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Adiabatic theory of Wannier threshold laws and ionization cross sections
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Adiabatic energy eigenvalues of H2+ are computed for complex values of the internuclear distance
B The. infinite number of bound-state eigeuenergies are represented by a function c(R) that is single
valued on a multisheeted Riemann surface. A region is found where e(R) and the corresponding
eigenfunctions exhibit harmonic-oscillator structure characteristic of electron motion on a potential
saddle. The Schrodinger equation is solved in the adiabatic approximation along a path in the
complex B plane to compute ionization cross sections. The cross section thus obtained joins the
Wannier threshold region with the keV energy region, but the exponent near the ionization threshold
disagrees with well-accepted values. Accepted values are obtained when a lowest-order diabatic
correction is employed, indicating that adiabatic approximations do not give the correct zero velocity
limit for ionization cross sections. Semiclassical eigenvalues for general top-of-barrier motion are
given and the theory is applied to the ionization of atomic hydrogen by electron impact. The theory
with a 6rst diabatic correction gives the Wannier threshold law even for this case.

PACS number(s): 34.80.Dp

I. INTRODUCTION

The collective motion of charged particles is funda-
mental to atomic physics. Many insights concerning
this motion have emerged, but the critical importance
of motion near the saddle point of the potential energy
of two-electron atoms has been particularly significant
[1—20). The Wannier threshold law for ionization of neu-
tral atoms by electron impact is one of the most striking
consequences of saddle point motion. Threshold law the-
ories, originally used to describe two electrons in the field
of a proton or o. particle, have been developed for three
fragments of arbitrary masses and charges [4,7]. Typi-
cally, threshold laws apply only when wavelengths of the
Schrodinger waves for all particle pairs are greater than,
or of the order of, the dimension of the initial bound
state wave function; thus, the extent of the energy re-
gion where the laws apply is of the order of 1/mp smaller
for proton impact ionization of atom hydrogen than for
electron impact. Here, mp is the proton mass in atomic
units. In contradiction to this are calculations of ioniza-
tion cross sections in proton-hydrogen collisions which
suggest that motion on the potential saddle, also called
top-of-barrier motion, represents an important channel
for proton energies as high as 25 keV [19]. jn this ex-
tended energy region, the cross section varies with energy
E as exp[ —Cpm'/2E], where C is a constant rather
than as (E' —Eth„,h), where Eth, ,h is the threshold
energy and ( is the Wannier exponent. Since the theory
used to establish power laws is not readily applied at keV
energies, the common origin of the two expressions above
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for the cross sections is not readily apparent even though
the top-of-barrier mechanism underlies both of them. It
is desirable to devise a theoretical &amework that encom-
passes both results. This report describes such a frame-
work. In order to emphasize the simplicity of the results,
only the total cross section is computed. Other aspects
such as energy and angular distributions of charged frag-
ments can also be obtained, but require more elaborate
computations than those needed for total ionization cross
sections.

A wave function, 4'(R, x), corresponding to motion
near the top of the barrier is central to our computations.
For this purpose a reaction coordinate R, which measures
the overall size of the three-particle system, is selected.
The remaining coordinates of the multiparticle system
are denoted generically by the set x = (xz, x2, ..., xtv).
The exact specification of these coordinates depends
upon the particular physical context. It is important to
note, however, that these coordinates z are dimension-
less. %hen R represents the hyperradius, then x denotes
a set of hyperangles. Alternatively, when B denotes the
distance between two nuclei, as is customary in ion-atom
collisions, the set x denotes components of the scaled elec-
tron coordinate r/R. Solov'ev and Vinitsky [21] demon-
strate that this prescription is appropriate for adiabatic
representations of atomic dynamics employing transient
molecular eigenstates. Adiabatic descriptions of motion
orthogonal to B identify a sequence of broad avoided
crossings between eigenvalue curves that lead to exci-
tation and ionization [15]. Because these crossings are
not localized at particular values of B, integration of the
Schrodinger equation involves solving a large number of
coupled channel equations. In the work reported here we

emphasize that the solution of any difI'erential equation
to connect a function at B = Ro to a solution at B ~ oo
may proceed along any path in the complex B plane.
In this extended domain it is possible to find a path

1050-2947/94/50(1)/468(16)/$06. 00 50 468 Qc1994 The American Physical Society



50 ADIABATIC THEORY OF WANNIER THRESHOLD LAWS AND. . . 469

along which the crossings representing top-of-barrier mo-
tion are well localized. Thus, it is possible to identify a
diabatic wave function yz (R, z) for motion in all coor-
dinates orthogonal to R. The Schrodinger equation is
then integrated approximately along this particular path
to obtain the probability for ionization as a function of
total energy E. In order to connect this simple procedure
with the general theory of wave function propagation, we
rewrite the multiparticle Schrodinger equation in a form
amenable to semiclassical treatments for arbitrary com-
plex R in Sec. II. Section III describes the diabatic energy
eigenvalue ez (R) for top-of-barrier motion and identifies
a path in the complex R plane along which a diabatic
semiclassical approximation applies. Expressions for ion-
ization cross sections are given and discussed in Sec. IV.
Concluding remarks are given in Sec. V.

Substituting Eq. (2.5) into (2.4) and multiplying by
iU (R) gives

+—k '(R)k'(R)
~ 1 ~

4 = 0, (2.7)

where the priine on k(R) denotes the derivative with re-
spect to R.

This representation is equivalent to Eq. (2.1) but dif-
fers from it in that, like Eq. (2.4), it is first order in R.
In addition, it is written so that wave propagation is rep-
resented as two equations with outgoing waves coupled
to incoming waves. Corresponding to Eq. (2.7) one has,
exactly,

II. WAVE-FUNCTION PROPAGATION
IN THE COMPLEX R-PLANE 4(B,z) = fK(R, z;R', z')4(R', z )dz' (2.8)

1 82
, +'R(R, z) —E g =0 (2 1)

Propagation of wave functions, g(R, z), that satisfy
second-order differential equations in R usually employ
Green functions. Alternatively, when Q(R, z) satisfies a
first-order differential equation in R, a variant of Feyn-
man's propagator may be used. The latter representa-
tion of wave-function propagation is more suitable for
our purposes [22]. To that end we rewrite the generic
second-order Schrodinger equation

where K(R, z; R', x') is the propagator corresponding to
the two-component Schrodinger equation (2.7).

It must be emphasized that Eq. (2.8) is exact and ap-
plies for nearly arbitrary complex R and R'. In order
to employ Eq. (2.8), approximate representations of the
propagator are needed. Here, it is possible to take ad-
vantage of the fiexibility implied by the use of complex
coordinates to find a path in the complex R plane along
which standard approximate representations are valid.

