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The Schrodinger equation for atomic hydrogen in a large electric field F is solved by separation
in parabolic coordinates. As F — oo, the scaled field f that enters the separated equations tends to
0. Thus the large-F asymptotics depend on the small-f behavior of the separated equations, each
of which in turn is equivalent to a quarticly perturbed two-dimensional anharmonic oscillator. The
Bender-Wu branch cuts of the oscillator play a major role in the hydrogen asymptotics. A simple
iterative algorithm permits the calculation of the branch points, at which two eigenvalues coincide.
We have found numerically that, as F — oo, the separation constant (3; returns to the smaller of

(

the unperturbed values ,Bﬁo) or ,320). At the same time, 3, tends to the negative of the smaller value.
As the real electric field F increases from 0 to oo, in each case that ﬂio) and ﬂ§°) are not equal,
the trajectory of either f or e *" f (but not both) loops around a single branch point and passes
through the cut that joins the two (ﬂ{o) and ﬂgo)) Riemann triple sheets. All other branch cuts are
avoided. No branch cuts are crossed if ﬁﬁo) = ,3;0). The known small-f asymptotic expansion for
the discontinuity of the separation constant in the f plane across the negative real axis leads to the
large-F asymptotic expansion for E in terms of the parabolic quantum numbers n;, n2, and m.
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PACS number(s): 32.60.+i

I. INTRODUCTION

Although atomic hydrogen in an external electric field
was first studied experimentally in 1913 by LoSurdo [1]
and Stark [2] and quantum mechanically in 1926 by
Schrédinger (3], still the LoSurdo-Stark effect contin-
ues to attract both experimental and theoretical inter-
est. Starting in 1978, modern beam and laser techniques
were applied by Koch [4] to measure energy shifts and
ionization rates, while at the same time there was a re-
vival of theoretical interest that involved numerical in-
tegration [5-9], perturbation theory [10], complex varia-
tional calculations [11,12], semiclassical methods [13-15],
and the proof that the perturbation expansions were di-
vergent, but Borel summable to the complex resonance
eigenvalues [16]. Most recently, photoionization cross
sections of various states have been measured in fields
up to several kV/cm [17-19], and in one instance, a few
MV /cm [20]. The theoretical explanation of these exper-
iments can be based on variational calculations of the
complex resonance eigenvalues and complex transition
moments [21,22]. Such techniques have been extended
to larger atoms and molecules [23]. The general consen-
sus is that hydrogen is understood experimentally and
theoretically both at low static electric fields—the per-
turbative region—where the energy levels shift and split,
and at high fields where there is also ionization.

Experimentally accessible fields in practice have been
less than 0.001 a.u., or ~ 5 x 10 V/cm. In 1979, Be-
nassi, Grecchi, Harrell, and Simon [24] and Benassi and
Grecchi [25] determined the high-field asymptotics of a
resonance thought to come from the ground state and
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of the first two excited states [25]. It was clear, how-
ever, that the lowest field for which the asymptotic for-
mula was valid was many orders of magnitude higher
than any field used in prior numerical calculations. Be-
nassi and Grecchi [25], by using the separability of the
LoSurdo-Stark Schrédinger equation in parabolic coordi-
nates, pushed the complex variational method to fields
as high as 1022 a.u. This touched upon the asymptotic
regime and also permitted preliminary numerical explo-
ration of the connection with the asymptotics of the an-
harmonic oscillator—the separated equations are equiva-
lent to an anharmonic oscillator, and Bender and Wu [26]
had established that the complex anharmonic oscillator
eigenvalues are all analytic continuations of each other
with respect to the complex anharmonicity constant. Be-
nassi and Grecchi plotted the complex trajectory of the
coupling constant for the ground and one excited state
and conjectured the position of the Bender-Wu branch
cuts, one of which had to be crossed for the asymptotic
formula for the excited state to be valid. Thus two inter-
esting topics that required still higher fields were identi-
fied, but not thoroughly studied: the asymptotics of the
resonance eigenvalues and the Bender-Wu phenomenol-
ogy of the separation constants.

