single-{ quality, and consists of
a single contraction of three Gaussian primitives for each
atomic orbital.

STO-3G#. The # symbol designates the addition of
a single set of diffuse p functions to the oxygen basis set
in the HO calculation. The exponent used is that given
by Casida and Chong [34] in their study of the relation
between MD’s and large-r behavior.

NM. This basis set, designed by Neuman and
Moscowitz [105], is of roughly triple-{ plus polarization
quality on oxygen and double-{ plus polarization quality
on hydrogen. It consists of a (10s6p2d) — [5s3pld] con-
traction on oxygen and a (4slp) — [2slp] contraction
on hydrogen.

TZP. This consists of the (7111/411/1*) (i.e., [4s3pld])
(oxygen) and (41/1%*) (i.e., [2s1p]) (hydrogen) library ba-
sis sets of deMon. Here, TZP stands for “triple-¢ plus po-
larization,” although it would be better described as “va-
lence triple-¢ plus polarization” on oxygen and “double-(
plus polarization” on hydrogen.

ANO-. The atomic natural orbital (ANO) basis sets
of Ref. [106] were truncated to d functions on the heavy
atoms for use in the present study, since deMon is not yet
able to use higher angular momentum atomic orbitals. To
maintain balance in the basis sets, the hydrogen set was
truncated to p functions. The resulting basis sets consist
of five s contractions, four p contractions, and three d
contractions on the heavy atoms, and four s and three p
contractions on hydrogen.

NHF—-. The near Hartree-Fock (NHF) quality 109-
GTO basis set of Ref. [4], for water, was truncated to d
functions on oxygen and p functions on hydrogen. Sets of
six Cartesian d functions were used in the present study,
instead of the sets of five d functions used in Ref. [4]. The
resulting basis set consisted of 92 contractions of GTO’s.

TZP+, ANO+, NHF+. The “+” indicates augmenta-
tion of the substrate (TZP, ANO—, or NHF—) basis with
the field-induced polarization (FIP) functions of Zeiss et
al. [107] as described in Ref. [26] (s and d on the heavy
atoms and p on hydrogen). However, due to linear de-
pendencies encountered in the case of ANO+, only the
d and not the s FIP for the heavy atoms was added in
forming the ANO+ and NHF+ basis sets. The ANO+
basis sets were used for most of the calculations reported
in this work.

Table I shows the basis set dependence of the total en-
ergies, dipole moments, and polarizabilities obtained for
H;O, using deMon with the LDAxc functional. The total
energy decreases as the basis set size increases and ap-
pears to be converging to about —75.913 hartrees. This
is well above the best experimental estimate of the to-
tal energy, namely —76.434 hartrees. Although the KS
equations are derived by a variational minimization of an
energy functional and finite basis calculations of the total
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energy should converge from above to the KS value for
the functional used, the use of approximate functionals
in practical DFT programs means that, unlike the case in
HF and CI calculations, the total energy may fall either
above or below the true nonrelativistic value. Hence com-
parisons of DFT total energies with total energies from
other methods cannot be used as an indication of basis
set convergence. However, comparison of DFT total en-
ergies calculated using different basis sets but the same
functional is useful for this purpose. With the exception
of the out of plane component of the polarizability tensor,
the dipole moment and polarizability components seem
to be converging to values in reasonably good agreement
with experiment. Since the dipole moment and polariz-
ability can be defined in terms of derivatives of the to-
tal energy with respect to an applied electric field, the
fact that the LDAxc results for these properties are bet-
ter than for the total energy is consistent with the well
known fact that density-functional calculations often give
much better relative than absolute energies.

Figure 1 shows the basis set convergence of the TKSA
MD for the 1b; orbital of water. The CI MD of Davidson
et al. [4] is included only as a reference for the reader’s
convenience. As seen from Fig. 1, the convergence prop-
erties of the MD’s generally reflect those observed in Ta-
ble I for the energy, dipole moment, and components of
the polarizability tensor, except that the addition of FIP
functions to the basis is more efficacious for the dipole
moment and polarizability than for MD’s, which is not
surprising since these functions were designed for calcu-
lating dipole polarizabilities. Nevertheless, since a good
description of the large-r region is important for MD’s,
the FIP’s, being diffuse functions, do have a significant
effect on the MD when added to the TZP and ANO— ba-
sis sets (to give TZP+ and ANO+). However, this effect
of the diffuse FIP’s on the MD is almost imperceptible
for the larger NHF — basis set. Although no attempt was
made to go beyond the NHF+ to try to fully saturate the
basis, the MD’s appear to be reasonably well converged.

0.08
NHF = /NHF.+ STO-3G#
1 ANO+ Cl
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FIG. 1. Effect of basis set on the TKSA MD for the 15,
orbital of H2O, using the LDAxc functional and the basis
sets described in the text. The CI/109CGTO MD of Ref. [4]
(dashed curve) is shown for comparison purposes. All MD’s
have been calculated from orbitals which are normalized to
unity.
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Judging from the convergence of the total energy,
dipole moment, polarizabilities, and MD’s, the ANO+
basis seems to be of good quality, while being only mod-
erately large, and offering a uniform level of description
for the different molecules studied. This level of conver-
gence should be quite adequate for the purpose of the
present study, which is to investigate the viability of us-
ing KS orbitals to approximate Dyson orbitals for calcu-
lating MD’s. The ANO+ basis set will therefore be used
throughout the rest of this study.