~ Speci6cally, a path along which the adiabatic represen-
tation

k (R) = 2M[E —'R(R, z)],

and the two component wave function g

(2.2)

as two-coupled first-order equations by introducing the
operator k(R)

4(R, z) yz(R;z)F(R) (2.9)

holds is sought. The two-component function F(R) is
determined variationally. The adiabatic eigenfunctions,
&p2 (R; z), and eigenvalues, ez (R), satisfy the Schrodinger
equation

(@l
~a

4 8R

so that Eq. (2.1) becomes

Bj ( o
~R+ I k2(R) 0

(2.3)

(2.4)

'R(R, z) pz (R; z) = ez (R)pz (R; z) .

The wave vector, kz (R), is then given by

kz (R) = /2M[E —ez (R)],

where Eq. (2.9) implies the approximation

(2.1o)

(2.11)

g = U(R)4, (2.5)

where

(
U(R) = I;k(R);k(R) (2 6)

Since Eq. (2.4) is first order in R, Feynman's propaga-
tor could be introduced at this stage; however, the two
components of Q in Eq. (2.4) are strongly coupled, thus,
it is not convenient for writing approximate solutions.
Rather, we introduce an "adiabatic" representation by
de6ning

k'(R) pz (R; z) = pz'(R; x) .
dkz (R)

dR
(2.12)

Equation (2.9) is the appropriate adiabatic representa-
tion when R represents the hyperradius. Our applica-
tions employ the more conventional coordinate systems
where R represents the distance between like charges. In
this case Ref. [13]shows that Eq. (2.9) must also incorpo-
rate the factor exp[iz2Rkz (R)/M]. Our formulas, there-
fore, include this factor, recognizing that it is not present
in the hyperspherical representation originally employed
for the &agmentation of atoms into two electrons and a
positive ion.

Coupling between incoming and outgoing waves is also
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neglected. Then, we have that

4 R, x) = exp[ix'Rkz (R)/M](pz (R x)k (R)
R

x exp i kz (R')dR'
Rp

(2.13)

where the integral Rom Ro to R is taken

it is not necessary to ret~ ~

, so that

approximate wave function
ry o return to the real axis to use the

The top-of-barrier function for finiteion or rute Rf includes com-
s a represent excitation of states of

well as ionization but R, x

.5

Ry

P(E) = exp —2Im kz (R')dR'
Rp

(2.14)

FIG. i.. Plot of the real part of the ener
l R. Th loe p o represents a Riemann s

-va ue unction. The values
axis are the energ e' l

ues along the real
rgy eigenvalues e„(R)of Hz+.

It isis only necessary to find ez ~R~ and
path in the co

n ez ~~j and the appropriate
'n e complex plane to evalu

probability.
aluate the ionization

III. TOP-OF--BARRIER EIGENSTATES

A. Eigenstates of H + for complex R

Consider systems of three char ed a
represents the d'

ee c arged particles where R
s e istance between two ar ic

charge. Then th d' b
' tg jen e a iabatic ei enst

ues e(R) have b
iona 2 molecular ei ensta'g states. The eigenval-

ave been computed usin the
an o ov ev [10]. Figure 1 shows a t

dimensional lot of tp o o the real part of e(R) vs RevR a
s ows a three-

Riemann surf n infi
'

a e is a single-valued ~unction on a
ur ace wit an infi

'

n t e real axis e(R) equals a molecular enerenergy eigen-

equals is determined b th
'c o e i nite number of ei env'genvalues it

mann surface. The difFe

ine y t e particular sheet oof the Rie-
e i erent sheets are joined at br

points at complex valu f R.
a ranch

initial state i w th h
rresponding to the

, i, wi the eigenvalue e ~R~f( ) p g

initial 1so. united ato~ ~ 0

s a e, . In e present case i reepresents an

6 1 t t d
i e a om eigenstate near R = 0

B
respon s to an ionized elec
oo. e adiabatic a roxipp o

is on y valid for finite values of B an
suitable approximat'a ion must be em lo ed a

o and a more

the present work th fr
' aor, e ee particle ro ap p g o poy

e e top-of-barrier function from fi t,ni e, ut

large, R to infinite R. Since onl totaly o cro e 'o e
e, is goining need not be actuall c

1 tl th t fier o rst approximationer pp
' a ion the upper limi

is set to infinity.
The key step is to find an a ro ripp op 'ate path in the

[15] and plot n(R) = 1

ure 2(a) shows a view with the values
os . e ranch points connectin the la-g Sd 5g

previously identified
isi e. ese branch oipoints have been

i en i e as the T-series branch
avoided crossin of the e

points. The

g o e energy curves are visible for r

structureless region fro th "b
iew in ig. 2 shows

om e 'back" side. It is a
that an appropriate th '

h
Rom a value of R f th

e pa in t e corn lex Rp plane goes

0 o t e order of one ato
the real axis where th

omic unit on
ere e intial state is a 1so state alon

path which runs parallel to the Im R
fi

'
e on e at slopin sur

o use e numerical eigenvalue e(R), the sim licit

es a an analytic treatment to extract thec e essential

in the next section
e in ormative. Such a reatment is given

B. Top-of-barrier eieigenvalues and eigenstates

The Hamiltonian 'R(R' )
strated originall b W d late

; x is quite eneral.

ers [1—3 6 17
y y annier and lated later by several work-

,18, motion on the to of
faces along coord'

op o potential sur-

inver e osci lator is critical for atomic



50 ADIABATIC THEORY OF WANNIER THRESHOLD LAWS AND. . . 471

1
'R(R;z) = — + V(R;z), (3.1)

where V(R; z) is shown schematically in Fig. 3 at some
value of the parameter R. Note that the mass m includes
a factor of R2 in accord with Eq. (11)of Ref. [19]and with

reactions. The classically unstable motion is modeled by
the Hamiltonian V V(R;x)

X

X
T

X X2
1

I

I

j a&Q IV

X

'/& x

5g
-3

Ren (R)

FIG. 3. Schematic plot of a potential V(R;z) with two
valley regions and a top-of-barrier region. For a given energy
e five coordinate regions are identified. Turning points z, ,
i = 0, 1, 2, 3 and a top of barrier position zT are shown.

1s

-2
the hyperspherical representation of Macek [25]. Also z
is measured &om the center of mass of the two particles
of like charge. This origin need not coincide with the
center of charge; however, in the remainder of this report
only systems for which the center of mass and the center
of charge coincide are considered.

We now solve the equation

'R(R;z)y(R;z) = «p(R;z) (3 2)

using the semiclassical comparison equation approxima-
tion since this approximation is sufficiently accurate for
Coulomb potentials. To that end five regions are identi-
fied in Fig. 3. In the following the dependence of quanti-
ties on R is suppressed for notational simplicity.

