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The Schrodinger equation for atomic hydrogen in a large electric Beld F is solved by separation
in parabolic coordinates. As F -+ oo, the scaled field j that enters the separated equations tends to
0. Thus the largeFas-ymptotics depend on the small- j behavior of the separated equations, each
of which in turn is equivalent to a quarticly perturbed two-dimensional anharmonic oscillator. The
Bender-Wu branch cuts of the oscillator play a major role in the hydrogen asymptotics. A simple
iterative algorithm permits the calculation of the branch points, at which two eigenvalues coincide.
We have found numerically that as F + oo, the separation constant Pi returns to the smaller of
the unperturbed values P, or P~ . At the same time, Pq tends to the negative of the smaller value.

As the real electric field F increases from 0 to oo, in each case that Pil ~ and P~(
~ are not equal,

the trajectory of either j or e ' j (but not both) loops around a single branch point and passes

through the cut that joins the two (Pil i and Psl i) Riemann triple sheets. All other branch cuts are

avoided. No branch cuts are crossed if Pi~
~ = Psl i. The known small- j asymptotic expansion for

the discontinuity of the separation constant in the j plane across the negative real axis leads to the
large-F asymptotic expansion for E in terms of the parabolic quantum numbers n&, nz, and m.

PACS number(s): 32.60.+i

I. INTRODUCTION

Although atomic hydrogen in an external electric field
was first studied experimentally in 1913 by LoSurdo [1]
and Stark [2] and quantum mechanically in 1926 by
Schrodinger [3], still the LoSurdo-Stark effect contin-
ues to attract both experimental and theoretical inter-
est. Starting in 1978, modern beam and laser techniques
were applied by Koch [4] to measure energy shifts and
ionization rates, while at the same time there was a re-
vival of theoretical interest that involved numerical in-
tegration [5—9], perturbation theory [10], complex varia-
tional calculations [11,12], semiclassical methods [13—15],
and the proof that the perturbation expansions were di-
vergent, but Borel summable to the complex resonance
eigenvalues [16]. Most recently, photoionization cross
sections of various states have been measured in fields

up to several kV/cin [17—19], and in one instance, a few

MV/cm [20]. The theoretical explanation of these exper-
iments can be based on variational calculations of the
complex resonance eigenvalues and complex transition
moments [21,22]. Such techniques have been extended
to larger atoms and molecules [23]. The general consen-
sus is that hydrogen is understood experimentally and
theoretically both at low static electric fields —the per-
turbative region —where the energy levels shift and split,
and at high fields where there is also ionization.

Experimentally accessible fields in practice have been
less than 0.001 a.u. , or 5 x 10e V/cm. In 1979, Be-
nassi, Grecchi, Harrell, and Simon [24] and Benassi and
Grecchi [25] determined the high-field asymptotics of a
resonance thought to come &om the ground state and

of the first two excited states [25]. It was clear, how-
ever, that the lowest field for which the asymptotic for-
mula was valid was many orders of magnitude higher
than any field used in prior numerical calculations. Be-
nassi and Grecchi [25], by using the separability of the
LoSurdo-Stark Schrodinger equation in parabolic coordi-
nates, pushed the complex variational method to fields
as high as 10 a.u. This touched upon the asymptotic
regime and also permitted preliminary numerical explo-
ration of the connection with the asymptotics of the an-
harmonic oscillator —the separated equations are equiva-
lent to an anharmonic oscillator, and Bender and Wu [26]
had established that the complex anharmonic oscillator
eigenvalues are all analytic continuations of each other
with respect to the complex anharmonicity constant. Be-
nassi and Grecchi plotted the complex trajectory of the
coupling constant for the ground and one excited state
and conjectured the position of the Bender-Wu branch
cuts, one of which had to be crossed for the asymptotic
formula for the excited state to be valid. Thus two inter-
esting topics that required still higher fields were identi-
fied, but not thoroughly studied: the asymptotics of the
resonance eigenvalues and the Bender-Wu phenomenol-
ogy of the separation constants.

In previous work on photoionization [21,22] we devel-
oped a computer program to calculate LoSurdo-Stark res-
onances for any set of quantum numbers and for any field.
Although intended for laboratory fields, the program
works for fields that are orders of magnitude higher-
for instance, 10 a.u.—high enough to answer the ques-
tions raised by the work of Benassi, Grecchi, Harrell, and
Simon [24]. We obtain in this paper analytical and nu-
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merical results on LoSurdo-Stark resonances at extremely
high fields. In particular, (i) we fix the value of a param-
eter [25] in the second term of the asymptotic formula for
arg E, which in turn permits generation of the rest of the
expansion for arg E and for ~E~; (ii) we present an algo-
rithm to calculate the position of the Bender-Wu branch
points to high accuracy (originally the branch points had
only been approximated by semiclassical methods [26],
later bv matrix methods applied to a simpler related
problem [27), and still later by numerical integration of
the Schrodinger equation [28]); (iii) we determine how the
trajectory of the complex anharmonicity constant in the
separated equations passes through Bender-Wu branch
cuts; (iv) we describe the topology of the Riemann sur-

face, which is more intricate than conjectured by Bender
and Wu: not only are the sheets belonging to perturbed
adjacent harmonic oscillator eigenvalues n and n+ 1 con-
nected by a pair of branch cuts, but the sheets of any pair
of eigenvalues are connected by two branch cuts. There
are a few additional points that include, for instance, the
Herglotz property. In short, we give a complete picture
of each resonance eigenvalue, &om zero to infinite field.

d2 m2 —1 k
H(k, g) = —s + + —s+gs

ds2 4s 4
(6)

and the separation constants Pi and P2 are coupled by

pi( —2E, F/4) + p2( —2E, F/—4) = Z. (7)

B. Symanzik scaling

The separated Eqs. (4) and (5) are particular cases of
the generic

H(k, g)$(s) = P(k, g)P(s). (8)

An important property of Eq. (8), usually known as
Symanzik scaling [29], follows from the change of variable
sm As:

Since the operator H(k, g) does not depend on the sign of
m, we simplify the notation hereafter with the convention
that m & 0. [H(k, g) is transformationally equivalent to
a two-dimensional anharmonic oscillator with force con-
stant k and quartic anharmonicity constant 2g. See Sec.
II E.]

II. SEPARATION OF VARIABLES
A 'P(A k, A g) = P(k, g). (9)

We brieHy review some equations basic to the solution
of the LoSurdo-Stark Schrodinger equation, in part to fix
notation.

A. Parabolic coordinates

The Schrodinger equation for a hydrogenic atom of nu-

clear charge Z in a uniform external electric field F di-

rected along the z axis,

In particular, one can scale out either k or g in the sense
that

P(k, g) = k'~ P(1, k ~ g)
i/3P( —2/sk 1)

Note that the Pi(f) and P2(f) of Ref. [22] correspond to
P(1, f) and P(l, e ' f) here, where

f= ( 2E) iF——
4

i

——b, ——+Fz
i

0 =El,s
2 r )

separates in parabolic coordinates

x = ~(q cos P,

y = ~(@sing,
1

z = —(( —g).
2

(1) and

(2)

1E = —2A(f)+&2(f)] '.

C. Eigenvalues and eigenfunctions of H(l, 0)

We seek solutions in the form

@(t,', il, p) =,&, ,&,
e' (m = 0, +1,+2, . . .),

4i(() 4z(n)

Let us first consider the "unperturbed eigenvalue prob-
lem" H(1, 0)g = P(1, 0)P. The boundary conditions are
that s ~ P(s) be bounded everywhere and that P(s) be
square integrable on [0, oo) with respect to the volume

element s ds. The differential equation reduces to

for which the Schrodinger equation reduces to the two
one-dimensional equations

( d m —1 1
+ +- ~A. , ( ) =P., 4-;(s) (14)

ds~ 4s 4

H( 2E F/4) 4 ( ) = P—(—2E, F/4) 4 ( ),
H( 2E, F/4) $2(s—) = p2( —2—E, —F/4) $2(s),

where

(4)

(5)

As is well known, the solutions are

1/2

( )
—

~

' !~+')» —'/21, !~&( ) (15)
((n+ m)!
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where

(16)

[Recall our convention that m & 0; otherwise m on the
right-hand sides of Eqs. (15) and (16) would have to be
replaced by [m~.]

The implicit Eq. (7), with F = 0, and with Eq. (10) to
scale out the energy term k = —2E, turns out to be

P„=n+ (m+ 1)/2,

n = 0, 1, 2, . . ., and L„(s) are the associated Laguerre
polynomials [30]. These eigenfunctions are orthonormal
with respect to the 8 ds volume element

sector of convergence given by Eq. (22). Technical details
can be found in Ref. [22], and the calculation should be
considered as automatic for purposes of this paper.