It is worth noting that the STO-3G# basis gives re-
markably good MD’s for such a small basis set. This is
typical for this basis. This is because the STO-3G# ba-
sis set was created from the overly small STO-3G basis
set by adding diffuse functions specifically designed to in-
crease the ability of this basis set to describe the large-r
behavior, which is of primary importance for calculating
MD’s [34]. Since the resultant basis set is still quite small,
it provides an efficient approximate method for the cal-
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culation of MD’s for large molecules. On the other hand,
Table I shows that the same cannot be said for the dipole
moment and polarizability, for which a good description
in the small-r as well as the large-r region is needed.
One further step is necessary in order to compare theo-
retical MD’s with experiment, namely, the finite momen-
tum (i.e., angular) resolution of the experimental appa-
ratus must be taken into account, either by incorporating
the experimental resolution into the theoretical MD’s or
by removing the finite resolution from the experimental
XMP’s by some sort of deconvolution procedure. At the
present time, given the statistics of a typical EMS exper-
iment, the latter is impractical. Hence, when comparing
theory with experiment, we take the former approach
and use the procedure given in Ref. [108] to resolution-
fold MD’s in order to compare with XMP’s. In addition,
since absolute-intensity XMP’s are not yet obtainable
from EMS experiments, the XMP’s for different orbitals
in the same molecule are normalized only relative to one

TABLE I. Basis-set dependence of the total energy, dipole moment, and principal components of the dipole polarizability of
H20. The molecule is oriented in the (z,z) plane with its dipole aligned along the z axis. The basis sets are listed in order of
decreasing total energy. The basis sets used in the deMon calculations are described in the text; those used in the MELD and
HONDOS calculations are described in the appropriate references. Results for the polarizability are not available for the MELD

calculations.

Polarizability (a.u.)

Method/Basis set Size® Dipole moment (a.u.) Az Qyy Q. Total energy (a.u.)
deMon calculations®
LDAxc/STO-3G 7 0.6807 4.778 0.040 2.163 -74.7331
LDAxc/STO-3G# 10 0.9533 4.644 0.182 3.047 -74.8820
LDAxc/NM 36 0.8104 7.989 4.634 6.498 -75.8868
LDAxc/TZP 29 0.8532 7.895 4.057 6.653 -75.8996
LDAxc/TZP+ 42 0.7455 10.290 9.942 10.114 -75.9031
LDAxc/ANO— 61 0.7489 9.327 7.068 8.703 -75.9113
LDAxc/ANO+ 73 0.7334 10.430 9.890 10.234 -75.9127
LDAxc/NHF— 92 0.7597 9.508 9.533 9.032 -75.9129
LDAxc/NHF+ 104 0.7366 10.434 10.574 10.391 -75.9132
HONDOS calculations®
HF /[10s7p4d/7s4p) 93 0.780 9.16 7.91 8.46 -76.0654
MELD calculations?
HF/99CGTO 99 0.7893 -76.0669
HF/109CGTO 109 0.7891 -76.0671
HF/140CGTO 140 0.7794 -76.0673
CI/99CGTO 99 0.7439 -76.3736
CI/IOQCGTO 109 0.7455 -76.3761
CI/140CGTO 140 0.7356 -76.3963
Experimental values
0.727¢ 10.31° 9.55¢ 9.91f -76.43968

*Number of contractions of Gaussian-type orbitals.

bPresent work. The total energy is the “analytic energy” calculated using both charge density and exchange-correlation fitting

functions.
“Taken from Ref. [26].

4All MELD calculations are taken from Ref. [3] with the exception of the 109CGTO calculation which is from Ref. [4].

“Reference [118].
"Reference [119].
8From Ref. [3].
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FIG. 2. Comparison of the experimental XMP and resolu-
tion-folded CI/109CGTO MD for the 1b, orbital of H2O. Both
the experimental data and CI MD have been taken from Ref.
[4], but the resolution-folding of the CI MD has been done
according to the prescription given in Ref. [108] for a more
appropriate comparison between theory and experiment.

another, but not on an absolute scale. Thus, in order to
compare experiment and theory, the arbitrary normaliza-
tion constant is fixed by scaling the data such that the
height of the XMP agrees with the resolution-folded CI
MD for one orbital in each molecule.

It is well established that the resolution-folded CI MD’s
of Davidson et al. are in excellent agreement with exper-
iment [3-13,108]. This is illustrated in Fig. 2 for the 15,
orbital of HyO. Thus these high-quality CI MD’s can be
used as a reference against which to judge the MD’s ob-
tained from DFT approximations to Dyson orbitals.

IV. RESULTS AND DISCUSSION

This section presents the results of our assessment of
the target Kohn-Sham approximation (TKSA) for the
calculation of MD’s, within the LDA, for 18 orbitals in
six small molecules and atoms where high-quality HF and
CI calculations as well as experimental data are avail-
able for comparison. The experimental results used here
are those of Brion et al. at the University of British
Columbia, while the CI MD’s are those of Davidson et
al. at the University of Indiana. The excellent agree-
ment found between these high-quality CI MD’s and the
experimental results [3-5,9,10,12] allows us to use these
CI MD’s as a standard against which to assess our DFT
approximations. We also consider, in Sec. IV B, two in-
teresting ad hoc approximations. In the final subsection
we return to the TKSA and take a preliminary look at
the effect of different approximate functionals.

The calculation of spectroscopic factors requires a per-
turbative treatment going beyond the basic KS or HF
calculation [see Eq. (2.25)] and is thus computationally
more involved. And for purposes of using MD’s to assign
peaks in EMS spectra, theoretically calculated spectro-

4717

scopic factors are not necessary. Thus we do not calcu-
late spectroscopic factors, but make the comparisons in

terms of the renormalized Dyson orbitals 1/;?) which have
the spectroscopic factors divided out [Eq. (2.26)]. In the

THFA or TKSA, %\ is just the (canonical) HF or KS
orbital ¢; [Eq. (2.27)], while the experimentally deter-
mined [via Eq. (2.31)] and CI spectroscopic factors are
divided out of their respective XMP’s or MD’s.