The semiclassical wave functions in regions I and II are

Ren (R)

Rp

Qi = q(z) '~'exp — q(z')dz'— (3.3)
x
g

gii = 2q(z) '~ cos q(z')dz' —vr/4
~Cp

= 2q(z) '~ cos P2 — q(z')dz' —7r/4, (3.4)
+1

where we have introduced

&1

q(z') dz'.
Xp

The function q(z) is defined as

q(z) = /2m[e —V(R; z)], (3.6)

FIG. 2. Plot of 1/ge(R) vs ~R. (a) "Front" view of the
surface with the real axis foremost. (b) "Back" view of the
surface showing a sloping Bat region to the left of an infinite
series of branch points. The 6rst two branch points of this
series where the 1scr-3dcr-Ggcr sheets join are exposed in the
latter view.

where the branch cut is taken such that
Re/2m[V(R;z) —e —iri] ) 0 for rl ) 0. The origin
is chosen at the top-of-barrier position, xT ——0, so that
—xq and —x are positive. The choice of origin, xT ——0, is
consistent with the adiabatic representation of Eq. (2.13)
when the center of mass of the two particles of like charge
coincides with their center of charge. This condition is
assumed in the following.
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The semiclassical function, Qrr(x), is joined with an
appropriate solution in the top-of-barrier region III.
In this region the potential is approximately an in-
verted harmonic oscillator for which solutions of the
Schrodinger equation are parabolic cylinder functions
E(a, [

—4mV" (R; zl )] ~ z), with

1
a = — q(z')dx,

Xi
(3.7)

E(a, [
—4mV"(R;zT)] ~ z) = [q(z)) '~ exp[iu(x)],

(3.8)

according to the comparison equation method [26]. For( V(R;z), zi ——z2 are the complex zeros of q(x).
To match solutions in regions II and III note that
E(a, [

—4mV" (R; zl )]r~4z) may be written

p, (2) = f 4(T')dz', (3.16)

and Eq. (3.8) has been used.
This function is joined with a %KB solution in region

V to determine the quantization conditions. These con-
ditions are derived in detail in Appendix A. The quanti-
zation conditions are given by Eqs. (A5) and (A6) which
read:

Q4 + $2 + 2(t(o 6 arccos [A cos($4 —(t(2)] = il (2n + 1),
(s.i7)

where (t(4
——$4(zs).

For potentials which are symmetric about the top of
the barrier, (t(4 ——(t2, it is shown in Appendix A that
the quantization condition Eq. (3.17) can be written as
Eq. (A19), namely,

where

u(z) -+ q(x')dz'+ x/4+ ((to
2~a

asx~oc and

(3.9)

t'1 1 .o'i o (
(t 4+»g I'

~

- + - + i-
I
+ —

I
1 —» —

I(2 4 2) 2 ( 2)

( 1 11n+-p-
I

. (3.»)8)
1 (1 . ( a

Po = —arg I'
~

—+ ia
~

+ —(1 —ln ~a~)
2 (2 )

(s.io)

so that Eq. (3.4) becomes

&rr = 2[q(z)] '"cos[42 + 4o —u(-*)]
= [q(z)]-' ' exp[-iu(-z)]

x exp[i((t(2 + (t(o)] + c.c. , (s.ii)

0rrr = exp[i((t'2+ (to)]

x E'(a, —
[
—4mV" (R; zT )] z) + c.c. (s.i2)

gi + e24 o( i[e (4~+go) + Ae
—(do+do)]

x E(a, [
—4mV" (R; zT )] ~ x) + c.c.}, (s.is)

where c.c. denotes complex conjugate.
Recalling Eq. (3.8), we easily write the solution in re-

gion III as

Here "—" refer to g states and "+ " to u states.
Equation (3.17) determines the adiabatic energy levels

for all eigenstates of 'R(R, z). For energies well above the
top of the barrier the parameter a is large and negative
so that A -+ 0, po ~ 0 and Eq. (3.17) becomes just the
usual united atom semiclassical quantization condition

X3

P4 + (t(2 —— q(z)dx = (n„+1/2)7r,
Zp

(3.19)

&1

q(z)dz = (ni + 1/2)~
~CP

(3.20)

where n„ is the united atom quantum number corre-
sponding to the x coordinate. For the H~+ systems this
equation gives the united atom adiabatic energy eigen-
values. Conversely, for energies well below the top of
the barrier, a is large and positive so A + 1, (t(o -+ 0
and Eq. (3.17) becomes just the semiclassical quantiza-
tion condition for a particle in one of the potential wells
on either side of the barrier

where we have used Eq. (19.18.3) of Abramowitz and
Stegun [27] in the second line and have defined

A = 1/gl+ e —2~o (3.14)

@rv(z) = g]. + e ~o[q(x)] ~ ([1+Ae 2'(4"+~'i]
i[go+$4(4:)+2yo —7r/4] + (3.15)

where

As before, the wave function in region IV, where x is
positive is

X3

(t(4 —— q(z)dz = (n2 + 1/2)~.
X2

(3.2i)

For the H2+ system this equation gives the separated
atom adiabatic energy eigenvalues. As pointed out in
Ref. [15], it is precisely the adiabatic energy eigenval-
ues near the top of the barrier that exhibit a series of
broad avoided crossings in the region of B where united
atom levels join with separated atom levels. Accordingly,
we seek an approximate version of Eq. (3.17) valid in
the avoided crossing region by expanding ([t(2(R), $4(R),
and a(R) in Eq. (3.7) about the top-of-barrier energy
V(R; zT ). Here the dependence of these parameters upon
R is denoted explicitly. In lowest order a(R) becomes
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a(R) = „[V(R;zT) —e].—V" R;zT
(3.22)

where

1 11—K'(R)a(R) = m
l
~+ —p l

(3.23)
2 8&

The quantization conditions Eq. (3.18) are expanded
about the top of the barrier in Appendix B to obtain
Eqs. (B13) and (B14), which are

1 1 .a(R)
$4(R) + arg I' —~ —+ i

2 4 2

BeT (R)
OR

(3.29)

A smooth path connecting these branch points is deter-
mined by Eq. (C9) in Appendix C

ImR = — (2 p 1)K'(ReR) + 1
1 844(R)
2

join the fiat harmonic-oscillator region as seen in Figs. 1
and 2.

The various sheets are joined at branch points R~.
The position of these branch points is determined by

~53 1
K'(R) = Q—V"(R;zg)m

q V R;zl, z

—ln
~ ~

+ ln[B(ReR)]
(
i 3p ly

(3.30)

1

@[V(R;xT),z]

+—ln[mV" (R; zT ) (xs —zT ) ], (3.24)

and tII)4(R) is P4 of Eq. (3.17) evaluated at z2 —zT and
e = V(R, zT).

Equations (3.22) and (3.23) together with Eq. (3.24)
determine energy eigenvalues e = eT (R) near the top-of-
barrier energy. Following Demkov [24], we regard e(R) as
a single function of the complex variable R on a Riemann
surface with multiple sheets. On the nth sheet along the
real R axis, the function e(R) equals the R-dependent
energy eigenvalues e„(R).The approximate expression
for eT (R) is obtained by solving Eqs. (3.23) and (3.24)
by iteration. The eigenvalue eT (R) is written as

Along this path joining the branch cuts, the wave func-
tion for the system @(R,x) is localized near the top of the
barrier. An in6nite number of paths connect the branch
points, thus, the next task is to select the optimal one.