In previous work on photoionization [21,22] we devel-
oped a computer program to calculate LoSurdo-Stark res-
onances for any set of quantum numbers and for any field.
Although intended for laboratory fields, the program
works for fields that are orders of magnitude higher—
for instance, 108 a.u.—high enough to answer the ques-
tions raised by the work of Benassi, Grecchi, Harrell, and
Simon [24]. We obtain in this paper analytical and nu-
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merical results on LoSurdo-Stark resonances at extremely
high fields. In particular, (i) we fix the value of a param-
eter [25] in the second term of the asymptotic formula for
arg F, which in turn permits generation of the rest of the
expansion for arg E and for |E|; (ii) we present an algo-
rithm to calculate the position of the Bender-Wu branch
points to high accuracy (originally the branch points had
only been approximated by semiclassical methods [26],
later bv matrix methods applied to a simpler related
problem [27], and still later by numerical integration of
the Schrodinger equation [28]); (iii) we determine how the
trajectory of the complex anharmonicity constant in the
separated equations passes through Bender-Wu branch
cuts; (iv) we describe the topology of the Riemann sur-
face, which is more intricate than conjectured by Bender
and Wu: not only are the sheets belonging to perturbed
adjacent harmonic oscillator eigenvalues n and n+1 con-
nected by a pair of branch cuts, but the sheets of any pair
of eigenvalues are connected by two branch cuts. There
are a few additional points that include, for instance, the
Herglotz property. In short, we give a complete picture
of each resonance eigenvalue, from zero to infinite field.

II. SEPARATION OF VARIABLES

We briefly review some equations basic to the solution
of the LoSurdo-Stark Schrodinger equation, in part to fix
notation.

A. Parabolic coordinates

The Schrodinger equation for a hydrogenic atom of nu-
clear charge Z in a uniform external electric field F' di-
rected along the z axis,

1 Z
<_§A_?+F2)W_E\I!, (1)

separates in parabolic coordinates

T = \/ﬁ—ncosqﬁ,

y = \/Ensing, (2)
z= %(& —n).

We seek solutions in the form

_ (@) d2(m) 1 e _

\I’(g,n,(ﬁ) = W’“EC (m—O,il,:{:Z,),
3)

for which the Schrodinger equation reduces to the two

one-dimensional equations

H(—2E7F/4) qbl(s) = /81("2E7F/4) ¢1(S)7 (4)
H(—2E,—F/4) ¢2(s) = B2(—-2E,—F/4) ¢2(s),  (5)

where
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d2 2

mé—1 k 2
_s 2 d 6
Sg2 v T, Tt (6)

H(k,g) =
and the separation constants 3; and (3, are coupled by
ﬂl(_zEaF/4)+,32(_2Ea_F/4) =2Z. (7)

Since the operator H (k, g) does not depend on the sign of
m, we simplify the notation hereafter with the convention
that m > 0. [H(k, g) is transformationally equivalent to
a two-dimensional anharmonic oscillator with force con-
stant k and quartic anharmonicity constant 2g. See Sec.

IIE]

B. Symanzik scaling

The separated Egs. (4) and (5) are particular cases of
the generic

H(k,g)¢(s) = B(k,9)(s)- (8)

An important property of Eq. (8), usually known as
Symanzik scaling [29], follows from the change of variable
s — As:

ATIB(N%k, \%g) = B(k, g). (9)

In particular, one can scale out either k& or g in the sense
that

B(k,g) = k'/2B(1,k~%/2g) (10)
= g'/*B(g7 %%k, 1). (11)

Note that the 81 (f) and B2(f) of Ref. [22] correspond to
B(1, f) and B(1,e~"" f) here, where

f = j(-2B)1F (12)
and

E=—Z[(f) +B(f)] 2 (13)