It can be shown [14,31] that the definition of resonance
given here is equivalent to the usual operator-theoretic
definitions. Furthermore, Graffi, Grecchi, and Simon [32]
proved that every LoSurdo-Stark resonance wave func-
tion can be written in parabolic coordinates as a sepa-
rated product or as a finite linear combination of prod-
ucts; i.e., there are no other resonances than the solutions
of Eq. (7).

The relation between the mathematical concept of res-
onance and physical observables (in particular the pho-
toionization cross section of atomic hydrogen in an elec-
tric field) has been discussed in Ref. [22).

( ( m+1)
I

y 2E+
~

n2+
2 ) 2 E. Relation to the two-dimensional isotropic

anharmonic oscillator

Z2

2 (ni + n2+ m+ 1)
(19)

from which the familiar formula for the eigenvalues of the
hydrogenic atom follows:

We close this section with the explicit connection be-
tween the two-dimensional isotropic anharmonic oscilla-
tor and the separated equations (4) and (5). The two-
dimensional isotropic anharmonic oscillator with har-
monic force constant k and quartic coupling constant 2g
has the Schrodinger equation

D. Resonance solutions

When g g 0, the differential equation

——&+ —(& + y j + 2g (z + y j @ = 2P@. (23)
2 2

With the substitutions,
( d2 m2 —1 k

~

—s + + —s+gs
~
p„(s) = p„ tt„(s)ds2 4s 4 j

(20)

z = +scos8, (24)

has a unique (up to a multiplicative constant) solution
dominated by the asymptotic behavior

y = +ssin8, (25)

4'(s, 8) = s ( P(s) e' (m = 0, +1,+2, . . .), (26)
1

y(8) exp
~

——g 8
( 2, , s,l

3

that tends to zero as 8 ~ oo in the sector

(21)
one finds that P(s) must satisfy precisely Eq. (8).

3 1

2 2
—arg 8+ —arg g

2
(22) III. BENDER-WU BRANCH POINTS

The resonance solutions of Eq. (20) are those solutions
that satisfy simultaneously the boundary conditions at
the origin and those at oo given by Eqs. (21) and (22).
The corresponding values of the parameter P are called
resonance eigenvalues.

The LoSurdo-Stark resonance energies are those values
of the parameter E for which the resonance eigenvalues
of the separated equations (4) and (5) satisfy the implicit
equation (7). The numerical calculation of the resonance
eigenvalues and eigenvectors of both the separated Eqs.
(4) and (5) and the solution of the implicit Eq. (7) for
the LoSurdo-Stark resonances have been discussed in de-
tail in Ref. [22]. The main idea is to expand the reso-
nance wave function as a linear combination of square-
integrable basis functions along a ray lying halfway in the

At large F, theoretical arguments by Herbst [31]as well
as numerical calculations indicate that for any resonance,
both ReE and —ImE tend to oo, consistent with the
asymptotic phase —s'/3 and magnitude 2 S~s(F ln F)2~s
of Benassi and Grecchi [25]. The implication for the
asymptotic magnitude of f kom Eq. (12) is that f =
O(1/lnF) as F ~ oo. This has two interesting con-
sequences: the first is that as F ~ oo, fs2 becomes
again a small perturbation, and the second, which fol-
lows from Eq. (13), is that at F = oo, Pi ———P2. That
is, one separation constant comes back to an unperturbed
eigenvalue, and the other to the negative of the same un-
perturbed eigenvalue. But how? The answer must be
sought in the path f traces in the complex plane, cross-
ing Bender-Wu branch cuts.
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Analytic continuation of the anharmonic oscillator
eigenvalues was first studied by Bender and Wu [26] in the
JWKB approximation and then rigorously by Simon [29].
The picture they developed is that P(1, f) has a cube-root
"global branch point" at the origin that is a limit point of
sequences of square-root branch points with asymptotic
phases arg f = 3m/2 and arg f = 9'/2. At each square-
root branch point two levels coincide. [The word "cross"
is usually used, but "coincide" may be more appropriate.
(See Sec. III D.) We use both terms interchangeably. ] Ini-
tially Bender and Wu thought that only adjacent levels
cross. That is, start with P(1, f) = a particular anhar-
monic oscillator eigenvalue, say the nth, with f positive;
follow a path that encircles only one branch point and
return to the starting point; then P(1, f) is equal to ei-
ther the (n —1)th or (n + 1)th anharmonic oscillator
eigenvalue. To get &om one eigenvalue to a nonadja-
cent one, Bender and Wu suggested that the coupling
constant has to "cascade" through a sequence of branch
cuts. After numerical calculations of Bender-Wu branch
points for the potential e~x~ + z, Bender, Happ, and
Svetitsky [27] recognized that nonadjacent levels could
be directly connected, but they did not fix a classification
scheme to assign branch points to pairs of unperturbed
eigenvalues. Shanley [28] later numerically integrated the
Schrodinger equation to find a large number of Bender-
Wu branch points for the original anharmonic oscillator
problem, many of which agreed well with the JWKB cal-
culations of Bender and Wu [26], but which disagreed in
the assignment of which levels were crossing. We shall
see below that the original and evolving picture of the
singularities requires a slight modification.

To understand what happens to P(1, f), P(l, e 'f),
and E(F) as f traverses the path generated by the im-
plicit Eqs. (7) and (12) with F increasing from 0 to
oo, it is necessary to know accura/ely the location of
the Bender-Wu branch points. We describe here how
to calculate numerically the branch points from the
Schrodinger equation, variationally.

f) (f —f
P+(1 f2) —P-(1 f2) (f2 —f.)' ' (28)

Solving this for f„one finds

fi —f2Q2
1 —

2
(29)

This equation suggests the following iterative algorithm
to be used with the anharmonic oscillator eigenvalue pro-
gram: For i = 1, 2, . . .,

f' —f*+iI*+i
Ji+2 =

1 —Q;+
(31)

As a computational procedure, this converged without
difBculty in typically ten iterations. Some illustrative
branch points, calculated with extended precision, are
presented in columns 4 and 5 of Tables I and II. All figures
given are accurate. The m = 0 branch points are plotted
in Fig. 1. Note the strongly regular pattern for the plot
of the reciprocals 1/f, in Fig. 1(b).

B. Identi6cation and labeling of Bender-Wu
branch points; triple sheets T„

What do not come out of this algorithm are the
quantum-number assignments nq and n2 given in
columns 2 and 3 of Tables I and II. Their identification
is more subtle. That the branch points can be labeled by
pairs of quantum numbers is a statement in itself about
the topology of the Riemann surface for P(1, f)

Recall that the origin is a cubic-root global branch
point, which is a consequence of Symanzik scaling [Eq.
(9)1

A. Numerical calculation
of Bender-Wu branch points

The variational program developed in Ref. [22] is able
to calculate anharmonic oscillator eigenvalues for any
value of f By definitio. n, a Bender-Wu branch point
occurs when two anharmonic oscillator eigenvalues cross.
Suppose a crossing point occurs at f, Denote by P+.(1,f)
and P (1,f) the two levels that cross. Since the f, is a
square-root branch point, P+(1,f) and P (1,f) are the
two branches of a Puiseaux series in a neighborhood of

C'

(27)

Pick two initial values fi and f2 close to the branch point

f, and note that

(32)

The primary unit of the Riemann surface for P(1, f) is
thus a triple sheet. To each unperturbed harmonic oscil-
lator quantum number n one can assign a triple sheet T„.
On T„,P(1, 0) = n+ (m+1)/2. The value of P(1, ]f~e' )
is obtained by continuity on following the path &om 0 to

~ f ~

on the positive real axis and then from
~ f ~

to
~ f ~e' on

the triple circle of radius
~ f ~. This recipe is unambiguous

for all f except for those at which there is a Bender-Wu
branch point somewhere on the triple circle of radius

~ f ~.