Classically, a particle that remains exactly at the top
of barrier is at rest with respect to this point; thus, its
oscillatory motion about this point has an infinite period.
This condition is

8/4
M oo. (3.31)

Owing to the aln ~a~ term in Eq. (3.10), this equation
always has a solution at e(R) = V(R; zT ) independently
of the dependence of V(R; z) upon the adiabatic param-
eter R. This is not true, however, for the quantal phase

Pq = 2(P4 + Ps). Here the equation

eT (R) = V(RizT) —i ' [1+2b~(R)],
.2 p 1 —V"(R; x)

(3.25)

where b~(R) is small quality. A first iteration gives

6x (ii) = exP(i2&4(R)+ (2 pl)EC')R) +i—).
(3.26)

The next iteration gives the value of bg(R) used here

(3.32)

has a solution at a = i(2 p 1)/2 or b~ = 0. For most po-
tentials b~ = 0 requires ImR ~ oo. In this limit the top-
of-barrier wave function takes its simplest form, namely,
an exponential

E(i/2, [
—4mV"(R;xT)] ) z)

= exp((i/4) [
—4mV" (R; xT )]') 'x'). (3.33)

b~ (R)
1 + b~ (R)B(R)

(3.27)

where

B(R) =
~

2K'(R) + ln2+ p ——+ —
I

1 11
2 2) (3.28)

Notice that eT (R) does not depend upon the quantum
number n. This means that all energy eigenvalues cor-
responding to states with successive values of n connect
to the same eigenvalue in the harmonic-oscillator region.
For the H2+ ex~mple, this means that all states of the
same symmetry and number of united atom radial nodes

The exact form of the path of integration depends upon
the details of the potential V(R; x). It must be empha-
sized that it is not necessary to know the path, since
only the function kT (R) and the end points are needed,
and the phase integral is independent of path provided
alternate paths can be deformed into each other.

In order to avoid the limit ImR ~ oo, we evaluate
P(E) in Eq. (2.14) with b~(R) g 0. The approximate
expression

kT (R) = kT o(R) +
kT (R) + kT o(R)

e(R) —V(R; xT)
kz'0(R)

(3.34)
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is written, using Eq. (3.25) for e(R) eT(R), as

kT(R) kT0(R) + kT1(R) + kTb(R)

where

kTp(R) = y 2M[E —V(R;zl)],

(3.35)

(3.36)

h~(R) (( 1. Our derivation shows that the integrals in

Eqs. (3.43) and (3.44) are taken along a path that passes
through Rq in the complex plane. Because kTs(R) and

kT&(R) are analytic functions of R, this path can be de-
formed to go along the real axis.

Since b~(R) is a strongly oscillating function on the
real axis, the integral in Pg(E) is accurately evaluated

by the stationary phase method. Using

and

.2p 1 I
kT) (R) = i

—V"(R; zT) (3.37)
&4(R) = &4(Ro) + o)$4(R)

we obtain
Rp

(R —Rp), (3.45)

kTs = 2kTx(R)~~(R) . (3.38)

OO R1
Im k(R)dR = Im [kT(R) —kTp(R)]dR

Rp Rp

+Im [k(R) —kTp(R)]dR. (3.39)
R1

The approximation Eq. (3.35) for kT(R) is then employed
in the second integral so that Eq. (3.39) becomes, after
some rearrangement of terms,

OO R1
Im kT(R)dR = Im [kT(R) —kTp(R)

Rp Rp

—kTi (R) —kTg(R)]dR

+Im kTq (R)dR
Rp

+Im k»(R)dR.
Rp

(3.40)

Corresponding to this decomposition of k(R), there is the
factorization of P(E)

P(E) = Po(E)&~(E)P-(E) (3.41)

where

Equation (3.25) has been used in Eqs. (3.35)—(3.38).
Note that these expressions are valid only in the region of
complex B corresponding to the flat portion of the Rie-
mann surface in Fig. 2. The integral in Eq. (2.14) is now
written as

Pb (E) = exp &
—4 1mb' (Rp)

8/4 (R)

Rp

kTg(RP) & .

(3.46)

We set Ro ——ReRc so that lmh&l (Ro) = Imb& (Ro) = 0,
which gives Pg(E) = 1. Thus, we see that P(E) is written
as the product of two factors, namely, a factor, Po(E),
that pertains to the region between Ro and Rq, and a
factor, P (R), that pertains to the region from Ro to
infinity. Since kl q(R) is analytic, the integral in P (R)
may be taken along the real axis. Along the real axis
kTq(R) is purely imaginary so that we have the simple
expression

P (E) = exp —(2 p 1)
Rp

—MV"(R;zT)
2m[E —V(R, zT )]

(3.47)

5

and Po(E) is given by Eq. (3.42).
The eigenfunctions and energy eigenvalues are those

of a harmonic oscillator, while along the real axis they
represent Rydberg states. The curve given by the lo-
cus of branch points Eq. (3.30) separates the complex R
plane into two regions, one where the eigenvalues have
mainly a Rydberg structure, and one where the eigen-
values are harmonic-oscillator-like, as illustrated in Fig.
4. In the latter region the harmonic-oscillator struc-

R1

Po(E) = exp -2 Im [kT (R)
Rp

kT 0 (R) —kT x)R)——km')dRI, (3.42)

Harmonic Oscillator

nch Points

OO

Ps(E) = exp —2 Im kTg(R)dR
Rp

(3.43)
0 4 8 12 16

Re(R )

20

OO

P (E) = exp —2Im kTg(R)dR
Rp

(3.44)

and the point R~ is determined by the condition

FIG. 4. Plot of the locus of branch points in the com-
plex ~R plane. The smooth curve joining the points sep-
arates the plane into a part for which the eigenvalue spec-
trum is Rydberg-like and a region where the spectrum is har-
monic-oscillator-like.
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ture emerges because the wave functions Eq. (3.33) for

ImR & QReRln(ReR) are confined to the top-of-barrier
region. The confinement of the electron wave function
to the top-of-barrier region represents a key advantage of
integrating the Schrodinger equation along a path in the
complex R plane.

CiM 1 dyP (E) = exp — +-
2Como 2 „,y y+ 1

(gy. + 1 —1)
(g'yo + 1+ 1

where

(4.6)

(4 7)

IV. APPLICATIONS CgM 1

2C
(4 8)

For proton-hydrogen collisions the relevant potential
V (R, r) is that of an electron moving in the field of two

positive ions. The model potential has electron coordi-
nates perpendicular to the internuclear axis set equal to
zero and the scaled coordinate along this axis denoted by
x. The origin is at the top of the barrier so that zT = 0.
There is also a term [21]

P (E) —exp[ 2(~g—/~yp ——exp[ —6/v], (4.9)

where

is an approximate value of the Wannier index, as we show
later.