1
2

C. Eigenvalues and eigenfunctions of H(1,0)

Let us first consider the “unperturbed eigenvalue prob-
lem” H(1,0)¢ = B(1,0)¢. The boundary conditions are
that s71/2¢(s) be bounded everywhere and that ¢(s) be
square integrable on [0,00) with respect to the volume
element s~1ds. The differential equation reduces to

2 2 __
(_s £oymoL, %) () = Brmbnm(s). (14)

As is well known, the solutions are

1/2
n! m —8 m
Pl = (me)i) TR AL ), 19)
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where
Bam=n+(m+1)/2, (16)
n=0,1,2,..., and Ls.m)(s) are the associated Laguerre

polynomials [30]. These eigenfunctions are orthonormal
with respect to the s~! ds volume element

/ By my (8) Prgym, (s) s tds = OnynaOmy,my- (17)
0

[Recall our convention that m > 0; otherwise m on the
right-hand sides of Egs. (15) and (16) would have to be
replaced by |m|.]

The implicit Eq. (7), with F' = 0, and with Eq. (10) to

scale out the energy term k = —2F, turns out to be
1 1
(n1 + %) V=2E + (n2 + %) V—2E = Z,
(18)

from which the familiar formula for the eigenvalues of the
hydrogenic atom follows:
Z2
E=- 3 (19)
2(n1+n2+m+1)

D. Resonance solutions

When g # 0, the differential equation

m?2 -1

d? k 2 _
(‘3@ MR S ) G (3) = BamPnm (s)
(20)

has a unique (up to a multiplicative constant) solution
dominated by the asymptotic behavior

2
9(s) ~ exp (—ggl/zss/z) (21)
that tends to zero as s — oo in the sector
1
gargs+§argg‘ < ;—r (22)

The resonance solutions of Eq. (20) are those solutions
that satisfy simultaneously the boundary conditions at
the origin and those at oo given by Egs. (21) and (22).
The corresponding values of the parameter 3 are called
resonance eigenvalues.

The LoSurdo-Stark resonance energies are those values
of the parameter E for which the resonance eigenvalues
of the separated equations (4) and (5) satisfy the implicit
equation (7). The numerical calculation of the resonance
eigenvalues and eigenvectors of both the separated Egs.
(4) and (5) and the solution of the implicit Eq. (7) for
the LoSurdo-Stark resonances have been discussed in de-
tail in Ref. [22]. The main idea is to expand the reso-
nance wave function as a linear combination of square-
integrable basis functions along a ray lying halfway in the

sector of convergence given by Eq. (22). Technical details
can be found in Ref. [22], and the calculation should be
considered as automatic for purposes of this paper.

It can be shown [14,31] that the definition of resonance
given here is equivalent to the usual operator-theoretic
definitions. Furthermore, Graffi, Grecchi, and Simon [32]
proved that every LoSurdo-Stark resonance wave func-
tion can be written in parabolic coordinates as a sepa-
rated product or as a finite linear combination of prod-
ucts; i.e., there are no other resonances than the solutions
of Eq. (7).

The relation between the mathematical concept of res-
onance and physical observables (in particular the pho-
toionization cross section of atomic hydrogen in an elec-
tric field) has been discussed in Ref. [22].

E. Relation to the two-dimensional isotropic
anharmonic oscillator

We close this section with the explicit connection be-
tween the two-dimensional isotropic anharmonic oscilla-
tor and the separated equations (4) and (5). The two-
dimensional isotropic anharmonic oscillator with har-
monic force constant k£ and quartic coupling constant 2g
has the Schrédinger equation

—%A+§(wz+y2) +2g (2% +4%)*| ¥ =280, (23)

With the substitutions,

z = /scos¥, (24)

y = /ssinf, (25)

¥(s,0) = 5—1/2(,5(3)\/%61"“" (m=0,+1,%2,...), (26)
™

one finds that ¢(s) must satisfy precisely Eq. (8).