Suppose now that we have a particular branch point
f„ the assignment of which is to be determined. We
follow P(1, f) numerically along a path on the positive
real axis from the origin to

~
f,

~

—e, then along an arc
from

~ f, ~

—e to (]f,[
—e)e', where 8, = arg f„ then

along a circle of radius e centered about f„and then
backwards from ([f~~ —e)e' to

~ f, ~

—e to the origin. The
e should be suKciently small that only one branch point
f, is trapped, and no others. To be sure that the path
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LE I. B
nd corr

TAB
sheet, a

m
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

7LQ

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
2
2
2

2

2
2
2
2
3
3
3
3
3
3
3
4
4
4
4
4
4
5
5
5
5
5
6
6
6
6
7
7
7
8
8
9

1
2
3
4
5
6
7
8
9
10
2

3
4
5
6
7
8
9
10
3
4
5
6
7
8
9
10
4
5
6
7
8
9
10
5
6
7
8
9
10
6
7
8
9
10
7
8
9
10
8
9
10
9
10
10

ender-Wu branch points
esponding values of P(1,

(3)

0.018838 404 078 069 6
0.011654 854 413201 8
0.008 254 472 554 437 9
0.006 351438 586 740 8
0.005 149260 732 693 3
0.004 324 879 138921 3
0.003 725 778 570 1993
0.003 271 299 256 666 1
0.002 914990 213 1126
0.002 628 286 312 592 7
0.009 687 394 774 852 6
0.007 627 521 743 206 0
0.006 141760 289 004 2

0.005 090 880 1953315
0.004 326 549 594 125 3
0.003 752 004 876 536 8
0.003 307 032 762 872 3
0.002 953 502 040 562 8
0.002 666 503 044 380 0
0.006 439 801 016 267 0
0.005 543 519181765 5
0.004 774 137587 348 3
0.004 152 937952 867 3
0.003 655 421 623 664 6
0.003 253 909 840 363 0
0.002 925 831 216 832 1
0.002 654 158466 829 3
0.004 809 817372 539 5
0.004 324 779 011262 7
0.003 870 384 843 816 2
0.003 473 552 368 701 7
0.003 134602 768 397 1
0.002 846 511429 332 1
0.002 601 064 000 766 2
0.003 834 636 058 846 7
0.003 535 590 567 692 0
0.003 241 184 653 0183
0.002 970 946 979 025 9
0.002 729 679 944 6143
0.002 516677 021 453 8
0.003 186877 070 814 6
0.002 985 950 572 029 7
0.002 782 013065 341 9
0.002 588 460 363 475 8
0.002 410 125 810 747 4
0.002 725 741 499 531 6
0.002 582 294 679 4139
0.002 433 787 138706 2
0.002 289 506 949 738 9
0.002 380 892 686 870 2
0.002 273 768 638 825 1
0.002 161376 689 658 6
0.002 113341 453 1976
0.002 030 523 311338 2
0.001 899 754 065 949 4

f~,l„, of P(1, f), in the third quadrant of
f), for m = 0 and 0 & nq & n,g & 10.

y(s) Re P(1, f„",„,)
3.804 652 181 161366 1 0.574 115148 1
4.144 916165 936 529 0 0.585 851 707 6
4.297 737 896 767 240 5 0.585 992 299 1
4.384 166 233 315551 3 0.584 384 932 1
4.439 837 535 198390 0 0.582 585 838 8
4.478 774 813990 515 0 0.580 908 521 2

4.507 592 760 801 044 5 0.579 407 1716
4.529 817891 994 735 2 0.578 073 938 8
4.547 503 400 692 902 7 0.576 887 426 0
4.561 926 733 018 1939 0.57 582 569 26
3.506 153420 738 782 4 1.455 291 723 3
3.799 435 815 117423 9 1.517197521 9
3.977 834 848 335 2858 1.545 604 174 7
4.097 094 047 859 972 2 1.559 987 768 4
4.182 223 626 349 9160 1.567 827 816 6
4.245 998 644 483 7193 1.572 313394 5
4.295 565 652 669 192 9 1.574 947 322 6
4.335 214 713921 349 1 1.576 498 867 8
4.367 669 997 950 496 2 1.577 389 029 0
3.396 402 435 786 4176 2.307 255 295 4
3.633 607 197384 533 4 2.401 203 022 0
3.797993773 615463 5 2.457379 798 7
3.918650 612 985 627 8 2.492 523 644 9
4.010 773 728 450 8135 2.515 503 549 9
4.083 308 497 542 291 2 2.531 114701 4
4.141857 975 684 149 3 2.542 063 6193
4.190096 440 861?907 2.549 947 536 8
3.338 955 448 305 638 9 3.150 630 721 3
3.536 458 775 153790 1 3.264 984 791 7
3.683 261 490 978 959 0 3.342 820 875 6
3.797 321 594 040 279 5 3.3970131144
3.888 440 755 284 492 7 3.435 735 5179
3.962 820 739 490 330 2 3.464 094 8174
4.024 629 337 895 142 9 3.485 332 091 0
3.303 401 687 678 841 3 3.990 303 807 3
3.472 524 189 178429 2 4.118590 082 6
3.603 766 337 761 525 6 4.212 968 695 9
3.709 631 803 710 580 8 4.283 252 1944
3.796 933 139546 592 0 4.336 449 944 1
3.870 123621 319048 5 4.377 384 791 9
3.279 128 166 677 1391 4.828 024 1116
3.427 153724 007 983 6 4.966 394 850 6
3.545 403 330 638 220 6 5.073 609 994 8
3.643 327 462 661 032 6 5.157244 502 4
3.725 974 936 721 648 1 5.223 191944 8
3.261 449 787 648 277 9 5.664 578 477 1
3.393 218 709 835 377 5 5.810583 8179
3.500 691 861 448 576 5 5.927 981 287 3
3.591 427 157805 0153 6.022 7160169
3.247 971 157047 414 1 6.500 375 698 9
3.366 835 456 508 664 7 6.652 365 003 0
3.465 307 886 303 969 8 6.778 011921 1
3.237 337 162 011550 4 7.335 650 473 0
3.345 706 392 963 920 3 7.492 460 032 5
3.228 722 140 435 043 2 8.170 547 805 5

the first Riemann

—lmP(1, f».-.)
0.056 414 245 0
0.035 619684 9
0.025 107614 5
0.019178415 0
0.015439 468 5
0.012 886 1349
0.011039 236 9
0.009 644 676 6
0.008 556 1738
0.007 683 927 4
0.116219 783 4
0.110223 992 9
0.094 419410 5
0.080 523 998 7
0.069 486 198 2

0.060 798 404 2

0.053 883 1348
0.048 291 087 2

0.043 696 534 3
0.155 221 528 6
0.176 273 371 8
0.168 689 868 2

0.154 913854 9
0.140 811037 4
0.127 979 015 7
0.116729 491 3
0.106 978 217 1
0.183253 830 7
0.230 301 226 5
0.236 125 437 9
0.228 104 771 2
0.215 445 731 1
0.201 724 395 0
0.188 375 988 5
0.204 958 430 8
0.275 086 579 4
0.295 567 897 2
0.296 093 607 0
0.287 868 281 1
0.275 916386 0
0.222 602 598 9
0.313036 1578
0.347 958 349 9
0.358 200 033 8
0.356 142 637 8
0.237 436 080 0
0.345 837 674 2
0.394 475 976 0
0.414 769 3330
0.250 214 728 3
0.374 660 509 1
0.436 149301 9
0.261 428 498 7
0.400 332 070 6
0.271 412 283 8

encloses precisely one single branch point, it is necessary
to calculate the location of all the branch points in the
region of interest. It turns out that on each triple sheet
except for two, P(1,f) starts and finishes with the same

value P(1, 0) = n + (m + 1)/2, which is characteristic
of that triple sheet. But for two triple sheets, say T,
and T, , the starting and ending values are interchanged.
That is, if p(l, 0) = nq+ (m+1)/2 at the beginning, then
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m A]
1 0
1 0
1 0
1 1
1 1
1 2

TABLE II. More Bender-Wu branch points: lml

(3) (3)If , .I arg f,„,
1 0.013070 694 860 563 7 3.620 045 743 060 926 2

2 0.009 367946 647 392 7 3.945 309 057660 985 0
3 0.007 125 538 978 208 2 4.120 108630 271 1884
2 0.007 787 226 388 745 3 3.443 251 926 775 438 2

3 0.006 457 298 468 1169 3.706 944 058 761 609 1
3 0.005 523 956 150 953 1 3.364 667 793 426 273 0

= 1 and lml =

ReP(1, f„,„,)
1.025 623 856 7
1.061 998 040 7
1.073 998 539 6
1.886 245 937 0
1.965 019926 2

2.732 117822 9

2.

—ImP(1, fi, , )
0.085 597 340 9
0.068 683 697 1
0.053 890 1913
0.135993 703 3
0.142 830 659 4
0.169432 238 3

1 0.010059 888 409 431 9 3.524 656 523 392 188 6
2 0.007 806 723 296 248 0 3.820 733 489 762 295 1

2 0.006 544 787 679 647 9 3.401 863 768 436 673 5

1.470 275 003 2 0.106 105 865 6
1.525 403 146 9 0.098 548 672 8
2.318780 3133 0.150 767 880 8

at the end P(1, 0) = nq + (m + I)/2, and vice versa. In
this way, each branch point is associated with exactly one
pair of harmonic oscillator levels nq and n~, whose values
are swapped between the beginning and end of the path.