In view of the resolution folding and height scaling
(described in the previous section) involved in comparing
theory with experiment, and the size of the error bars
on the experimental data, the cleanest test of the DFT
orbital MD'’s for these small molecules is in comparison
with the CI MD’s. Comparison with the experimental
results is, of course, also important, since the adequacy
of the DFT results for use in EMS peak assignments is
of primary concern.

A. Target Kohn-Sham approximation in the LDA

A practical investigation of the TKSA necessarily in-
volves the use of an approximate exchange-correlation
functional. The present study focuses primarily on the
TKSA in the local density approximation (LDA), though
the effect of the functional is investigated for H,O in
Sec. IV C. The present subsection deals with the results
using the LDAxc functional.

In order to test the quality of the KS orbital MD’s ob-
tained from the TKSA (in the LDA), six small molecules,
HF, H,0, NH;, CH,4, C;H;, and Ne, were chosen whose
EMS has been well studied both experimentally and
theoretically [3-5,9,10,12,13,108], and calculations of the
MD’s were carried out for all the valence orbitals. H,O
is a particularly interesting test molecule because it is
more difficult to obtain a quantitative description of the
MD for the HOMO, and to a lesser extent the 3a; or-
bital, than for the outer valence orbitals of many other
molecules.

Figures 3 and 4 show the calculated momentum distri-
butions (MD’s) for all the valence orbitals of water and
acetylene, respectively. In addition to the KS orbital
MD’s, these figures contain the results from the KSKH
and TOM orbital approximations which will be discussed
in the next subsection. Looking now at the KS results,
it is immediately evident that the positions and shapes
of the KS, HF, and CI MD’s are all very similar, the pri-
mary difference between them being in the peak heights.
This is also the case for the other molecules studied, so
for the remaining molecules only the peak heights and
positions are reported here. The results are shown in
Fig. 5 and Table II.

It is evident from Figs. 3-5 and Table II that the over-
all quality of the TKSA in the LDA is quite similar to
that of the THFA for the orbital MD’s of these molecules.
For some orbitals the KS MD’s are a little better than
the HF, while for others the HF is a little better, and
for many orbitals the magnitude of the error in the KS
peak height parallels that for the HF, being larger when
correlation is more important. For both the KS and HF
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MD’s, the largest error in the peak height occurs for the
204 orbital of acetylene. The errors in the heights of the
KS MD’s, compared to CI, range from 1% to 6%, with
the exception of the 204 orbital of acetylene with an er-
ror of 17% and the 2a; orbital of CH4 with an error of
only 0.4%. In comparison, the peak height errors in the
HF MD’s are in the range 2% to 11%, except for four
orbitals (CHy4 1t3, NH3 2a; and le, and H;O 1b2) having
errors of 0.3% or less. The average error of 4.6% in the
peak heights for all the orbitals is the same for the KS
and HF MD'’s. The errors, again relative to the CI, in
the positions of the peaks, i.e., in the value of the mo-
mentum for which the MD has its maximum, are often
less than the estimated uncertainty in the determination
of this value and the average error (excluding those or-
bitals for which symmetry constrains the maximum to
occur at zero momentum) is 1.4% and 1.9% for KS and
HF, respectively.

It is interesting to note that, while the magnitude of
the errors in the KS and HF MD’s are quite similar, KS
and HF results are usually off in opposite directions. The
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maximum of the MD is shifted, if at all, to higher mo-
mentum in the HF and to lower momentum in the KS
MD'’s. Out of the 18 orbitals treated here, the height of
the MD from the KS is greater than that from the CI
calculation for 14 orbitals, and the HF MD height is less
than the CI MD height for 15 orbitals. (In only one case
is the height from the KS less than that from the HF cal-
culation.) While both KS and HF orbitals approximate
Dyson orbitals, and apparently about equally well for the
MD’s, they do so in different ways.

Of course the quantitative aspects of the errors in the
TKSA vs THFA would be expected to depend on the ba-
sis sets used in the respective calculations. For example,
the peak height errors might be somewhat larger in the
“LDA limit” than those reported here. However, in view
of the level of convergence of the MD’s shown in Fig. 1,
the basic conclusion that the TKSA (in the LDA) and
the THFA are of roughly comparable quality for MD’s,
seems unlikely to be altered by further improvements in
the basis set.

Figure 6 shows the resolution-folded KS, HF, and CI
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FIG. 3. Comparison of several DFT approximations for MD’s with target Hartree-Fock and CI MD’s, for the valence orbitals
of H20. The DFT calculations used the LDAxc functional and the ANO+ basis set. The CI calculations are the 109CGTO
basis set calculations of Ref. [4], while the HF calculations are those of Ref. [3], using the 99CGTO basis set, except for the 2a,
orbital, where only the 84CGTO calculation of Ref. [117] was available (at the HF level the 84CGTO, 99CGTO, and 109CGTO
MD’s are indistinguishable from one another). The curve labels are target Hartree-Fock approximation (HF), configuration
interaction (CI), target Kohn-Sham approximation (KS), Kohn-Sham Koopmans’ hole (KSKH), and transition orbital method

(TOM).
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MD’s in comparison with the experimental data for H;O.
The arbitrary normalization of the experimental XMP’s
has been fixed by scaling the data such that the height
of the peak matches the CI result for the 1b; orbital.
Since practical applications of the DFT MD’s where no
CI calculation is available would require a similar scal-
ing, except that the data would be normalized to a KS
orbital, a fourth curve has been included in which the
KS MD’s have been scaled (by a factor of 0.94) such that
the 1b; orbital peak height matches that of the CI cal-
culation (and thus the experiment). While such rescaled
MD’s are appropriate from the point of view of practi-
cal applications, they do not give an accurate indication
of the relative quality of the different theoretical models
since the most pronounced difference between the theo-
retical MD’s is in the peak heights. The TKSA MD’s
in Fig. 6 are certainly of good quality from the point of
view of applications to EMS, and the same is true for the
other molecules we have studied.