III. BENDER-WU BRANCH POINTS

At large F, theoretical arguments by Herbst [31] as well
as numerical calculations indicate that for any resonance,
both Re £ and —Im E tend to oo, consistent with the
asymptotic phase —7/3 and magnitude 2~%/3(F In F)?/3
of Benassi and Grecchi [25]. The implication for the
asymptotic magnitude of f from Eq. (12) is that f =
O(1/InF) as F — oo. This has two interesting con-
sequences: the first is that as F — oo, fs? becomes
again a small perturbation, and the second, which fol-
lows from Eq. (13), is that at F = oo, #; = —(3;. That
is, one separation constant comes back to an unperturbed
eigenvalue, and the other to the negative of the same un-
perturbed eigenvalue. But how? The answer must be
sought in the path f traces in the complex plane, cross-
ing Bender-Wu branch cuts.
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Analytic continuation of the anharmonic oscillator
eigenvalues was first studied by Bender and Wu [26] in the
JWKB approximation and then rigorously by Simon [29].
The picture they developed is that 8(1, f) has a cube-root
“global branch point” at the origin that is a limit point of
sequences of square-root branch points with asymptotic
phases arg f = 37/2 and arg f = 97/2. At each square-
root branch point two levels coincide. [The word “cross”
is usually used, but “coincide” may be more appropriate.
(See Sec. IIID.) We use both terms interchangeably.] Ini-
tially Bender and Wu thought that only adjacent levels
cross. That is, start with 3(1, f) = a particular anhar-
monic oscillator eigenvalue, say the nth, with f positive;
follow a path that encircles only one branch point and
return to the starting point; then B(1, f) is equal to ei-
ther the (n — 1)th or (n + 1)th anharmonic oscillator
eigenvalue. To get from one eigenvalue to a nonadja-
cent one, Bender and Wu suggested that the coupling
constant has to “cascade” through a sequence of branch
cuts. After numerical calculations of Bender-Wu branch
points for the potential €|z| + z2, Bender, Happ, and
Svetitsky [27] recognized that nonadjacent levels could
be directly connected, but they did not fix a classification
scheme to assign branch points to pairs of unperturbed
eigenvalues. Shanley [28] later numerically integrated the
Schrodinger equation to find a large number of Bender-
Wu branch points for the original anharmonic oscillator
problem, many of which agreed well with the JWKB cal-
culations of Bender and Wu [26], but which disagreed in
the assignment of which levels were crossing. We shall
see below that the original and evolving picture of the
singularities requires a slight modification.

To understand what happens to 3(1, f), 8(1,e"™f),
and E(F) as f traverses the path generated by the im-
plicit Egs. (7) and (12) with F' increasing from 0 to
00, it is necessary to know accurately the location of
the Bender-Wu branch points. We describe here how
to calculate numerically the branch points from the
Schrodinger equation, variationally.

A. Numerical calculation
of Bender-Wu branch points

The variational program developed in Ref. [22] is able
to calculate anharmonic oscillator eigenvalues for any
value of f. By definition, a Bender-Wu branch point
occurs when two anharmonic oscillator eigenvalues cross.
Suppose a crossing point occurs at f.. Denote by 84 (1, f)
and B_(1, f) the two levels that cross. Since the f. is a
square-root branch point, 84 (1, f) and B_(1, f) are the
two branches of a Puiseaux series in a neighborhood of

fe:
Be(1, f) = B, fo) £ara(f — f)2+---. (27)

Pick two initial values f; and f; close to the branch point
fe, and note that
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5+(1 f1) =B-(L fr) _ (fr— f)*/?
VO = LR L) (h e
Solving this for f., one finds
fi = f2Q2
fom S22 (29)

This equation suggests the following iterative algorithm
to be used with the anharmonic oscillator eigenvalue pro-
gram: Fori=1,2,...,

2

[ B fi) - B-(1, fi)
@it = B+ (1, fir1) — B-(1, fi+1) (30)
e =00 (1)

As a computational procedure, this converged without
difficulty in typically ten iterations. Some illustrative
branch points, calculated with extended precision, are
presented in columns 4 and 5 of Tables I and II. All figures
given are accurate. The m = 0 branch points are plotted
in Fig. 1. Note the strongly regular pattern for the plot
of the reciprocals 1/f. in Fig. 1(b).