For E» Co/Ro the argument of the ln function in
Eq. (4.7) can be expanded in powers of 1/~yo to give

1 -
z 1RdV(RzT)

2 2M dR
(4.1) ~ = QCi/mo + Co/M/QRo (4.10)

Ck = dR/v(R) = MdR/kg o(R) . (4 2)

Thus, we have for the effective potential V(R, z)

1 R dV(R;zz)
V(R;z) = V (R; z) ——— '

(z —zT ), (4.3)2M dR

where

where R denotes the second derivative of R with respect
to time and we have used the relation

and v = /2E/M is the relative velocity of the like

charged particles in the final state. This agrees with
the expression used in Ref. [19] to compute ionization
in H+ +H collisions at low to intermediate energies.

Near the threshold for ionization, where E «Co/Ro,
the argument of the ln function in Eq. (4.7) is approxi-
mately equal to yo/4 and one has

(gyo + 1 —1)
y, +1+1

and

1 ( Zi Z2 l ZiZ2

R i1/2 —z[ i1/2+ zi R
= exp[( ' ln(yo/4)]
= exp ( '(ln E —1n[Ro/4(Co)]),

&om which it follows that

(4.11)

1 Z2 Z1
1 1

2 Z: + Z'

For this potential, the quantities in Eq. (3.47) are

V(R; zT ) = Co/R, —

where

(4 4)

g (aa (4.12)

CgM 9 1

2Cpmp 16 4 ' (4.13)

This expression for the ionization cross section has the
same form as the Wannier threshold law, however, the
exponent is ( ' rather than (. Comparison with Feagin's

[7] expression for (, namely,

and

Cp —— Z2' + Z,' —Zg Z2,
shows that ( ' differs Rom the correct index (. The re-
lation between these two indices can be written

V"(R; zT) =— Cp

MR ' (4.5)

where

2 Z2 + Zy
Cg

Recalling that m = mp R, where mp is the reduced
mass of the electron relative to the center of mass of
the two protons, substituting Eqs. (4.4) and (4.5) into
Eq. (3.47) and setting yo = ERo/Co gives for g states

( g = (Ql + 1/2( . (4.14)

For proton-hydrogen collisions, where the value of (
equals 69.7, the error in ( ' is negligible, but even this
small error means that the "adiabatic" theory does not
give the correct zero velocity limit of the ionization cross
section. Aside &om this small error, Eq. (4.7) gives an ex-
pression for the ionization probability that connects the
Wannier threshold region with the keV energy region. In
this latter region the cross section has been compared fa-
vorably with measurements. Measurements between the
keV and the threshold region are needed to further test
Eq. (4.7).
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For ionization of hydrogen by electron impact, ( equals
1.127 and here the error in ( d is of the order of 23'%%uo,

an unacceptably large value. This shows that diabatic
corrections are needed in order to obtain the correct zero
velocity limit of ionization cross sections, even when the
Schrodinger equation is integrated along an optimal path
in the complex R plane.

A first diabatic correction to the adiabatic Wannier
index is computed in Appendix D. The cross section
has a power-law dependence with an index (1il given by
Eq. (D11)

to give a new expression for P (E) .Using Eqs. (E8)
and (E9) in Eq. (E3) with the constants Cs, Ci, and Ci
replaced by their diabatic values gives

P (E) = E~ exp( v—3E — E—lnE
64

t'153 & ( 25 13—ln3 ~+E~(128 ) (192 64 )
(4.17)

1 1 l 1 1

4( +1/4 4 16(g
P (E) = exp

93~2
32v

(4.18)

This is to be compared with the corresponding expression
for the Wannier index (,

1

4
+ 32'., (4.16)

It is apparent that (lil very closely approximates the full
diabatic result. Even for the ionization of hydrogen by
electrons, the error in (l l is of the order of 2%, indicat-
ing that the adiabatic approximation with a first diabatic
correction accurately represents the propagation of top-
of-barrier wave functions along a path in the complex
plane which goes to the left of the branch points shown
in Fig. 4. It is also apparent that the v -+ 0 limit is not
given by the adiabatic approximation along this same
path. This observation has important implications for
the low velocity limit of reaction cross sections. Theo-
rems stating that the v ~ 0 limit is given by adiabatic
approximations must also implicitly take M ~ oo. The
accurate value that obtains for the Wannier index with a
first diabatic correction to the adiabatic value also shows
that the harmonic-oscillator term in the potential that
Solov'ev and Vinitsky [21] derive is essential for a correct
determination of the Wannier index.

To complete the computation of ionization cross sec-
tions it is necessary to evaluate Po(E). This requires
computing Rq consistent with the condition that the an-
alytic approximation to eT(R) accurately approximates
the numerically computed e(R). Since the numerically
computed e(R) omits the dynamical oscillator potential
in V(R; z), its effects must also be omitted in the approx-
imate eT(R) for purposes of computing Ri. We found,
however, that a very large value of R was necessary in or-
der to match eT(R) from Eq. (3.24) with e(R). For that
reason an expression for eT(R), including terms of order
B and R /, was computed. These terms arise from
anharmonic corrections to the harmonic top-of-barrier
potential. Then it was found possible to match the ana-
lytic expression to the numerical e(R) at Ri = 200 a.u.
The anharmonic terms should also be included in the
computation of P (E) in order to have a consistent the-
ory. When this is done we find that P (E) for small E
no longer has the Wannier form, E~f (E), where f(E) is
analytic in E; rather we find that f(E) includes terms
of order ~E and E ln E. The details of the computation
are given in Appendix E. These purely adiabatic results
are combined with the higher-order diabatic corrections

(~)
Note that the coefficient of E~ in Eq. (4.17) is not
analytic in E near E = 0. More importantly Eq. (4.17)
shows that these coeScients are independent of Rq, thus,
they represent corrections that come from the asymptotic
region. It must be emphasized that these corrections do
not include effects of rotation.

The form of the anharmonic contributions to P (E) is
unexpected. In contrast, the function Po(E) pertaining
to the inner region is analytic in E, although the expres-
sion must be evaluated numerically. We find

Po(E) = exp[ —(0.94 —0.6E)gM/mo], E ~ 0 (4.19)

and

Po(E) = exp[ —1.0/v], E ) 1. (4.20)

V. EXTENSIONS AND CONNECTIONS
WITH OTHER THEORIES

exp[ —BImp R z2], (5.1)

where B is a constant equal to
(1/2) Q[32Z —(4Z —1)/M]mo. Equation (Cl1) shows

that the imaginary part of ~B is proportional to
ln(ReR), thus, as R increases, the functions become lo-

calized on the top of the barrier near x = xT ——0, and
the imaginary part of the adiabatic eigenvalues corre-
spond to those of a harmonic oscillator. The correspond-
ing eigenfunctions are harmonic-oscillator functions with
n = (n „+1/2) i. It is possible to connect excited states
on the real axis with those in the large R region by inte-
grating along sheets corresponding to n g 0. The corre-
sponding threshold law has a larger index (2n „+1)(~ l

appropriate for the particular oscillator quantum number
n „.The value of n

„

is set by the initial conditions;

Figure 2(a) shows that by integrating the Schrodinger
equation along a path in the complex plane, the Rydberg
structure of energy levels on the real axis joins with a
region where the wave function is localized on the top of
the barrier. This localization occurs because the top-of-
barrier wave function for complex R has an exponentially
decreasing part given by
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thus, if the initial state is antisymmetric about the point
2; = 0, then the lowest mode has an index that is three
times larger than the index for a symmetric state, as is
evident already in Eq. (3.47). Thus, triplet S states of
e + H have a Wannier index equal to 3 x 1.127 = 3.381
in agreement with the value obtained by Feagin [7]. De-
pending upon the initial state, a threshold behavior with
and index equal to (2n „+1)( is possible.