While both the shape and the height of the orbital MD
are sensitive to the large-r behavior of the orbital, this re-
lationship is stronger for the shapes than for the heights
[34]. Thus a tendency to give good MD shapes may be an
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indication of the quality of the large-r behavior of the KS
orbitals. This would be consistent with the previously ob-
served [26] good quality of DFT dipole moments, polariz-
abilities, and hyperpolarizabilities, since these properties
also depend upon a good description in the large-r region.
Although it is well known that the presently available
functionals do not give the correct asymptotic behavior of
the exchange-correlation potential, Umrigar and Gonze’s
calculations of the exact exchange-correlation potential
[109,110] for He and Ne suggest that, for physically rel-
evant large distances, the approximate potentials are off
by an almost constant shift, whereas the behavior close
to the nucleus is more problematic.

B. Ad hoc DFT approximations for Dyson orbitals

Two interesting but ad hoc approximations for Dyson
orbitals were presented at the end of Sec. IID. The TOM
approximation consists of using the transition orbital
obtained in Slater’s transition state method, while the
KSKH approximation involves carrying out a KS DFT
calculation on the daughter ion in the restricted space of
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FIG. 4. Comparison of several DFT approximations for MD’s with target Hartree-Fock and CI MD’s, for the valence orbitals
of C;Hz. The DFT calculations used the LDAxc functional and the ANO+ basis set. The Hartree-Fock and CI'calculations are
the 186CGTO calculations from [12]. The curve labels are target Hartree-Fock approximation (HF'), configuration interaction
(CI), target Kohn-Sham approximation (KS), Kohn-Sham Koopmans’ hole (KSKH), and transition orbital method (TOM).
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0.8 the parent occupied molecular orbitals to obtain the or-
bital for the hole and using this “KSKH” orbital. Just as
for the canonical KS orbitals, both the KSKH and TOM
orbitals are used to approximate Dyson orbitals via the
target approzimation. The results for H,O and acetylene,
using the LDAxc functional, are shown in Figs. 3 and 4,
respectively.

Consider first the KSKH approximation. For H,O, the
1b; and 1b; orbitals are lone symmetry states, so these
o HF KSKH orbitals should be identical to the canonical KS

* orbitals. This was indeed found to be the case in our
\ calculations, which constitutes a useful check. Mixing
of the three parent a; states is allowed by symmetry, so
- 0‘8 the KSKH orbitals can differ from the canonical KS or-
bitals for these states. Nevertheless, Fig. 3 shows that
the 3a; and 2a; KSKH orbital MD’s are quite similar to

oD

FIG. 5. Correlation plot of the MD peak heights obtained

in the target Kohn-Sham approximation (KS) and in the tar-
get Hartree-Fock approximation (HF) with configuration in-
teraction (CI). Values are from Table II.

the canonical KS orbital MD’s. For acetylene (Fig. 4),
the 1m, orbital is a lone symmetry state, and the KSKH
and canonical KS orbitals were again found to be iden-

TABLE II. Absolute peak heights and positions of the maxima of MD’s for the valence orbitals of all six molecules in the
present study. Positions should be considered accurate to only +0.025 a.u. and heights to within 1% . KS/LDAxc: Target
Kohn-Sham approximation using the LDAxc functional and ANO+ basis set. HF: Target Hartree-Fock approximation. CI:
Multireference singles and doubles configuration-interaction calculation. Positions and heights are given in atomic units. The
HF and CI calculations are taken from the following references: CH4 [9], NH3 [5], HF [10], Ne [13], and C2H2 [12]. For H-O,
the CI calculations are the 109CGTO basis-set calculations of Ref. [4] while the HF calculations are those of Ref. [117] using
the 99CGTO basis set, except for the 2a; orbital, where only the 84CGTO calculation of Ref. [117] was available (at the HF
level the 84CGTO, 99CGTO, and 109CGTO MD’s are indistinguishable from one another).

KS/LDAxc HF CI

Orbital Position Height Position Height Position Height
CH,4

2a, 0.0 0.7100 0.0 0.6923 0.0 0.7074

1t2 0.567 0.1288 0.600 0.1228 0.567 0.1231
NH3

2a, 0.0 0.4451 0.0 0.4381 0.0 0.4370

le 0.633 0.09037 0.633 0.08704 0.633 0.08709

3a; 0.533 0.1185 0.533 0.1049 0.533 0.1121
H,O

2a, 0.0 0.2947 0.0 0.2851 0.0 0.3137

1b 0.667 0.06473 0.700 0.06288 0.700 0.06307

3a; 0.633 0.07277 0.650 0.06438 0.633 0.06877

16y 0.600 0.07061 0.650 0.06113 0.600 0.06643

HF

20 0.0 0.1976 0.0 0.1872 0.0 0.2077

3o 0.733 0.04716 0.766 0.04373 0.733 0.04650

1 0.700 0.04239 0.733 0.03714 0.733 0.03930

Ne

2s 0.0 0.1277 0.0 0.1227 0.0 0.1297

2p 0.833 0.02443 0.850 0.02256 0.850 0.02355
Csz

204 0.0 0.5999 0.0 0.5729 0.0 0.5136

20, 0.533 0.1950 0.550 0.1883 0.550 0.1915

304 0.0 0.3447 0.0 0.3195 0.0 0.3265

17y 0.533 0.1359 0.525 0.1425 0.525 0.1379
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TABLE III. Symmetry breaking in DFT calculations on excited states of C2H; as indicated by the nonzero dipole moment.
The dipole moment is that of the daughter ion formed by removing an electron (half an electron in the case of the transition
orbital method) from the orbital indicated. All calculations were performed with the origin at the center of inversion symmetry

for the molecule.