B. Identification and labeling of Bender-Wu
branch points; triple sheets T,

What do not come out of this algorithm are the
quantum-number assignments n; and ny given in
columns 2 and 3 of Tables I and II. Their identification
is more subtle. That the branch points can be labeled by
pairs of quantum numbers is a statement in itself about
the topology of the Riemann surface for 3(1, f).

Recall that the origin is a cubic-root global branch
point, which is a consequence of Symanzik scaling [Eq.

(9],

B(1,e°7 f) = B(1, ). (32)

The primary unit of the Riemann surface for B(1, f) is
thus a triple sheet. To each unperturbed harmonic oscil-
lator quantum number n one can assign a triple sheet T,.
On Ty, B(1,0) = n+ (m+ 1)/2. The value of (1, |f|e*)
is obtained by continuity on following the path from 0 to
| f| on the positive real axis and then from |f| to | f|e*® on
the triple circle of radius |f|. This recipe is unambiguous
for all f except for those at which there is a Bender-Wu
branch point somewhere on the triple circle of radius | f|.

Suppose now that we have a particular branch point
fe, the assignment of which is to be determined. We
follow B(1, f) numerically along a path on the positive
real axis from the origin to |f.| — ¢, then along an arc
from |f.| — € to (|f.| — €)e*®c, where §. = arg f., then
along a circle of radius € centered about f., and then
backwards from (| f.| —€)e®®< to | f-| —€ to the origin. The
€ should be sufficiently small that only one branch point
fc is trapped, and no others. To be sure that the path
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sheet, and corresponding values of 3(1, f), for m = 0 and 0 < n; < nz < 10.

TABLE I. Bender-Wu branch points f,(f:),., of B(1, f), in the third quadrant of the first Riemann

1F S0z

arg finy

ReB(1, fins

—Im B(L, fins

OOOOQOOOOOOOOCOOCCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOS

Ommﬂ\lﬂmmﬁmmmmmm»&hhkhbWWMNMQWNNNNNNNNHHHHHHHHHOOOOOOOOOOE

b — — — — — S
R0 2000800 No 800NN S0 NN 500 TDNAWSO©OIDTRWNGO0NDT S WN G

0.018 838404078069 6
0.011654854 4132018
0.008254 4725544379
0.006 351 438 586 740 8
0.005 149260 732693 3
0.004 3248791389213
0.003 7257785701993
0.003 271 299 256 666 1
0.0029149902131126
0.002 628 286 3125927
0.009 6873947748526
0.007 627 521 743 206 0
0.006 141 760 289 004 2
0.0050908801953315
0.004 326 549 5941253
0.003 752004 876 536 8
0.003 3070327628723
0.002953 5020405628
0.002 666 503 044 3800
0.006 439 801016 2670
0.0055435191817655
0.004 774137587 3483
0.004 1529379528673
0.003 655 421 623 664 6
0.003 253909 8403630
0.0029258312168321
0.002654 158 466 829 3
0.004 8098173725395
0.004 3247790112627
0.003 8703848438162
0.003473 5523687017
0.003 134602768 397 1
0.002846 5114293321
0.002 601 064 000 766 2
0.003 834636 058846 7
0.003 535 590 567 692 0
0.0032411846530183
0.002970946 979 0259
0.002 7296799446143
0.002516 677021 4538
0.003 1868770708146
0.002 9859505720297
0.002 782013 0653419
0.002 588 460 3634758
0.0024101258107474
0.002 725741 499531 6
0.0025822946794139
0.002433 787138 706 2
0.002 289 506 949 7389
0.002 380 892 686 870 2
0.002273 7686388251
0.002161 376 689 658 6
0.0021133414531976
0.002 030523 311 3382
0.001 899 754 065 949 4