By way of example, we plot in Fig. 2{a) one such path
in the complex plane that encloses the branch point at

f, = —0.0060 —i0.0047, which connects the n = I and
n = 3 levels in the quadrant 7r & arg f ( 3x/2. {The
"return" is on

I f I

= If, I
+ e, rather than on If I

= If, l

—e,
to permit discrimination between the outgoing and re-
turning paths on the plot. ) Other nearby branch points
are indicated on the plot, and one typical branch cut
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FIG. 1. m = 0 Bender-Wu branch points.
(a) The branch points f~,I„~ that lie in
the third quadrant of the first sheet. La-
bels (nq, nq) are indicated to the right of as
many branch points as permitted by clarity.

(b) The same branch points as in (a), but

plotted as reciprocals: 1/f~, I„,. All labels

(nq, nq) are shown.
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W

(n=1)

h) )4 ~ h4

(nW)

0 3
Re Ii(1,f)

I ~ ~ ~ a I a a ~ ~

4 5

FIG. 2. Identificat'on of the branch point f~~s) = 0.0076275217432060e' ' . (a) A path on the first sheet
that starts out at the origin (point a), follows the real axis to f = 0 007 32. . .. (point 5), follows the arc f = 0.007 32. . . e* as
8 increases from 0 through n (point c) to 3.799435815 1174239 (point d), then follows a semicircle of radius 0.0003 counter-

clockwise about f~s (point e is at —s'/2, point f at —s'), and traces backwards an arc of radius 0.00792. . . back through s
(point g) to 8 = 0 (point A,), and the real axis back to the origin (point i). The branch points identified in Fig. 1 are shown, as
well as their partners in the fourth quadrant of the first sheetand ,four [(0,3), (1,3), (2,3), and (1,2)j plus (1,3) snd (0,3) in the
fourth quadrant are labeled for reference. The partners in each pair de6ne a branch cut. For illustration, the branch cut that
joins fz~s) with feis) along an src of constant

~ f ~
is shown by a dashed line. (b) The trajectories of P(l, f) that originate from

the five lowest harmonic oscillator eigenvalues at f = 0. The images of the starting and intermediate points from some of the
trajectories have been labeled arith a„, b„, . . ., i„.The trajectories for n = 0, 2, and 4 all start and return &om the same points
p(1, 0) = n+ 1/2. The n = 0 trajectory is barely visible because of the scale of the plot. The trajectory that starts with n = 1
at P(l, f) = 1.5 (solid line) ends at P(1, f) = 3.5, while the trajectory that starts with n = 3 at P(1, f) = 3.5 (dashed line)
ends at P(1,f) = 1.5. (c) Twofold magnification of (b) to show more clearly how the trajectory that starts at P(1,f) = 1.5
ends at P(l, f) = 3.5, and vice versa. (d) All the branch points fs ~ and fs ~ (for N & 10), and their corresponding cuts, on

the first sheet of 7's. The pattern seems typical for T„ in general:
~
f.'

~

decreases monotonicslly as j increases; the "opening

half angle" of the branch cut 3s /2 —arg f ~ ) at first increases as j increases &om 0 to n + 1 and then decreases monotonically
(perhaps to 0) as j increases further.
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(0,3) has been drawn. (To have drawn more would have
cluttered the figure. ) The starting and key intermedi-
ate points have been labeled from a to i. We plot in

Figs. 2(b) and 2(c) the trajectories of the anharmonic
eigenvalues that originate Rom the four lowest harmonic
oscillator eigenvalues when f = 0. The images of the
starting and intermediate points have been labeled, when

feasible, with a„, b„, . . ., i„, where n = 0,1,2,3,4. Note
how the trajectories for n = 0, 2, and 4 return to their
initial values, 0.5, 2.5, and 4.5. But the trajectory for
n = 1 starts at 1.5 and ends at 3.5, while the trajectory
for n = 3 starts at 3.5 and ends at 1.5. Figure 2(c) is

a twofold magnification of Fig. 2(b) to show the region
from P(l, f) 1.5 to P(1, f) 3.5 in greater detail. The
eigenvalues connected at this branch point are not adja-
cent.

Numerically we find that for any pair of anharmonic
oscillator levels there are exactly four values of the an-

harmonicity constant f at which these levels cross. Each
branch point appears on precisely two triple sheets and
on no others. That is, for any triple sheet T„,only those
branch points in Fig. 1 that have n as one of their two
labels can be encountered. Those branch points that do
not involve n are not branch points on T„. Figure 2(d)
illustrates the branch points and cuts in the third and
fourth quadrants of the 6rst sheet of T3,. the pattern is
typical. It is in the sense of this picture that the Riemann
surface put forward by Bender and Wu needs modi6ca-
tion.

P(1 e*'&) = -P(1 &). (33)

The second point is a consequence of the Schwarz reflec-
tion principle (i.e., real power series for real f),

P(1 l&le* ")= P(1 l&le*'" "'")*. (34)

The third follows from Eqs. (33) and (34): for arg f =
3x/2 and 97r/2 (

—3x/2), the eigenvalues are pure imagi-

nary. This result also follows directly from rescaling the
eigenvalue equation. For instance, for arg f = 37r/2, Eq.
(22) permits using args = —7r/2. With s replaced by

is, the eigenvalue equa—tion becomes

( Q ~ —]
, + —-s + l&ls'

l d (s)ds2 4s 4

itive f
We have already remarked that the origin is a cubic-

root global branch point and that the primary unit of the
Riemann surface for P(1, f) is a triple sheet. Following
the notation of Bender and Wu [26], we denote as the first
sheet (0 & arg f & 2vr), the second sheet (2' & arg f &

4x), and the third sheet (4n & arg f & 6vr) = (
—2vr &

arg f & 0), (mod 67r). Note that analytic continuation
by exactly 37r [cf. Eqs. (9) and (11)] gives an eigenvalue
spectrum that is the negative of the f spectrum:

C. Modification of the Bender-Wu surface

To describe more completely the Riemann surface of
P(1, f), we recall a few points made by Bender, Wu, and
Simon that follow &om Symanzik scaling and that the
Hamiltonian H(1, f) [Eq. (6)] is self-adjoint for real, pos-

which has the form of a real eigenvalue equation save for
—i times the eigenvalue parameter.

These properties have direct consequences on the lo-
cation of the Bender-Wu branch points —that they come
in groups of four. In particular, Eqs. (33) and (34) show
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that if f, is a branch point, then so are its refiection across
the imaginary axis

~ f, ~

e'l s l and the two obtained
from these by rotation by 3rr, f,e' and

~ f,~e'& s

The four can be coupled into two pairs, one pair sym-
metrically placed in the third and fourth quadrants of
the first sheet and the other pair symmetrically placed in
the first and second quadrants of the third sheet. Here-

after we will add as a superscript f '
(i =1,2,3,4) the(~)

quadrant in which each branch point lies.
Branch cuts can be drawn between the two members

within each pair. It is convenient to draw the cuts on

the arcs
~ f ~

=
~ f, ~, as has been done in Fig. 2(a) for fos

and fs~sl and in Fig. 2(d); this specification of the cuts
completes the recipe given in Sec. III B for the P(1, f) on
the triple sheet T„.

The branch points accumulate at the origin, but with
what phase? The answer depends on the subsequence.
Consider the quarter of the branch points that lie in the
third quadrant of the first sheet, which we denote by

f„,„, (nq ——0, 1,2, . . ., n2 ——nq + 1, nq + 2, . . .). (The
ordering of the labels nq and n2 in f„',„, is unimpor-

tant; f„*,„, is the same as f~',„,.) We examined the
limits of two subsequences numerically and found that
lim„, ~ arg f, , = 3rr j2, while lim„, ~ arg f„,„,+~

——

rr, as can be inferred from Fig. 1(a). The first result
was proved rigorously by Simon (see Corollary II.10.4 of
Ref. [29]). The second result could have been inferred
from Ref. [26] if it had been possible to assign the branch
points correctly.

We summarize the topological aspects of our discus-
sion by noting that the whole Riemann surface consists
of an infinite number of triple sheets T„, each labeled by
the quantum number of an anharmonic oscillator eigen-
value for the real self-adjoint equation. Any pair of triple
sheets, for instance, T„, and T„„associated with the
neth and n2th eigenvalues, is connected by exactly two
branch cuts, one connecting the first sheets of the re-
spective triple sheets and the second connecting the third
sheets. One can pass directly from one triple sheet to any
other.

D. Trajectories for P(1, ~ f~e's) as f traverses a triple
circle; picture of a typical crossing

In this subsection we examine the trajectories of
P(1,

~f~e' ) as e rn~s from 0 to 6rr. Some aspects have
not been anticipated in prior work, and it is possible to
give a detailed picture of the crossing of eigenvalues when

f passes through a branch point.

f. Large-scale picture

Figures 3(a)—3(e) show the paths traveled in the com-
plex plane by the four lowest m = 0 resonances, corre-
sponding to n = 0,1,2,3, for five values of

~ f~, all with
8 E [0,6rr]. Figures 3(a)—3(e) have ~f~ = 0.080, 0.040,
0.020, 0.018, and 0.010, respectively.