Dipole moment (a.u.)

Orbital Transition orbital method Kohn-Sham Koopmans’ hole orbitals
17y, 0.0000 0.0000
30, 0.0021 4.2457
20, 0.6884 3.2158
204 0.0002 0.0000

tical. But for the other states the KSKH and canonical
KS orbital MD’s look quite different. However, except
for the case of ionization from the HOMO, these KSKH
calculations involve excited states of the ion. Unfortu-
nately, significant symmetry breaking, i.e., obtaining or-
bitals which do not belong to the irreducible representa-
tions of the symmetry group for the molecule, sometimes
occurs in KS DFT calculations for excited state config-
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urations, and our KSKH calculations are no exception.
This is readily apparent in the KSKH orbital MD for
the 20, orbital of acetylene which should vanish at zero
momentum, by symmetry, but which does not. Symme-
try breaking is apparent for the 30y, as well as the 20,
KSKH orbital, from Table III, which shows the dipole
moment, in center of mass coordinates, of the daughter
ion. No symmetry breaking is evident for the 20, or-
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FIG. 6. Comparison of target Kohn-Sham approximation (KS), target Hartree-Fock approximation (HF), and CI MD’s
with experimental XMP’s for the valence orbitals of H2O. The theoretical MD’s are those of Fig. 3, but here they have been
resolution folded according to the prescription given in Ref. [108] in order to compare with experiment. Two KS MD’s are
shown for each orbital. The first retains the absolute intensity from the original calculation, while the second is multiplied by
0.94 (for all orbitals) so that the heights of the CI and KS MD'’s for the 1b; orbital match (see text).
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bital, though we view this KSKH orbital with caution.
The KSKH orbital MD for this orbital differs markedly
from the canonical KS orbital MD. Considering all the
orbitals of both molecules, the question remains open
as to how much of the observed difference between the
KSKH and canonical KS orbitals is attributable to prob-
lems with the excited state DFT calculations and how
much is a real effect. It is clear, however, that, due to
the vagaries of excited state DFT calculations, the KSKH
approach is not reliable enough to be useful as an ad hoc
DFT approximation to Dyson orbitals, and the results
do not appear to be particularly better than those for
the canonical KS orbitals anyway.

The TOM also involves DFT calculations using ex-
cited state configurations, and some symmetry break-
ing in the TOM calculations on acetylene is apparent
from the dipole moments (Table III), though to a much
lesser extent than in the KSKH calculations. Neverthe-
less, the transition state method often provides excellent
estimates of ionization potentials [20,93,111]. Recall that
the motivation for considering the TOM here is that the
MD is sensitive to the asymptotic behavior of the or-
bital, which is in turn related to its eigenvalue. Thus
one might think to improve the MD’s by improving the
orbital energies. For all the valence orbitals of H,O and
C,H; (Figs. 3 and 4) the height of the TOM orbital MD
is less than the height of the corresponding KS orbital
MD. A rough qualitative explanation of why this is so
can be given in terms of the ionization potentials, since
this is the primary difference between the KS and TOM
approximations. As illustrated in Table IV, while the
transition state method eigenvalue is a good approxima-
tion to the negative of the orbital ionization potential,
the negative of the KS orbital energy gives an ionization
potential which is substantially too low. A higher ioniza-
tion potential would generally be expected to correspond
to a more contracted orbital in position space [as is con-
sistent with Eq. (2.6), for neutrals], which leads to a loss
of MD amplitude at low momentum, by the well known
Fourier correspondence between position and momentum
space distributions [34]. Although the KS orbital MD’s
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do tend to be too high, this “correction” is too extreme.
In all but one of the eight orbitals in Figs. 3 and 4, the
TOM MD is further from the CI MD than is the KS
MD, and there is a marked disagreement between the
TOM and CI MD’s for the 1m, orbital of acetylene and
all the valence orbitals of water. These results for the
TOM MD’s serve to illustrate that, even for the purpose
of calculating MD’s, a property which is particularly sen-
sitive to the large-r behavior of the orbital and hence to
its eigenvalue, approximating the Dyson orbital is not
synonymous with approximating its eigenvalue.

C. Effect of the functional

The results in the previous two subsections, on the
TKSA and on the ad hoc KSKH and TOM approxima-
tions, are all at the level of the local density approxi-
mation, LDAxc (LDA including both exchange and cor-
relation). The present subsection returns to the TKSA
and gives a preliminary investigation of the effect of the
functional, for HyO. We consider the effect of gradient
corrections, as well as the separate contributions of the
exchange and correlation functionals.

Among the well known problems with the local den-
sity approximation are self-interaction errors, overbind-
ing of molecules, and an exchange-correlation (xc) po-
tential which falls off too rapidly, asymptotically. One
might expect that this last point would be important for
MD’s. The physical effect of an xc potential which falls
off too rapidly is that an electron in the large-r region ex-
periences the full non-self-interaction-corrected Hartree
potential for N electrons instead of the correct potential
for (N —1) electrons. This makes the electron less bound
than it should be, its position space orbital too diffuse,
and the corresponding MD have too large an amplitude
at small p. This is consistent with the TKSA results
reported in Sec. IV A.