3.8046521811613661
4.144916 165936 5290
4.297737896 767 2405
4.384166 2333155513
4.4398375351983900
4.4787748139905150
4.507 592760801044 5
4.529817891994 7352
4.547 503 400692902 7
4.561926 7330181939
3.506 153420738 7824
3.7994358151174239
3.977 834 848 335 2858
4.097094 0478599722
4.182223626 3499160
4.245998 644 483 7193
4.295 5656526691929
4.3352147139213491
4.367 669997 950 496 2
3.396 402 435 786 4176
3.633607197 3845334
3.797993 773 615463 5
3.918650612 9856278
4.010773 7284508135
4.083 308 497 542 291 2
4.1418579756841493
4.190 096 440861 790 7
3.338 955448 3056389
3.536 458 775153790 1
3.683 2614909789590
3.797 321594040279 5
3.8884407552844927
3.962 820739490330 2
4.024629 3378951429
3.303401 6876788413
3.472524189178 4292
3.603766 337 761 525 6
3.709631803 7105808
3.796 933 139 546 592 0
3.8701236213190485
3.279128166 6771391
3.427153724 007983 6
3.545403 330638 2206
3.643 3274626610326
3.725974936 721648 1
3.261449 7876482779
3.3932187098353775
3.500691 8614485765
3.5914271578050153
3.2479711570474141
3.366 835 456 508 664 7
3.465 307 886 303969 8
3.2373371620115504
3.345706 3929639203
3.2287221404350432

0.5741151481
0.5858517076
0.5859922991
0.584 3849321
0.582 5858388
0.580908 521 2
0.5794071716
0.5780739388
0.576 887 426 0
0.57 582 569 26
1.4552917233
1.5171975219
1.5456041747
1.559 987768 4
1.567 827816 6
1.5723133945
1.5749473226
1.576 498 867 8
1.5773890290
2.307255295 4
2.401 2030220
2.4573797987
2.4925236449
2.515503 5499
2.5311147014
2.5420636193
2.549947536 8
3.1506307213
3.2649847917
3.3428208756
3.397013114 4
3.4357355179
3.4640948174
3.4853320910
3.9903038073
4.118 5900826
4.212968 6959
4.2832521944
4.3364499441
4.3773847919
4.8280241116
4.966 3948506
5.073 609994 8
5.157244502 4
5.2231919448
5.664 5784771
5.8105838179
5.927981 2873
6.022716 0169
6.5003756989
6.652 3650030
6.7780119211
7.3356504730
7.4924600325
8.1705478055

0.056 4142450
0.0356196849
0.025107614 5
0.0191784150
0.0154394685
0.0128861349
0.0110392369
0.009644 676 6
0.008 556173 8
0.007 683927 4
0.116219783 4
0.1102239929
0.0944194105
0.080523998 7
0.069 486198 2
0.060 798 404 2
0.0538831348
0.048 291 087 2
0.043696 534 3
0.1552215286
0.1762733718
0.168 689 868 2
0.1549138549
0.1408110374
0.1279790157
0.116 7294913
0.1069782171
0.1832538307
0.230301226 5
0.236 1254379
0.228104 7712
0.2154457311
0.2017243950
0.188 3759885
0.204958 4308
0.275086 579 4
0.295 567897 2
0.296 0936070
0.2878682811
0.275916 3860
0.222602 5989
0.3130361578
0.347958 3499
0.358200033 8
0.356 1426378
0.237436 0800
0.3458376742
0.394 4759760
0.4147693330
0.2502147283
0.3746605091
0.4361493019
0.261 4284987
0.4003320706
0.2714122838