Motion perpendicular to the internuclear axis has not
been considered in this work except in the anharmonic
corrections of Appendix E. Such motion is represented
by bound harmonic-oscillator functions near the top of
the barrier. Since the motion is bound for both real
and complex R, it affects the real part of ez (R) and
therefore does not alter threshold laws but does affect
angular distributions. Consideration of general wave-
function propagation leads to diabatic representations of
the propagator for time-dependent harmonic oscillators
as discussed, for example, by Jakubassa-Amundsen and
Macek [14] and Macek [16]. Harmonic-oscillator states
for time-dependent potentials have also been discussed by
Kazansky and Ostrovsky [20], who emphasize real values
of R.

A key assumption of the Wannier's original theory is
that electrons which move away from the top-of-barrier
fall into Rydberg states and do not lead to ionization.
In quantal versions of this theory where wave function
propagation is confined to the real axis, it is necessary to
employ perfectly absorbing boundary conditions at some
unspecified boundary in order to incorporate Wannier's
assumption. This additional assumption is not needed in
the present approach because the wave function is con-
centrated on the top of the barrier for appropriate in-
tegration paths in the complex R plane. The adiabatic
&amework used here, thus, provides a new perspective
on this controversial assumption of Wannier's theory.

A related aspect of the present theory is that it is, in
principle, possible to compute absolute cross sections as
done in Sec. V for proton impact on atomic hydrogen.
To do this for electron impact, more complete formula-
tions incorporating angular motion and exact nuinerical
hyperspherical eigenvalues for complex R in the reaction
zone are needed. There are no fundamental difficulties
involved in finding such eigenvalues, but this is a task
that goes beyond the scope of the present manuscript.

It is also possible to compute excitation to Rydberg
states using the present theory. If a path joining with a
sheet corresponding to a Rydberg state is chosen, then
P(E) in Eq. (2.14) gives the probability for exciting a
particular Rydberg state. This represents a possible av-
enue for further work, but requires numerical calculations
of e(R). In addition, it is necessary to include diabatic
corrections as has been done here for ionization.

The adiabatic threshold law for proton-hydrogen colli-
sions was obtained earlier [18], but yielded a slightly dif-
ferent result, namely, 0' oc (E/ln E)~ ~. The lnE factor
is now regarded as erroneous. It appears upon integrating
along a path which passes very close to the branch points.
The energy eigenvalues are not smooth functions of R
along this path; thus, a smoothed function e(R) was em-
ployed in Ref. [18] to evaluate the integral in Eq. (2.14).

Apparently, the integral with the smoothed function does
not represent the actual integral with sufficient accuracy.
Figure 2 shows that e(R) is smooth along paths which
are well removed &om the branch cuts. Along these paths
accurate analytic evaluations are easily performed, as we
have shown.

VI. CONCLUSIONS

We have analyzed the ionization of H atoms by charged
particles employing an adiabatic approximation in the
complex R plane. Exact energy eigenvalues of H2+ for
complex R are computed to illustrate the simplification
that occurs in the eigenvalue spectrum in certain regions
in the complex R plane. General expressions for top-
of-barrier eigenvalues are derived using semiclassical and
comparison equation methods. Along the best path in
the complex R plane, the eigenvalues and eigenfunctions
are those of a harmonic oscillator with a complex spring
constant corresponding to electron motion on the top of
the potential barrier between the two protons. By in-
tegrating the Schrodinger equation along this best path,
an expression for the ionization cross section is obtained
that connects the threshold and keV regions of proton
energy. It is shown that the adiabatic theory gives an in-
correct Wannier exponent for the threshold cross section,
but that a first diabatic correction gives an exponent that
closely approximates the Wannier exponent. The theory
is also shown to yield Wannier exponents for the ioniza-
tion of hydrogen by electrons that are within 2% of the
accepted values for ionization into S and S continuum
states.
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APPENDIX A: C}UANTIZATION CONDITIONS
FOR TOP-OF-BARRIER MOTION

Quantization conditions emerge by joining wave func-
tions in classically allowed regions with wave functions
in classically forbidden regions. This requires that the
phase in the allowed region equals an odd multiple of
z/2. For the potential used here this phase is just the
phase of giv given by Eq. (3.15), which can be written

1 —A
$4(x) + Pe + arctan tan($2+ Po) —z/4. (Al)1+2
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Upon joining to the usual WKB solution in region V, we
obtain the semiclassical quantization condition for the
eigenvalues of 'R(B; x)

1 —A
P4+ Pp + arctan tan($2+ Pp) = (n+ 1/2)n,1+3

(A2)

where P4
——$4(xs). This equation may be written in a

form which exhibits the symmetry in P4 and Pz

r (z) r (1 —z) =
sin mz

(AS)

are used. Substituting z = —+ i — into Eqs. (A7) and

(AS) gives

(1 ) 1 i+, (1 .al ('3 .a'l
rl —+«I = 2 +'rl —+i—iri —+i—

i

q2 ) 2~~ q4 2) (4
(A9)

A sin($4 —P2) + sin($4 + P2 + 2gp)arctan
A cos($4 —P2) + cos($4 + P2 + 2gp)

= (n+ 1/2)x. (A3)

(1 .ai f3
argI'

i

—6i —
~

argI'
~

—pi
(4 2) (4 2) sin(4 +i 2 )

(A10)

Since Eq. (A3) holds only when Using the analytic continuation of argI' (2 + iz) to
complex z

where

A cos($4 —P2) + cos P = 0, (A4) r {-,'+ iz)
argI'

i

—+ iz
)

= ——»
(2 ) 2 r(-,' —iz)

' (A11)

p = $4+ p2+ 2pp,

the quantization condition may be written

P + arccos [A cos($4 —P2)] = m(2n + 1) . (A6)
arg I'

~

—+ i a
i

(A5) together with (A9) and (A10) gives

and

I'(2z) = 2'I'(z) I'
i
z+ —

i

1, t' 11
2 vr ( 2) (A7)

For symmetric potentials the eigenfunctions are even
"g" or odd "u" under reflection, and it is convenient to
write the quantization conditions explicitly for each case.
For this purpose the two equations from Abramowitz and
Stegun [27]

and

z r (-,
' + ia)——ln

2 r (-,
' —ia)

argI'
~

—+i —
~

+ argI'
i

—+i
~
+ aln2 (A12)

q4 2) q4 2)

.al r (-,
' + i-, ) r (-', - i-;)

argI'
(

—+ i
[

—argI'
(

—-+ i [= —--ln
q4 2) (4 2) 2 r (-,

' —i , ) r (-,'+i ,)--
sin 4= ——ln

2 sin(-, +i —,)
i x .era= —ln tan ——i—
2 4 2

lt vr= arctan (e )
——= arccos A ——.