Given the sensitivity of MD’s to the large-r region,
we have chosen to use the 1988 exchange correction of

TABLE IV. Comparison of the negative of Kohn-Sham orbital energies at full (KS orbital energy) and half (transition state
method) occupancy with experimental ionization potentials, for C2H2 and H2O, using the LDAxc functional and the ANO+
basis set. The experimental values are taken from Ref. [12] for C;H;, and from Ref. [120] for H;O. The jonization potential
“of the 2a; orbital” of H,O is not well defined, due to the severe breakdown of the one-electron picture in this region of the
binding-energy spectrum.

Ionization potentials (eV)

Orbital KS orbital energy Transition state method Experiment
C.H,

1wy 7.31 11.70 11.40

304 12.23 16.74 16.7

20 13.99 18.48 18.9

20, 18.48 23.69 23.5
H.O

1b, 7.36 13.13 12.6

3a1 9.40 15.23 14.7

1b, 13.33 19.27 18.6

2a; 25.23 31.65
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Becke [102]. This was combined with the 1986 correlation
correction of Perdew [103]. The Becke functional gives
the correct asympototic behavior of the exchange energy
density €. (r), which is expected to improve the asymp-
totic behavior of the exchange potential v (r). Never-
theless, it should be noted that the B88x potential still
does not have the correct asymptotic form. Figure 7
shows the TKSA MD’s for the valence orbitals of wa-
ter as well as the corresponding THFA and CI MD'’s.
The KS orbitals have been calculated using the LDAx
and B88x exchange-only functionals and the LDAxc and
B88x+P86¢c exchange-correlation functionals. The effect
of the B88x and P86¢ gradient corrections on these MD’s
is to lower the peak heights slightly. This constitutes an
improvement for the three outer valence orbitals, but not
for the inner valence orbital where the LDA (z and xc)
MD’s were already below the CI.

As mentioned in Sec. IID, the exact exchange-only KS
orbitals have been calculated for atoms and have been

found to be remarkably similar to HF orbitals. This
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would lead one to expect that the exchange-only TKSA
should give very similar MD’s to the THFA MD’s, if the
functional were exact. However the difference between
the LDAx TKSA MD’s and the THFA MD'’s shown in
Fig. 7 is dramatic. This difference is probably primarily
due to deficiencies in the LDAx functional. Neverthe-
less, in the absence of MD’s calculated from the exact
KS orbitals, we cannot rule out the possibility that the
difference might be real and not an artifact of the func-
tional used. The B88x functional is expected to improve
the description of the asympototic behavior of the KS
exchange potential. However, this gradient correction
moves the MD’s for the exchange-only KS orbitals only
a little closer to the THFA MD'’s.

An interesting thing about the curves in Fig. 7 is the
effect of including correlation in the functional. This
acts to reduce the height of the TKSA MD’s, whereas
the CI MD’s for these orbitals have a larger amplitude
than do the corresponding THFA MD’s. Since a more
diffuse (contracted) orbital generally corresponds to a
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FIG. 7. Effect of the exchange-correlation functional on the target Kohn-Sham approximation MD'’s, for the valence or-
bitals of water. The curve labels are exchange-only local density approximation (LDAx); exchange-correlation local density
approximation (LDAxc); exchange-only functional using Becke’s 1988 gradient correction (B88x); exchange-correlation func-
tional using Becke’s 1988 gradient correction for exchange and Perdew’s 1986 gradient correction for correlation (B88x+P86c);
target Hartree-Fock approximation (HF); configuration interaction (CI). Dashed curves are used for MD’s calculated with gra-
dient-corrected functionals. The density-functional calculations use the ANO+ basis set. The HF and CI calculations, taken

from Refs. (3,4,117] are those shown in Fig. 3.
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higher (lower) amplitude MD, the correlation functionals
used here appear to result in a contraction of the outer
orbitals and hence of the overall charge density, while
the addition of electron correlation to the Hartree-Fock
calculation acts to make the valence Dyson orbitals, and
hence the overall charge density, more diffuse. This is an
indication that electron correlation is being treated dif-
ferently in DFT than in conventional ab initio electronic
structure methods.

This same effect has been previously observed [112]
for dipole polarizabilities, another property which is sen-
sitive to the large-r behavior of the charge density. Ta-
ble V shows the experimental and Hartree-Fock dipole
polarizabilities of water as well as polarizabilities calcu-
lated using the same basis sets and density functionals
used elsewhere in the present study. It is evident that
the exchange-only calculations overestimate the diffuse-
ness and hence the polarizabilities while the exchange-
correlation density functionals give much more reason-
able results.

An explanation was proposed in Ref. [112] where it
was noted that correlation manifests itself through two
competing effects. On the one hand, an admixture of
excited state configurations in the many-electron wave
function tends to make the electron density more diffuse,
hence increasing the polarizability. On the other hand,
electron correlation enhances the ability of the electrons
to avoid each other, hence minimizing the effects of elec-
tron repulsions and leading to a more contracted charge
density. Present density functionals appear to emphasize
the latter effect for MD’s and polarizabilities, although
the former effect should apparently be the dominant one
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for these properties.