Notice in Fig. 3(a) that as n increases from 0 to 3, the

trajectories become more circular, which is a combined
consequence of Symanzik scaling, Eq. (11),and that as n
increases, the quadratic potential in Eq. (6) has a dimin-
ishing effect as a perturbation of the quartic oscillator.
That is, for large f, or for any f and large enough n, as f
moves along a triple circle, P(1,f) is approximately f ~

times an unperturbed quartic oscillator eigenvalue

(36)

Already in Fig. 3(a), however, the n = 0 trajectory
is far from circular, and the outer three are fiattened.
As

~f ~

decreases to 0.040 [Fig. 3(b)], all the trajectories
contract, the outer three fiatten further, and the pinched
sections of the n = 0 trajectory intersect each other to
form a three-lobed figure. By ~f ~

= 0.020 [Fig. 3(c)—
note the change in scale between Figs. 3(b) and 3(c)],
the n = 0 middle lobe dwarfs the outer two, and the
n = 1 trajectory has become severely pinched. There is
an abrupt change in the topology between

~f ~

= 0.020
and 0.018 [Fig. 3(d)]: The n = 0 and n = 1 trajecto-
ries seem to have exchanged their "middle" parts. This
is a consequence of the ~f~ = 0.020 and ~f~ = 0.018
triple circles being separated by the fs(~~ branch points,

which have
~
f~~~

~

= 0.0188384040?80696. Figure 3(e)
at ~f ~

= 0.010 shows the increasing intricacy as ~f ~

has
been decreased past the second quartet of branch points

f~~2l, which fall on
~ f ~

= 0.0116548544132018.

g. Details of a recombinant caressing

The To and Tq triple sheets have a common branch
point at

~
fs~~

~

= 0.0188384040?80696, arg fs~
3.8046521811613661, as indicated in Table I. The be-
havior of the n = 0 and n = 1 trajectories of P(1, f) for
fixed ~f~, as ~f~ passes through this value, are show in

detail in Fig. 4. The case that (f) = )fo& )
is shown in

Fig. 4(b). When
~ f ~

is a little larger [Fig. 4(a)], the n = 0

trajectory approaches the image of the branch point fo~
and then turns down sharply, while the n = 1 trajectory
turns up. When ~f~ = )fo~ ~, the sharp turns become
right angles, at the vertices of which the two trajecto-
ries touch. As ~f~ decreases from f~~~~, the trajectories
"break" and "recombine" as they exchange the outgoing
legs of their right angles [Fig. 4(b) to Fig. 4(c)]. The gross
appearance is that the "identities" of the trajectories af-
ter the region of the branch point have been exchanged.
One can see immediately how if P(1,f) started out on
the n = 0 sheet, and if f circled. the branch point foz
and returned to 8 = 0, then P(1, f) would end up on the
n = 1 sheet, as illustrated in Fig. 2 for the f~s case.

On nomenclature, the trajectories do not literally cmss
at the branch point. The P(1, f) coincide at the branch
point, and the trajectories exchange segments or detach
and recombine.

The 90' character of the trajectory at the branch point
is a consequence of the square-root nature of the branch
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FIG. 3. Trajectories of P(1, f) at constant

1 f1, for the branches n = 0 through n = 8: (a) lf1 = O.Q8Q; (b) lf1 = 0.040; (c)
1 f1 = 0.020; (d)

1 f1 = 0.018; (e)
1 f1 = 0.010. Note that the scale for (c)—(e) is magnified versus (a) and (b).

point. If
1 f1 =

1
fo(, ) le's, then by Eq. (27)

(37)

As (8 —8e(~) ) increases through 0, its square root changes
&om pure imaginary to real, and the trajectory makes a
90 turn.

ImP(1, f) (39)

branch points are already outside the three-sheeted cir-
cle traced by f For this valu. e of

1 f1, the JWKB method
of Bender and Wu is globally quite accurate, and from
a distance the trajectories appear uninteresting. But a
closer look reveals that the n = 1 trajectory seems to
dip immediately into the negative half plane. There is a
"cut Herglotz" property proved by Simon for the function
P(1, f) on the f plane cut from 0 to —oo:

3. A.nti-Herylots at large scale,
IIerylots at small scale

Consider now Fig. 5(a), on which is plotted lf1
0.0001. According to Table I, many

1
fe(„)1 and 1f~„ I

That is to say, the trajectory for P(1, f) should start
upwards with Im f, and it appears to start downwards
in Fig. 5(a). The same is true of every other trajectory
in Fig. 3 of Ref. [26]. The explanation can be uncovered
by blowing up the scale of the plot at the beginning of
the trajectories, as shown in Figs. 5(b) and 5(c). The
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0 2 I ~ ~

(a} Ijl = 0.01885

0 ~ 1

semicircular arcs from 0 = 0 to vr are accurately given by
first-order perturbation theory:

~(1,f) - ~(1,0)
+(6n' + 6n + 2 + m' + 3imi + 6nimi) f. (40)

0

-0.1

g
%y

~ ~

~ ~
'~

Thus, on the one hand, the apparent "wrong direction" is
strictly an artifact of low resolution, while on the other,
the sharp twists visible at high resolution are somewhat
unexpected and are driven by nearby Bender-Wu branch
points.

-0.2
0.3 0 ' 4 0 ' 5 0 ' 6

Re (I(1,j}
0 ' 7 0.8 0.9 IV. SEPARATION CONSTANTS

OF LoSURDO-STARK RESONANCES

0.1

(b) Ijl = 0.0188384.
e = 6m —3.80465... at

branch point f+

0

e increasing
from 0 on T&

-0.1
e increasing
from 0 on TO e = 3.80465... at

branch point f01( )

I ~ I I I I I ~ a I ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~02

0..2 ~ ~ ~ ~ I ~ ~ ~ s I ~ ~ ~ I ~ ~ ~ ~ I I ~ ~ ~ I ~ In the preceding section we located and labeled the
Bender-Wu branch points, and we showed the behavior
of the eigenvalues along simple f contours. We now use
this information to understand the LoSurdo-Stark reso-
nances at large I'" for a typical set of resonances, those
with principal quantum number n = 4. There are exper-
imental data for n = 4 up to moderately high fields (see
Ref. [20]), and the states of this manifold illustrate all
the diferent behaviors we have found.

The LoSurdo-Stark resonances of atomic hydrogen
solve the system of Eqs. (4), (5), and (7) with Z = 1
and k = —2E scaled out, i.e.,

0.3 0.4 0.5 0.6
Re (I(I,j)

0.7 0 ' 8 0.9 ( d2 m2 —1 1
+ + -s+fs'

~
Pi(s) =Pili(s), (41)ds2 4s 4

0..2 ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~
'
~ ~ ~

(c) If I = 0.01883 ( d m —1 1
+ +- +f ""l4.()=P.y.(),ds2 4s 4

(42)

0
~.(1 f)+~.(1, --f) = (4fiF) ~

-0.1

0 2 I ~ ~ ~ I

0.3 0.4 0.5 0.6
Re P(1,j)

0.7 0.8 0.9

FIG. 4. Details of trajectory recombination at a branch
point. Solid line, the n = 0 trajectory; dashed line, the n = 1
trajectory; solid circles, the branch points joi (lower) and

joi (upper); open circle, the beginning of the n = 0 tra-(&)

jectory at 8 = 0. The arrowheads indicate the direction
of increasing 8 just before the vicinity of the branch point
foi at 8 = 3.8046521811613661. (a) Just outside the (01)
branch cuts, if i

= 0.01885. (b) Right at the (01) branch cuts,
i ji = 0.0188384040780696. Note how the two trajectories
enter the images of the branch points collinearly and leave
collinearly, but perpendicularly to the incoming direction. (c)
Just inside the (01) branch cuts,

i f i
= 0.01883. Notice how

the outgoing trajectories have "detached" and "recombined"
with the opposite incoming trajectories. What happens at
f0i on the first sheet is mirrored at f0i on the third sheet .(3) ~ ~ (&)

To be consistent with the definition of resonance, that
ImP2 & 0 for positive f, the F in Eq. (5) —must be
understood as Fe ', as indicated by the fe ' in Eq.
(42).

In contrast with the preceding section, where the f
contours were chosen to illustrate various points, here
the contour for f is completely specified by the system
of Eqs. (41)—(43). That is, f(F) is a function obtained
by solving the system of equations, starting with a given
set of parabolic quantum numbers (ni, n2, m) at F = 0.

With the numerical method of Ref. [22] we have
tracked the ten states with principal quantum number
n = 4 as the electric field increases &om zero to infin-

ity. Our numerical calculations show, independent of the
state, that the scaled field f starts at the origin and traces
a closed loop in the third "global" Riemann sheet, i.e.,

2n & arg f & 0 (mod6m). —The only branch points f or
fe ' can encounter are those with —2m & arg f & —n.
The trajectories we have calculated all fall into three cat-
egories.