4 4
(A13)

The definition of arctan(z) for complex z, namely,

i (i vr
arctanz = —ln tan

~

—lnz+ —
~

+—
2 i2 4) 4

(A14)

has been used in Eq. (A13). Summing Eqs. (A12) and
(A13) gives

t'1 '7l

arg I'
i

—+ ia
~
+ arccos A ——

) 4

I

while subtracting them gives

'll

argI'
~

—+ ia
~

—arccos A+—
4

/3 a)= argr
i

—+i
~

+ aln2 . (A16)
(4 2)

These equations are equivalent to the single relation

(1 al= argI'
~

—+i
~

+ aln2, (A15)
q4 2)

arg I' —+ia
~

= 2arg I' —+ —+ i-
&2 ) i 2 4 2)

+aln2 ~ arccos A —— (A17)
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where "—"refers to "g" and "+" to "u" eigenstates. For
symmetric potentials the quantization Eq. (A6) becomes

nient to employ a more complete notation for q, namely,

q(e, z),

2(P4 + fp) 6 arccos A = 7r(2~ + 1) . (A18) q(e, z) = $2m[e —V(R; z)]

Substituting (A17) into the definition Eq. (3.10) of Pp
and the result into Eq. (A18) gives the quantization con-
dition

(1 1 .a) a ( la])
$4+ argl'

l

—p —+&— + —
l

1 —» —
l(2 4 2j 2 1, 2 j

and a comparison expression p(e, z) equal to q(e, z) at
the top-of-barrier x —xT

p(e, z) = 2m e —V(R; zT ) ——V"(R; zT ) (z —zT )

t' 1 1)
=~ In+-+ —

l
. (A»)

2 8j

APPENDIX B: EXPANSION OF e(R) AROUND
THE TOP-OF-BARRIER ENERGY

where e —V(R;zT) ) 0. Further, we define

+S

$4(e) = q(e, x)dz.
ZT

Using the identity

(B3)

Equation (3.18) applies for all values of the energy e.
Numerically, however, these expressions are inconvenient
near the top-of-barrier energy « ——V(R;zT ). For this
purpose it is useful to expand the quantization conditions
about « In o.rder to expand P4, for example, it is conve-

q(e, z) = q(ep, z) + q(e, z) —q(«, z)
= q('p *)+[q (' *)

-q'(«z)]/[q(e *) + q(« *)] (B4)

and adding and subtracting a term 1/[p(e, z) + p(ep, z)]
gives

XS 1 1 &S dx
$4(e) = $4(ep) + 2m(e —«) — dx + 2m(e —ep) (B5)

+S 1 1= $4(ep) + 2m(e —ep) dz
q(e, z) + q(ep, z) p(e, x) + p(«, z)

+ „'[—v'+~V'I+&' +»(~ +~v'u'+1)]l .Q-mV~I(R; xT )
(B6)

where

—V"(R;xT)
y = (zs —zT)

2(e —ep)
(B7)

where

S

P4 + Pg + 2gp ~ q(ep, z)dx + K(e —«)
&1

+ arg I'[1/2 + ia], (B11)

This expression is to be evaluated near e = ep. In this
region

1 1 1 mK=m d+-
q(ep, x) p(«, z) 2 —V"(R;xT)

m
—V// R.

and one has, to first order in e —eo, the result

a
4(e) = y4(") + K4(e —«) —-(1 —» lal)

2

(B8)

(B9)

x ln[4p(«, xs) (zs —xT)p(Ep, x] ') (xz' —xy)] . (B12)

Substituting e —~p from Eq. (B8) into Eq. (B9) and
the result into Eq. (3.18) specializing to the symmetric
case and defining a new constant K' as

where

1 1 m
K4 ——m d +-

q(ep, x) p(ep, z) 2 V"(R; xT)—
x ln[2p(«zs)(x3 zT )]. (B10)

A similar expression holds for P2, thus, we may write for
P the expression

Z3 1K'(R) = g V-(R;x )m-
q[V(R; zT ), z]

1

p[V (R; xT ), x]

+—ln[mV" (R; xT )(zs —xT ) ]4
(B13)
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gives

1 1 .a(R)
$4(R) + argI' —p —+i

2 4 2
—K'(R) a(R)

this identity and Eq. (C6) in Eq. (Cl) gives an implicit
equation for R~

Z /~xi
$4[V (Rc', zT )] —— (2 p 1)K'(Rc) + 1 —ln

~

2 3+1)

where

(= 7r
~

n+ —p —~, (B14)
2 8)

1
+ln[B(Rc)] = n.

~

n+ 1 p —
~

. (C7)

a(R) = [V(R; zT) —e],—V" R;zl (B15) In the present case ReR~ & ImR~, then ReR~ is deter-
mined by

and the dependence of a and e upon R is shown explicitly.
Equations (B14) and (B15) determine eT (R).

APPENDIX C: LOCATION
OF TOP-OF-BARRIER BRANCH POINTS

where

Fg(R, b~) = vr(n+ 1 y 1/8), (c1)

The branch points separate the harmonic-oscillator
region from Rydberg valley. The harmonic-oscillator
region corresponds to values of a(R) = [V(R;zT)—
e(R)]g—m/V" (R; zT ), which lie close to those for which
the parabolic cylinder functions are simple exponentials,
i.e. , to values of a(R) near i(2 p 1)/2. Substituting
a(R) = i[(2 p 1)/2 + b~(R)] into Eq. (3.23) and drop-
ping terms of order b&2, we get the equation for bg

4'4[V(Rc; zT)] = ~(n+ 1 p 1/8) + O(ImRc/ReRc),

(c8)

and ImR is given by

—1

(2 p 1)K'(ReRc)
ReRc

+1 —ln
~ ~

+ ln[B(ReRc)]
7r i

&3+1)

1 cj$4(R)
2 BR

(C9)

A smooth path connecting these branch points is given
by Eq. (C9) with Rc replaced by a continuous variable
R.