This picture seems physically reasonable, providing we
refine it by recognizing that which one of these two ef-
fects of correlation dominates may vary from one region
of space to another. This is easiest to see for atoms.
Since electron correlation lowers the total electronic en-
ergy, by the virial theorem, it must also increase the ki-
netic energy. One way for this to happen is for the elec-
trons to move closer to the nucleus in the energetically
important core region. At the same time, this contrac-
tion of the core increases the screening of the nuclear
charge, thereby allowing the outer, valence parts of the
charge density to expand. This general picture is consis-
tent with findings on the exact correlation potential for
two electron atoms [110,113]. Umrigar and Gonze [110]
have compared this exact correlation potential with cor-
relation potentials calculated from the LDA and various
state-of-the-art functionals and find that the correlation
potentials from the approximate functionals have on av-
erage the wrong sign in comparison with the exact result.
However, this tends to counteract errors in the exchange
potential, so the net effect is a cancellation of errors in
the exchange and correlation functionals. Thus, in spite
of the shortcomings of the correlation functionals, the xc
functionals do generally improve upon the exchange-only
calculation.

V. CONCLUSIONS

This paper introduces the target Kohn-Sham approx-
imation (TKSA) for use in the analysis of electron-

TABLE V. Effect of exchange-correlation functional on the dipole moments and polarizabilities of HzO, using the ANO+

basis set. The molecule is oriented in the (z,z) plane with the dipole along the z axis. The notations “x

“x” and “c” refer

respectively to the inclusion of exchange and correlation in the functional. HONDO8 near-Hartree-Fock-limit results have been

included for comparison purposes.

Method

Polarizability (a.u.)

Dipole Moment (a.u.) Qo Qyy Q.
Local density approximations
LDAx? 0.7204 10.985 10.673 10.906
LDAxc® 0.7334 10.430 9.890 10.234
Gradient-corrected functionals
B88x° 0.6997 10.855 10.369 10.661
B88x°+P86c? 0.7135 10.364 9.779 10.110
Experimental values®
0.727 10.31 9.55 9.91
HONDOS calculations®
HF 0.7802 9.16 7.91 8.46

®Original X a = 2/3 functional of Kohn and Sham [29].
®As parametrized by Vosko, Wilk, and Nusair [100].
“Becke’s 1988 gradient correction for exchange [102].
dPerdew’s 1986 gradient correction for correlation [103].
“See the footnotes for Table I.

fTaken from Ref. [26].
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momentum-spectroscopy (EMS) experimental momen-
tum profiles (XMP’s). Instead of approximating Dyson
orbitals as being proportional to canonical Hartree-Fock
orbitals as is done in the well known target Hartree-Fock
approximation (THFA), the TKSA approximates Dyson
orbitals as being proportional to Kohn-Sham density-
functional orbitals. Since density-functional calculations
are computationally less demanding than Hartree-Fock
calculations, the TKSA provides a more efficient way to
calculate Dyson orbitals for use in conjunction with EMS.
We have discussed the theoretical foundation for this ap-
proximation, as well as given an assessment of the quality
of the spherically averaged orbital momentum distribu-
tions (MD’s) thus obtained.

Density-functional theory has developed from two
complementary points of view. In Kohn and Sham’s for-
mulation of DFT [29], the true total energy is obtained
via a functional of the charge density, and a set of or-
bitals whose charge densities sum to the true total charge
density was introduced as a physically fictitious mathe-
matical device to facilitate representation of the kinetic
energy. Sham and Kohn [114] noted the differences be-
tween the KS and Dyson equations early on in the his-
tory of modern DFT. While their discussion focused on
the eigenvalues of the equation rather than the orbitals,
it did serve to emphasize that solutions of Dyson’s equa-
tion cannot be calculated ezactly within the framework of
Kohn-Sham DFT even if the exact exchange-correlation
functional were known. The other point of view, dating
back to Slater [82], and rigorously formulated by Sharp
and Horton [30], Talman and Shadwick [31], and Casida
[33], consists of finding the variationally best local ap-
proximation to Dyson’s quasiparticle equation (or equiv-
alently to the HF equation, in the exchange-only case).
Here the KS orbitals and orbital energies are naturally
seen as approzimations to the Dyson (or HF) orbitals
and orbital energies. The work of Sham and Schliiter
[32] on the exact KS exchange-correlation potential shows
that (within the linear response approximation to the
Sham-Schliiter equation) these two, formally different ap-
proaches both lead to the same Kohn-Sham equation.

The present work is based on the second point of view.
Although the idea of KS orbitals and orbital energies as
approximate Dyson orbitals and orbital energies is often
viewed with skepticism due to the poor quality of this
approximation for the orbital energies, this by no means
implies a corresponding problem with the orbitals. In-
deed, our examination of the nature of the localization
process, in the Appendix, clarifies why the KS eigenval-
ues should be shifted even if the orbitals are quite good
approximations to the Dyson orbitals. The various the-
oretical considerations involved in the approximation of
Dyson orbitals by Kohn-Sham orbitals, including the in-
troduction of the target Kohn-Sham approximation, were
presented in Sec. II.

The rest of the paper has been devoted to investigating
the practical utility of the TKSA for the calculation of
MD’s for use in EMS. This necessarily involves a second
approximation, namely, the use of approximate function-
als. Results using the local density approximation (LDA)
for the Kohn-Sham exchange-correlation functional have
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been presented for 18 orbitals in six small molecules and
atoms where high quality CI and HF calculations as well
as experimental data are available for comparison. The
quality of these results for the TKSA is about the same as
that of the THFA. It is interesting to note that while the
magnitude of the error in the TKSA peak heights and
positions is generally similar to that in the THFA, the
direction of the error in the TKSA is often opposite to
that in the THFA. Both KS and HF orbitals approximate
Dyson orbitals, but they do so in different ways.

The effect of using different approximations for the
exchange-correlation functional was considered for H,O.
From this it appears that part of the observed difference
between the TKSA and the CI MD’s may be due to the
approximate functionals used rather than to the under-
lying approximation of Dyson orbitals by KS orbitals via
the TKSA. Just how much of the error is due to which
of these two approximations is an interesting question
whose answer will require the calculation of MD’s from
exact KS orbitals.