The first occurs when the initial state (ni, n2, m) has
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ni ——n2 and is illustrated by (1, 1, I) in Fig. 6. The
coupling constant f traces an oval path in the lower half
plane of the third Riemann sheet, where there are no

branch points, while the oval for fe ' in the upper half
plane loops all pairs of branch points, but no branch cut
is crossed. Only m = I branch points with labels (I, n)
can be seen by Pi(1, f) or P2(1, fe '

), and in Fig. 6 the
first few pairs are shown. At F = oo, Pi returns to its
initial value, while P2 returns to the negative of its initial
value. (The initial values of Pi and Pq are the same for

this case. )
The second category occurs when nq ) n2 and is il-

lustrated by (3, 0, 0) in Fig. 7. The scaled field f starts
out tracing a smooth oval in the lower half plane of the
third Riemann sheet where there are no branch points,
but before returning to the origin, it crosses the negative
real axis and encircles exactly one branch point, the one

denoted f„,„,= fos in Sec. III, and then returns to the(2) (2) ~

origin where Pi now has the initial value of P2. At the
same time, fe ' crosses no branch cuts and P2 ends up

5
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FIG. 5. Possibly misleading snti-Herglotz appearance of constant-[f[ trajectories when [f[ is small. (s) n = 0 snd n = 1
constant-[f[ trajectories of p(1, [f[e* ) for [f[ = 0.0800 (dsshed lines) snd [f[ = 0.0001 (solid lines), with 8 6 [0, 3z'/2]. The
two plots for ]f[ = Q.Q800 constitute one-qusrter [3m/2 vs 6z'] of the same plots given in Fig. 3(s) snd are reproduced here
for reference. At 8 = 3z/2, p(1, [f[e' ) always falls on the imaginary axis. The Herglotz property requires that Im p(1, f) ) 0
when 0 & srg f & z. Unlike the other three, the n = 1 trajectory for [f [

= 0.0001 appears to start out with negative imaginary
part, even though Im f starts out positive. (b) Greatly msgniSed blowup of the 8 = 0 end of the n = 0 trajectory. (c) Greatly
msgniiied blowup of the 8 = 0 end of the n = 1 trajectory Both show . structure not visible at the scale of (s). In this
microscopic view, it is clear that the Herglotz condition is satis6ed and that the n = 1 trajectory does not begin its plunge into
the negative half plane until 8 has exceeded m.
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0.03

0.02

0.01

-0.01 n2, m) = (1,1

ble, as is shown in Fig. 8(b). Note in Fig. 8(b) that the
trajectory of fe ' passes to the right of all the (O, n)
branch cuts (n & 4), while in Fig. 7(c) the trajectory
of f passes to the left of the same branch cuts. This
is why P2(1, fe '

) ends up at the negative of Pq(1, 0)
in the (0,3,0) case, while Pq(1, f) ends up equaling (the
positive) P2(1, 0) in the (3,0,0) case.

We do not have a general proof, but this behavior has
been confirmed in all the cases we have tested: If nq g n2,
the coupling constant of the equation corresponding to
the largest separation constant at zero 6eld crosses the
nq E+ nq branch cut, and as the electric field F tends to

-~~e, a, ~-.(vP', vP'), v ~ =-(v I', t4")

-0.02 V. ASY'MPTOTIC BEHAVIOR
OF LoSURDO-STARK RESONANCES

AT LARGE FIELD
-0.03

-0.02 -0.01 0

Re f
0 ~ 01 0.02

FIG. 6. Trajectories as F increases from 0 to oo for

f(F) (solid line) and e ' f(E) (dashed line) on the

Pq (1,f) and P2(1, fe '
) Riemann surface for the resonance

(nl n2 m) = (1, 1, 1), for which nq ——n2. Only (n, 1) branch
points appear on the third sheet of the relevant T~ triple sheet.
No branch cuts are crossed, but the e ' f(F) trajectory loops
all the branch cuts. Pq(1, f) returns to its initial value (= 2),
while Pq(1, fe '

) returns to the negative of its initial value

(= —2)

A. Starting formulas

Let

A~ = Hlln Ay~ A2 (44)

The numerical study of the preceding section showed
that as F ~ oo, the scaled field f -+ 0 with asymp-
totic phase —x (mod 6m), and the separation constants
approach + a common unperturbed eigenvalue. In this
section we use this information in deriving an asymptotic
formula for E(F).

An empirical result of Sec. IV is that as F ~ oo, Pq -+
n + (m+ 1)/2, and, P2 -+ [n + (m—+ 1)/2]. Near
F = oo both separation constants have values on the
same triple sheet corresponding to n, Pq at arg f =
—w = 5n'(mod6n), and P2 at arg(fe '

) = 4m. It is
convenient to use the notation P(1, f) for Pq, because for
P2 on the same triple sheet it follows with the aid of Eq.
(33) that P2 ——P(l, fe '

) = —P(l, fe'2 ) The implic. it
Eq. (43) for f(F) then becomes

1/3

&(1 f) —P(1 fe" ) = I— (45)

The left-hand side of Eq. (45) is the discontinuity of
P(1,f) between two successive sheets of the triple sheet
belonging to n The region o. f interest is arg f
so that the discontinuity is at the negative real axis be-
tween the third and first sheets. Reference [15] gives an
asymptotic expansion for the discontinuity (45), valid for
—37r/2 ( arg f ( —7r/2 and ]f ] sufficiently small:

P(1, f) —P(1,f"")

(—f) & 1 & -
t,yr)

(46)

at F = oo with the negative of its initial value. Figure
7(a) shows the entire trajectories for f and fe ' On.
this scale the branch points cannot be seen. Figure 7(b)
is a blowup of the region where Pq(1, f) slices through
the (03) branch cut. While f is on the n = 3 triple sheet

Ts, Pq(1, f) "sees" only (n, 3) branch points, which are
the only ones shown in Fig. 7(b). The trajectory appears
to cross not only the (0,3) branch cut, but also (1,3),
(2,3), (3,4), and (3,5) as well, but this is an artifact of
the diagram. As soon as f passes through the (0,3) cut,
f is on To, and none of the other (n, 3) branch points are
visible: instead f now sees only (0, n) branch points, as
plotted in Fig. 7(c).

The third category occurs when n~ ( n2 and is illus-
trated by (0, 3, 0) in Fig. 8. The scaled field f stays com-

pletely in the lower half plane of the third Riemann sheet
where there are no branch points, and when F = oo, Pq
returns to its initial value. Meanwhile, fe ' stays com-

pletely in the upper half plane. But unlike the first two
cases, the trajectory of fe ' passes through exactly one

branch cut, the one joining fss and fos, and then re-(2) (~)

turns to the origin where P2 now has the negative of the
initial value of Pq. The (n, 3) branch points are shown in
Fig. 8(a). They are visible to P2(1, fe '

) at the begin-
ning of the trajectory. When fe * passes through the
(0,3) branch cut, only the (0, n) branch points are visi-
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where

P = n + (m+1)/2 (47)

b(') = 578P' —02P' — P' —9OP
3 18

—51(m —1)P + 25(m —1)P
and the b are known functions of P and m [6,15].
For example, +—(m —1) + —(m —1) .

13 2

2 8
(50)

b~') = 1,

b
' = —34p' —12p ——+ -(m' —1),

(48)

(49) All the asymptotic expansions derived below follow from
Eqs. (45) and (46).
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0.1
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I
I
I
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0.005

0
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(3,
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-0.005
(n&, n2, m) = (3,0,0)

-0.3
-0.01
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I I ~ ~

I
~ 1 I I
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I ~ ~ I
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~ (0,4)

(0,)) . . (Ls)'
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FIG. 7. Trajectories as F increases from 0 to oo for f(F) (solid line) and e * f(F) (dashed line) on the Pa(1, f) and

pz(1, fe '") Riemann surface for the resonance (nz, nz, m) = (3, 0, 0), for which nq ) nq (a) Large-scale v. iew of the trajectories.
Notice that f loops into the lower half plane (third sheet of Tq), but swings into the upper half plane before returning to the
origin. (b) Blowup of the region near the origin to show the Bender-Wu branch points. Initially the only relevant branch points

to f are the (n, 3) on Ts, which are shown. The trajectory for f crosses the fos —fss branch cut onto the traple sheet T(a(&) (&)

(c) Blowup of the region near the origin with the (0, n) branch points on T'0 shown. These are the ones visible to f after passing

through the fs(s~ —fss cut. None of the other (0, n) branch cuts are crossed. These are also the branch points visible to fe

which does not cross any branch cut, but encircles all of them. Pz(1, f) returns at F = oo to the initial value of Pz, 1j2, while

Pq(l, fe '
) returns to the negative of its initial value, —1/2.
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B. Trajectory equation: arg f as a function of
I f I

To obtain asymptotic equations for the modulus and
argument of f, we first substitute Eq. (46) for the discon-
tinuity into Eq. (45) and indicate separately the modulus
and argument of f to obtain

(lf Ie'( sf+ )) 2P f 1

n !(n +m)! (6Ifle' 's~)

OO ei ars f ils
x ) b'"'(Ifl"'""+')"-

I

0.01

0.005

0

(a) .. '

/

I
' (~») ~
I

1

(&&) ~
' . (3,4)

I 0 ~ ~

(0,3) ~

~ (3,5)

~ (0,3)

e -Isf

~ (~.3)

I

0

(3 5),' ~ ~ (2,3)
~ (3,4)

(51)

Next we set equal the arguments of both sides of Eq. (51)
(the magnitudes will be treated later):

7r sin(arg f)———2P (arg f + s)—
2

-0.005
n), n2m = 0 3,

+arg ) b + (lfle' 's +
) —arg f+2kvr,

(".
)EN=0

(52)

-0.01

-0.01 -0.005 0
Re f

0.005

~ ~ ~
I

r
(b) ..