encloses precisely one single branch point, it is necessary
to calculate the location of all the branch points in the
region of interest. It turns out that on each triple sheet
except for two, B(1, f) starts and finishes with the same

value 3(1,0) = n + (m + 1)/2, which is characteristic
of that triple sheet. But for two triple sheets, say T,
and T,,, the starting and ending values are interchanged.
That is, if 3(1,0) = 11+ (m+1)/2 at the beginning, then
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TABLE II. More Bender-Wu branch points: |m| =1 and |m| = 2.

Re (1, fS

~ImB(1, firn,

3.620 045 743 060 926 2
3.945 309 057 660 985 0
4.120108 630271188 4
3.443251926 7754382
3.706 944 058 761 609 1
3.364 667793 4262730

3.524 656 523 392188 6
3.820733489762295 1

m_n ng  |fS arg fagng
1 0 1 0.013070694 8605637
1 0 2 0.009 367 946 647 3927
1 0 3 0.007125538978 208 2
1 1 2 0.007 7872263887453
1 1 3 0.006 457 298 4681169
1 2 3 0.0055239561509531
2 0 1 0.010059888 4094319
2 0 2 0.007 806 723296 2480
2 1 2 0.006544 7876796479

3.401 863 768 436 673 5

1.025623856 7
1.0619980407
1.0739985396
1.886 2459370
1.965019926 2
2.7321178229

1.470275003 2
1.525403 1469
2.3187803133

0.085597 3409
0.068 6836971
0.0538901913
0.135993703 3
0.1428306594
0.169432 2383

0.106 1058656
0.098 5486728
0.150 7678808

at the end (3(1,0) = nz + (m + 1)/2, and vice versa. In
this way, each branch point is associated with exactly one
pair of harmonic oscillator levels n; and ny, whose values
are swapped between the beginning and end of the path.

By way of example, we plot in Fig. 2(a) one such path
in the complex plane that encloses the branch point at

fe = —0.0060 — 0.0047, which connects the n = 1 and
n = 3 levels in the quadrant 7 < arg f < 3w/2. (The
“return” is on |f| = |f.| +¢, rather than on |f| = |f.| —€,
to permit discrimination between the outgoing and re-
turning paths on the plot.) Other nearby branch points
are indicated on the plot, and one typical branch cut
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FIG. 2. Identification of the branch point f{3) = 0.007627 5217432060 ¢ 79°4358151174339  (5) A path on the first sheet
that starts out at the origin (point a), follows the real axis to f = 0.00732... (point b), follows the arc f = 0.00732...¢e* as
0 increases from 0 through 7 (point c) to 3.799 4358151174239 (point d), then follows a semicircle of radius 0.0003 counter-
clockwise about f{i) (point e is at —7/2, point f at —), and traces backwards an arc of radius 0.00792... back through 7
(point g) to & = 0 (point k), and the real axis back to the origin (point #). The branch points identified in Fig. 1 are shown, as
well as their partners in the fourth quadrant of the first sheet, and four [(0,3), (1,3), (2,3), and (1,2)] plus (1,3) and (0,3) in the
fourth quadrant are labeled for reference. The partners in each pair define a branch cut. For illustration, the branch cut that
joins fég) with fég) along an arc of constant |f| is shown by a dashed line. (b) The trajectories of 3(1, f) that originate from
the five lowest harmonic oscillator eigenvalues at f = 0. The images of the starting and intermediate points from some of the
trajectories have been labeled with an, by, ..., in. The trajectories for n = 0, 2, and 4 all start and return from the same points
B(1,0) = n+1/2. The n = 0 trajectory is barely visible because of the scale of the plot. The trajectory that starts withn =1
at B(1, f) = 1.5 (solid line) ends at B(1, f) = 3.5, while the trajectory that starts with » = 3 at (1, f) = 3.5 (dashed line)
ends at B(1, f) = 1.5. (c) Twofold magnification of (b) to show more clearly how the trajectory that starts at 8(1, f) = 1.5
ends at B(1, f) = 3.5, and vice versa. (d) All the branch points f:gf}),, and fgg, (for N < 10), and their corresponding cuts, on
the first sheet of T5. The pattern seems typical for T, in general: | fj(",).| decreases monotonically as j increases; the “opening