The success of the target Kohn-Sham approximation
introduced here leads to much interesting work which re-
mains to be done. Certainly, the calculation of exact
exchange-correlation potentials, for molecules as well as
for atoms, which would allow assessment of the quality
of the TKSA itself, separate from the question of the
approximate functional, would be of fundamental inter-
est. Since EMS probes primarily the large-r region, cal-
culation of other orbital-dependent (as opposed to total)
properties, as well as direct comparison of the Dyson and
KS orbitals in the TKSA, would be very useful in evaluat-
ing the overall quality of this approximation. This is par-
ticularly important since, as has been pointed out above,
while the formal considerations [33] make it clear that the
KS orbitals are approximations to Dyson orbitals, there
is no a priori statement as to how good an approximation
this is. For the same reason, the extension of this study to
a larger number of molecules, and especially to molecules
whose MD’s have more complicated shapes, is essential
to obtaining an accurate picture both of the overall qual-
ity of the TKSA and of its utility for EMS. Work in
this direction has already been undertaken by Brion et
al. at the University of British Columbia, and will be
forthcoming shortly [115,116]. And, of course, from a
practical point of view, a more extensive investigation of
the relative merits of various approximate functionals for
calculating MD’s would also be useful for EMS.

As the energy resolution and signal to noise ratio of
EMS experiments improves, EMS is able to handle larger
molecules with increasing accuracy. However, the anal-
ysis of these experiments places more severe demands
upon the efficiency of the theoretical models. One of
the primary advantages of EMS over photoelectron spec-
troscopy is the ability to assign binding-energy spectra on
the basis of comparisons between experimental momen-
tum profiles (XMP’s) and calculated spherically averaged
orbital momentum distributions (MD’s). Of course this
advantage can only be realized for molecules where the
theoretical calculations can be done. The quality of the
MD'’s obtained in the target Hartree-Fock approxima-
tion has proven to be generally adequate for this pur-
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pose. Unfortunately, however, the HF calculations have
become the limiting factor in determining the size of the
molecules whose MD’s are feasible to calculate routinely
for use with EMS. Since DFT is computationally less de-
manding than HF calculations, the present finding that
the quality of the MD’s in the target Kohn-Sham approx-
imation is comparable to that of the THFA MD’s is of
considerable practical utility for EMS.
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APPENDIX: ORBITAL ENERGY SHIFT

The purpose of this Appendix is to discuss in more
detail why the orbital energies from the Kohn-Sham
equation and ionization potentials from Dyson’s equation
should differ even if the Kohn-Sham orbitals are good
approximations to renormalized Dyson orbitals. To this
end, let us start by assuming that the target Kohn-Sham
approximation (analogous to the target Hartree-Fock ap-
proximation), Eq. (2.27), holds. That is,

Pr(1) = 4/ SPei(1),

where ¢; is a Kohn-Sham orbital. In this approximation,
Dyson’s equation (2.7) becomes

(A1)

(e + Sxe(f?)] (1) ~ w0 1) (A2)
Subtracting this from the KS equation (2.34) gives a
closed expression for the xc potential,

) XC(W§I))¢1( 1)

00 (43)

vxe(1) = + (€& —wI ),

in the target KS approximation. The first term on the
right-hand side (RHS) is analogous to Slater’s orbital-
dependent localization procedure [82] for the Hartree-
Fock exchange operator and determines v,. up to an
orbital-dependent additive constant. [That it is only
an additive constant which is undetermined is evident
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from the fact that the second term on the RHS is a
(possibly orbital-dependent) constant, while the LHS
is orbital independent.] Hence the difference between
the KS and Dyson orbital energies provides the orbital-
dependent constant shift which is needed to yield an
orbital-independent vy.. This orbital-dependent shift can
also be regarded as a change of energy zero needed to
make the RHS of Eq. (A3) go to zero asymptotically.
Since the KS and Dyson HOMO orbital energies are equal
when the energy zero is chosen such that v,. goes to
zero asymptotically, the differences between the KS and
Dyson orbital energies must shift the energy zeros of the
other orbital-dependent localizations of the self-energy so
that all the resultant potentials go to zero asymptotically.

Of course this argument is strictly correct only if the
target Kohn-Sham approximation holds exactly. Since
it is approximate, the expression (A3) for vy, should be
expected to contain some residual orbital dependence.
This can be removed by an orbital averaging procedure,
as was done by Slater [82] in the exchange-only case. Left
multiplying Eq. (A3) by S\|¢;(1)|> and summing over
all orbitals 7 and final states I, using the relations (2.31)
and (2.33), gives

24 [Zsﬁ’ﬁxc(u}?’)] ¢:(1)
~ _t I
Uxe(1) & .
D I’ ( - zsw)
- I

p(1)

upon division by p(1). It is interesting to note that in
the quasiparticle approximation (as defined in Ref. [33]),

(A4)

where S}i) = 1 and there is only one state I correspond-
ing to each orbital 2, this becomes

D81 (1) Exc(wi)8:(1)

p(1)
Zt«m )P (e — wi)

T ’
which is the same equation that was derived in Ref. [33]
in a different way, starting from the OEP equation for
the exact vy, and making the quasiparticle approxima-
tion and an average orbital energy approximation, but
without invoking the target Kohn-Sham approximation.
The first term on the RHS of Eq. (A5) is the xc version
of Slater’s original (orbital-independent) local exchange
potential [82] while the second term includes an orbital
energy correction. In the exchange-only case, Egs. (A4)
and (A5) are identical, and reduce to the excellent ap-
proximation of Krieger, Li, and Iafrate [74,77].

vxe(l) =

(A5)
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