(0,3) ~

0.005
(0,4) ~

(0,5) ~

e -I'Kf (0,6) ~

~ (0,3)

~ (o'4)

~ (0,5)
~ (0,6) I

I

0

0 01 I ~ e ~

0.01

where k = 0, +1,k2, . . . [the integer k here is not to be
confused with the "force constant k" in Eqs. (6) and (23)].

Since Eq. (52) does not depend explicitly on Ii, it can
be solved for arg f as a function of

I fl. That is, it is an
equation for the (large-F) end of the trajectory in the f
plane for all states ending up with a particular n (and
m). Notice that only one of the two quantum numbers

(ni, ns) appears explicitly via n, P, and the b . The
second comes in via k. [See Eq. (60) below. ]

We look for a series solution

~g f - -~+ a"'Ifl+ a"'Ifl'+ a'"Ifl'+" (53)

Because of the way that k and P enter the a('), the
formulas are a little simpler if we define

-0.005
n&, n2, m =(0,3,0) q = (12k + 1)~,

s = 2(6P + 1).
(54)

(55)

One finds that

0 01 I ~ ~ a I ~ ~ ~ ~ I

-0.01 -0.005 0
Re f

0.005 0.01

FIG. 8. Wajectories as F increases from 0 to oo for

f(F) (solid line) and f(E)e ' (dashed line) on the

Pi(1, f) and P2(1, fe '
) Riemann surface for the resonance

(ni, nz, m) = (0, 3, 0), for which ni ( n2 The trajectory.
for f lies entirely in the lower half plane (third sheet of TQ),
where there are no branch points. Pq(1, f) returns to its ini-
tial value, 1/2, at I" = oo. The trajectory for fe ' starts oIF

on the third sheet of Ts and passes through the fQ~
—f03

cut onto To. (a) The view from Ts of the trajectories and
branch points. (b) The view from To. The trajectory for
fe '" passes to the right of all subsequent branch cuts and

Pg(1, fe '") ends up with the negative of the initial value of
P„-1/2.

a(~)

a =qs(2)

a() =ql —q +s —6b's (58)

(»)

For each integer k there is a difFerent solution for arg f
All the solutions for arg f approach —z., but the slope
of each is difFerent, corresponding to q = (12k + l)7r.
Note that the trajectories for f = If le' s~ —l�f-
�liql + . all end at —0 with zero slope, but the curves
separate as f moves away f'rom the origin. By examining
numerical solutions for all the resonances stemming &om
states with principal quantum number n & 4, we have
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found that in each case k is given by

k = n2 —ng. (60)

One finds for
I f I

the series

ifi-v —v ~+v —
I

-q +6b()
I

—s w+~s
2 )

C. Expansions for arg f and
I f I

as functions of E

We return now to Eq. (51) and equate the magnitudes
of both sides:

+ s s ~

—v —v'~+ ) v"+' P f,(")~&
p=O

(72)

(73)

I f I

~ (cos(arg f) 5

n !(n +m)! q 6!fi )!,
exp

I

The series for 1/I f I
is more directly related to that for

IEI [cf. Eq. (81) below]:

OO 1/3

~ ) b'"'(ifl"'""")"-! I I

i
(61)

N=O

Equation (61) can easily be solved for F in terms of
I f I

and arg f:

1 1 +ur+v
I

—q +6b l+s m +(1, (,)&

OO N

) N) (N) p

N=& p=O

(75)

ln
, . -(6P +1)1 lfl-

4 [n !(n + m)!] 2lf I

) b(N)(if! i(ars f+m))N¹0
(62)

Although it is not obvious alone from the expansion (73)
for

I f I
that the expansion (75) for 1/I f I

has no terms of
the form v~tuN+ except for the first two (all others have

v to at least as high a power as m), it can be readily seen
with the aid of 1/(vi f I) times Eq. (71).

The series for arg f in terms of v and m follows from
the composition of Eqs. (53) and (73):

Further, arg f can be eliminated via Eq. (53) to give an
equation for F(if I) that has the form

ln - (6I9 + 1) ln. (ifi) +F 1

4[n !(n +m)!]' 2

arg f ~ —vr + qv + qv (s —m) +2

OO N

+ ) „N+ ) -g(N)

N=0 p=O

(76)

(77)

The first couple of d( ) are

+ ) - d(~)!f!~
N=Z

(63)
The coefficients f„,g„, and 8~, for N ( 3, are~ (N) (N) (N)

tabulated in Table III.

d(') = --'q' —3b(')

d(') = --'q'8„+ -b(') ' —3b(')

(64)

(65)

D. Large-E expansions for E(E)

The corresponding expansions for E follow irrunedi-

ately, since

2ln
4[~ !(n +m)!]'

1

2lnF '

m = —8' lnv

F= 8 ln 2ln
4[n !(n +m)!] ~

2(6P + 1)ln (21nF),

and &om rewriting Eq. (63) in the form

(66)

(67)

(68)

(69)

Ifl - v —v~lfl + 2vifl ) d'"'Ifl"
N=1

+s vlf!in 1 +
I

——1
I

& Ifl
v )

What is really needed, however, is not F as a function
of

I f I, but
I f I

as a function of F, that is, the reversion of
Eq. (63). The result is more complicated, because there
are terms in 1nlnF as well as lnF. Some simplification
comes kom the groupings

(78)

+ s ~ ~

OO N

) N ) g(N) p

N=0 p=O

(79)

(80)

2 4f (81)

F 2/'
1 + —vs

2 4v 3

+v
~

—
q +4bi' ~+ —s ss ——ss + )(3 ) 3 9

(82)
2//3 oo N

) .") ''"
4v ~ ~ p

N=0 p=O

(83)

2
argE = —x ——arg f3

2 2 2—vr/3 ——qv ——qv (s —w)
3 3
( 1 2 2 (~i')--qv

!
--q —s —12b' '

I

—3s m+ ur

)
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TABLE III. The coeIBcients for the large F asymptotic expansions of
(f (, 1/( f ~, arg E, and (8(

given in Eqs. (73), (75), (80), and (83), respectively.

Formulas
oo N

I&l-). "").&'"' '
N=O p=O

arg E —-m —-qv e 8 m
N (N) p

3 3
N=0 p=O

(
g~ 4( '( + )')'

q = [»(n2 - n~) + 1]~
Coefficients

1/off 1/v+sr+ ) v ) g~
N=1 p=O
oo N

)g( 1 xp/ '') )
N=0 p=O
(

m = s log 21og ~,(,), F ~

s =2(6P +1)

f(N)

0 0 1
1 1 —1

0 0
2 1

0 —-q —6b(1)

—1
5—Soo2

2q —s + 18b

0 —2q s —6s b3 2 (1)

+3b —6b

(N)
9p
0
soo
-'q'+ 6b"'
——s
--,'q'+ s'„—6b(„"

q Soo + 6Soo boo
3 2 (1)

2
3b(„') + 6b(„')

1
3 Soo

-q —-s + 6b3 2 (1)
2 2

'r 2 3—2q Soo + Soo

—18s b + 6b
-12b'„"

+2b + 6s b
6b(1)b(2) + 6b(3)

g(N)

1
—1

—3Soo

—-q +s —12b1 2 2 (1)

—1
11
2 Soo

q' —6 ' +36b(')

11 2 3
e q Soo+ Soo

-18b(„"

(N)
ep
1
2
3
0

1
9

2
3 Soo

2 + 4b(1)

4
81

5—
9 Soo

—-q + —s4 2 2 2
9 3 oo

——b16 (1)
oo

q soo + 4sooboo2 (1)

-2b'„"'+ 4b(„"

Benassi and Grecchi [25] gave the first two terms in Eq.
(82) for ~E~. For arg E, their second term is the same
as ours when corrected by a factor of 2. The coefficients
e( ) for N ( 3 are also listed in Table III.