For g states of H2+ the quantities in Eqs. (C8), (C9),
and (3.25) are

Fy(R, y) = $4(R) —— (2 p 1)K'(R) —ln
~

i , f ~sr )
2 k3 +1)

—lny+ B(R)y (C2)

B(R) =
~

2K'(R) + ln 2 + p ——6 — ~,
2 2)

and p = 0.5772 is the Eulerian constant.
The various sheets of the function e(R) are joined at

branch points R~. At the branch points the function
Oe(R)/BR has a singularity

3
V(R, z2) = ——,

32
V"(R, zT) = ——,

$4(R) = /2R,

K'(R) = —ln(32R) —1,1

4

1 7B(R) = —ln R + —ln 2 —2 + p,
2 2

b„(R)= —(2R) 4 exp(i2V'2R+ im/4),e~a

so that Eq. (C9) becomes

(C10)

Be(R) ~ oo when R —+ R~
BR

This condition is equivalent to

BFg (Rc, b)
t9b

(c4)

(C5)

1 1
ImR = —v 2ReR —ln ReR + ln

~

2 4

t'1 7
+ ln

~

—ln ReR + —ln 2 —2 + p ~(2 2 )
(C11)

Equation (C5) has a solution bn,

bn(Rc) = B(Rc) (C6)

This result agrees, to lowest order in R, with Pieksma
and Ovchinnikov [19] who compute the position of these
T-series branch points for H2+ and find

Equation (Cl) determines b~ for all R and n, while
Eq. (C5) determines b~ for R = Rc. The values of Rc
corresponding to different n occur at specific points in
the complex R plane for which bn(Rc) = b~(Rc). Using

1
ImRc = —/2ReRc ln ReRc

8

with ReRc = (mn)2/2 .

(C12)
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APPENDIX D: DIABATIC CORRECTIONS
TO THE ADIABATIC WANNIER INDEX

To see how diabatic corrections are included at low en-

ergy, consider that the standard Wannier theory employs
the approximations used in Eqs. (2.12) and (3.34) by ex-

panding the operator k(R) about top-of-barrier point z2

and the first-order eigenvalue

(R) = ez(R) —i(g) f(.R)
(D7)

The difFerential equation (D6) for f(R) is readily
solved by standard techniques to give

k(R) kz'o(R) + (M/k2'o)
d2

, + -V"(R;z&)z2,
2m dz2 2

(Dl)
M —V Ri+T

dR

where k2o is given by Eq. (3.37). The approximate
Schrodinger equation

B —V"(R; z2 )X
BR m

(D8)

.B$ 1
i + kz'o(R)g + (M/kgo)

+ V"(R;z-~)z2 g = 0 (D2)
2

g(R, z) = F(R) exp iS(R)z' (D3)

and then solving the resulting ordinary differential equa-
tions for F(R) and S(R). The trial wave function has
the same form as the adiabatic solution along the path
in the complex plane that we use. If the adiabatic solu-
tion is replaced by the more general form Eq. (D3) as in
the theory of Refs. [7] and [3], then the correct Wannier
law is obtained. Here we shall use Eq. (D3) to examine
a first diabatic correction to the adiabatic solution. To
that end we set

yegg ——(p2 (z) exp[if (R)z ]

. (1= exp i
~

—g—V"(R;z2)m+ f(R) ~*', (D4))(2

where f(R) is a small correction to be deduced. This
wave function is substituted into the Schrodinger equa-
tion

is then solved exactly by substituting a wave function of
the form

Note that f (R) and e(~) (R) depend upon the energy E,
as is appropriate for a diabatic energy eigenvalue. Since
we are interested in the limit as E ~ 0, we will evaluate
f(R) for E = 0. Recalling the value of kzo(R) &om
Eq. (3.38) and the definition of ( g, we have

1 —V"(R)m
f(R) = —— exp —2t,',q R dR

2 R
BR'/2

x exp —2 g R dR dR

-V ~Rm(~~ p —&c. jg'4 —'/'gp
4 R
1 V"(R) z2 )m R'/

8 R (~s+ 1/4
(D9)

This then gives, for the correction term in Eq. (D7), the
result

f(R) 1. 1 ~ i V"(R) ~

m 4(g+1/4
~

2 m
(Dlo)

(,) ( 1
(D11)

where we have used the fact that V"(R; z2 )m/R is inde-
pendent of R.

Notice that this correction to e2 (R) equals the imag-
inary part of the adiabatic eigenvalue ez (R) aside from
the multiplicative constant —1/(4( s + 1), thus,

.k2o(R) B(p sg

M BR

—1 d 1
+ —V"(R; z2 ) rp gg2m dx 2

['z (R) —V(R;z—2)]p~~» (D5)

APPENDIX E: ANHARMONIC CORRECTIONS
TO WANNIER'S THRESHOLD LAW

and terms of order f(R) are dropped. This gives the
differential equation for f
Bf 1 Bg—mV" (R; z2 )
BR 2 BR

In the harmonic-oscillator region we expand the adia-
batic eigenvalues e2 (R) = c(R) of Sec. IIIA for H2+ in
powers of R

Co C~+ i+Cg/2 C2+ iC2
T = —

R
—

I R3/2 + R2

+ 2M —V"(R; z2 ) =0 D6
kro(R) m

C, +iC3~ /l+2b„l
R/ ) (gmo)' (El)
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where Cp and Ci are given by Eqs. (4.5). For H2+ the
constants are

Cp ——3; Cg = 32; C, = —4;C2 = —3v2;
C2 = 3/2; Cs ——39' 2/16; Cs = 9/16 . (E2)

where

(E) = v 2M I ' dR.
gE —V(R;* )

(E4)

In this case the probability P (E) is given by

P (E) = exp[Q(E)], (E3)

Substituting Eq. (El) into Eq. (E4) and doing the inte-
gration with the omission of the exponentially small term
b~, we obtain

Q(E) =2 2M 1 (QCi
mpCp 2 ( 2

E [1 nE+ ~E
2Co ) Cp

In the limit E &( 1;

Cs i Cp t' V'Cg

(VCo 2@CpRp) Rp i 2
E ~In

2Cp ) ( Rp Rp)
(E5)

Q(E) = 2 lnE+ V E — ElnE
mCp 4 QCp 4Cp

/VC1 4C0 C2 C3 i C3 4Co
ln + + + E ln

4 Ro QRp 2Ro ) (4Co Ro
~C'R

4Cp 2Cp 8Cp )

When E ) 1 the approximate result is given by
Q(E) =— (E9)

4 V'Cg C2 Cs(
~ (2/Ro 2Ro 3Rsi')

For Hz+, Eqs. (E6) and (E7) when Ro ——4 give

(E7)
respectively.

These expressions for Q(E) are approximate since we
have omitted the diabatic corrections to C&. When these
are included, a more accurate approximate expression for
Q(E) is given by

Q(E) = 4 lnE —/3E — ElnE-M 13
3m 64

f 153 l ( 25 13
+

~

-»3 ~+E i
+ —»31

(128 ) (192 64 )
(E8)

39 yo i (Qyo+1 —1&

64R )""'(gy.+1+1)'
( 3 391)

+
I ~R

—
32R )I

V'y. + (E10)

and
where ( is Feagin's Wannier index Eq. (4.13) for H2+ and
yo = ERo/Co.
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