E. Trajectories for f revisited backwards

It is informative to take another qualitative look at the
path f follows as F runs from oo back towards 0 in the
light of the asymptotic formula (76). First Bx n Take.
n2 ——n, and let successively nq ——n + 1,n + 2, . . . .
This is the case that the f curve ends up on the n2 triple
sheet, which means that Pq ends up at —Pz(1, 0), and
that the f trajectory has to pass through the (nq, n2)
branch cut between the nq and n2 triple sheets. Our aim
is to describe how this happens by starting from F = oo.

As F decreases from oo, arg f is given initially by [rje-

call that v 1/(2lnF)]

arg f —2z + [12k+ 1]vz
—-z —[12(ng —n2) —1]vz. (84)

As nq —n2 ———k takes on the values 1, 2, . . ., the scaled
Beld f lifts progressively higher into the second quadrant.
Refer to Fig. 7(c), for which n = n2 ——0 and nq ——3.
The curve for f for nq ——4, traversed backwards &om the
origin on the n2 triple sheet, will rise faster than the (0,3)

arg(fe '
) - —2z. + [12k+ 1]vz.- -2~+ [»(n2 —n, ) + I)v~. (85)

As n2 increases Rom nz, the trajectory for fe ' rises
more strongly in the Brst quadrant and can pick off the
next higher branch point f I

~z~. Figure 8(b), withng, ng+)k(
the dashed curve traced counterclockwise, is useful for
visualizing this process.

In the view &om F = oo, the initial triple sheet is T„
Whether the f trajectory or the fe ' trajectory tra-
verses a branch cut—which determines whether Pq(l, f)
or P2(1, fe '

) changes branches —is determined by the

curve, and will "pick off" the next branch point (0,4). For
each successively higher nq the f trajectory rises faster
to pass to the right of the next succeeding branch point.
The branch points f( )

+~&~
in the second quadrant lieng, ng+~k)

on a convex upwards arc [compare also Fig. 1(a) for the
f(,I„,], which makes it possible to pick off the branch
points in a monotonic manner.

Second take nz ——n, and let successively n2 ——n +
1,n + 2, . . .. This is the case that the f curve ends
up on the nq triple sheet, which means that P2 ends up
at —Pq(1, 0) and that the fe ' trajectory has to pass
through the (nq, n2) branch cut between the nz and n2
triple sheets. As F decreases from oo, arg(fe '

) is given
initially by
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When is f given accurately by the asymptotic for-
mula? The answer depends on the quantum numbers
of the resonance and is illustrated in Fig. 9 for the
excited state calculated by Benassi and Grecchi [25],
(ni, n2, m) = (0, 1,0). On the scale of Fig. 9(a), the
asymptotic formula (73) with % = 4 gives

I f I
accurately

at F 102o. For arg f, however, formula (77) with
X = 4 is already accurate at Il 10io. The highest-
field calculations of Benassi and Grecchi are indicated by
large open circles in Figs. 9(a) and 9(b).

-2.5
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(b)
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I"IG. 9. Scaled field f vs F ss given by exact calculation
snd by asymptotic formulas for the (0,1,0) resonance. Solid
line, exact calculation; small open circles, asymptotic formu-
las (73) snd (77) [cf. also Table III] with N = 1; filled circles,
asymptotic formulas with N = 4; large open circle, the high-
est field calculated by Benassi and Grecchi [25]. (a) [fl vs

log, o F (b) srg f v. s logio F.

sign of k = n2 —ni If k ( 0. , then consistent with
Eq. (84), f passes through the (n, n + Ikl) branch
cut, and ni ——n~ + Ikl, leaving n2 ——n~. If k ) 0,
then consistent with Eq. (85), fe ' passes through the
(n, n + k) branch cut, and n2 ——n + k, leaving
A$ —A~ i

G. Trajectories for E

We end this section with pictures of E for three scales
of F: physical, atomic, and unphysically large —the last
to answer the question, when is E given accurately by
the asymptotic formula. The trajectories for all the res-
onances with n = 4 are illustrated in Fig. 10.

The physical region here is arbitrarily defined to in-

clude fields up to 0.001 a.u. 5 x 10s V/cm. In
Fig. 10(a) the trajectories all start on the real axis at
E„4———1/3-2. As F increases, the energies spread out
in a "fan" vs Ii. However, the real parts of the ener-

gies are plotted here vs the imaginary parts, not F The.
imaginary parts are initially exponentially small, and the
result is that the energies appear to spread out to the
left and right while staying on the real axis. When F in-

creases sufficiently for the imaginary parts to be visible,
the trajectories quickly descend through the exponential
regime and spread out into a Re E vs Im E fan pointing
downward.

The "atomic" region here is arbitrarily defined to mean
that F is approximately 1 a.u. Figure 10(b) shows
the same trajectories as in Fig. 10(a), except that the
scale is now a.u. rather than hundredths or thousands
of an a.u. The spokes of the ReE vs ImE fan now
look almost like straight lines. Note that in all parts
of Fig. 10, three "pairs" of trajectories are grouped nat-
urally by their values of ni —n2 The asymp. totic expan-
sions are not appropriate for the atomic region because
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F & 4[re l(ri + rn)l] . Thus v would be negative, and
to would be the logarithm of a negative number.

In Fig. 10(c) the same trajectories are carried to F
1 x 10 a.u. Figure 10(d) is the same as Fig. 10(c),
except that the asymptotic formulas (80) and (83) with
N = 3 were used to calculate the energies. On the one
hand, it is clear that the asymptotic formulas reproduce
the exact calculation very well. On the other hand, the
clear implication of Eq. (80) is that all the trajectories
should have asymptotic phase —x/3. Yet the trajectories
are substantially spread out in Figs. 10(c) and 10(d). The
explanation is simple. The leading term in the deviation
from —m/3 is —2qv/3. When F 10so, one finds that

2
arg E+ 7r/3 ——qv

3
2——[12(nz —ni) + 1]x/(2 ln F) (87)3

—[12(n2 —ni) + 1]n /(3 x 30 x ln 10) (88)
-0.058(n2 —ni )7r, (89)

which implies an approximately 60' difference between
arg E for (3,0,0) vs (0,3,0).

VI. SUMMARY

In the LoSurdo-Stark efFect, as the electric field F ~
oo, the resonance eigenvalues asymptotically tend to in-
finity along the ray, arg E = —x/3. The leading term
of the asymptotic magnitudes (independent of the reso-
nance) is given by

2/3

]Ei — F ln F—
2 2

while the full expansion is given by Eqs. (53)—(81).
The derivation of the asymptotics is perhaps even more

interesting, because it leads to results on the analytic
structure of the (radially syrrnnetric two-dimensional)
quarticly anharmonic oscillator, whose eigenvalue, equa-
tion is equivalent to the separated equations for the
LoSurdo-Stark efFect in parabolic coordinates. The Rie-
mann surface of the anharmonic oscillator consists of

an infinite number of triple sheets. Each triple sheet
is identified with a single unperturbed harmonic oscilla-
tor eigenvalue, and every pair of triple sheets is joined
by exactly two branch cuts. The structure is richer than
that conjectured by Bender and Wu, who initially sug-
gested that only the triple sheets corresponding to ad-
jacent quantum numbers (difFering by kl in the present
case) were joined together. A FORTRAN computer pro-
gram, designed to compute resonances at physical field
strengths, was used without modification to compute res-
onances at highly nonphysical field strengths. With a
slight alteration to the iteration strategy, the same pro-
gram efficiently found the exact location of the Bender-
Wu branch points, tables of which have been given for
m =0, 1, and 2.

Because of the simple formula that connects the
LoSurdo-Stark energy to the inverse square of the sum of
the separation constants, the sum of the separation con-
stants must tend to zero as F ~ oo. We have found nu-

merically that the separation constant Pi returns either

to its unperturbed value PI
) or to P2 ), the unperturbed

value of Pz, whichever is smaller. At the same time, P2
tends to the negative of whichever unperturbed eigen-
value is smaller. We understood this numerical behavior
by following the trajectory of the complex scaled field f
As the real electric field F increased from 0 to oo, in each

case that P, and P2 were not equal, the trajectory of(o) (0)

either f or of e ' f looped around a single branch point
and passed through the cut that joined the two (Pi and

P2( )) Riemann triple sheets All o. ther branch cuts were

avoided. No branch cuts were crossed if Pi = P2
We derived the large-F asymptotic expansion for E via

the known small-f asymptotic expansion for the discon-
tinuity of the separation constant in the f plane across
the negative real axis.
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