half angle” of the branch cut 37/2 — arg fj(?,z at first incr as j incr from 0 to n + 1 and then decreases monotonically
(perhaps to 0) as j increases further.
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FIG. 2 (Continued).

(0,3) has been drawn. (To have drawn more would have
cluttered the figure.) The starting and key intermedi-
ate points have been labeled from a to i. We plot in
Figs. 2(b) and 2(c) the trajectories of the anharmonic
eigenvalues that originate from the four lowest harmonic
oscillator eigenvalues when f = 0. The images of the
starting and intermediate points have been labeled, when
feasible, with a,, b,, ..., i,, where n = 0,1,2,3/4. Note
how the trajectories for n = 0, 2, and 4 return to their
initial values, 0.5, 2.5, and 4.5. But the trajectory for
n = 1 starts at 1.5 and ends at 3.5, while the trajectory
for n = 3 starts at 3.5 and ends at 1.5. Figure 2(c) is
a twofold magnification of Fig. 2(b) to show the region
from S(1, f) ~ 1.5 to B(1, f) ~ 3.5 in greater detail. The
eigenvalues connected at this branch point are not adja-
cent.

Numerically we find that for eny pair of anharmonic
oscillator levels there are exactly four values of the an-
harmonicity constant f at which these levels cross. Each
branch point appears on precisely two triple sheets and
on no others. That is, for any triple sheet T;,, only those
branch points in Fig. 1 that have n as one of their two
labels can be encountered. Those branch points that do
not involve n are not branch points on T,. Figure 2(d)
illustrates the branch points and cuts in the third and
fourth quadrants of the first sheet of T3; the pattern is
typical. It is in the sense of this picture that the Riemann
surface put forward by Bender and Wu needs modifica-
tion.

C. Modification of the Bender-Wu surface

To describe more completely the Riemann surface of
B(1, f), we recall a few points made by Bender, Wu, and
Simon that follow from Symanzik scaling and that the
Hamiltonian H(1, f) [Eq. (6)] is self-adjoint for real, pos-

itive f.

We have already remarked that the origin is a cubic-
root global branch point and that the primary unit of the
Riemann surface for 3(1, f) is a triple sheet. Following
the notation of Bender and Wu [26], we denote as the first
sheet (0 < arg f < 2m), the second sheet (2m < arg f <
47), and the third sheet (47 < argf < 67) = (—27 <
arg f < 0), (mod 67m). Note that analytic continuation
by exactly 37 [cf. Egs. (9) and (11)] gives an eigenvalue
spectrum that is the negative of the f spectrum:

ﬁ(lveizﬂf) = _lg(lv.f)- (33)

The second point is a consequence of the Schwarz reflec-
tion principle (i.e., real power series for real f),

B(L, |flet*T) = B(1,|f|e"Cm e D), (34)

The third follows from Egs. (33) and (34): for arg f =
37/2 and 97/2 (—37/2), the eigenvalues are pure imagi-
nary. This result also follows directly from rescaling the
eigenvalue equation. For instance, for arg f = 37/2, Eq.
(22) permits using args = —m/2. With s replaced by
—1s, the eigenvalue equation becomes

? m*-1 1 2
R e L )“*(3)

= —i B(1,|fe®/*)¢(s), (35)

which has the form of a real eigenvalue equation save for
—1 times the eigenvalue parameter.

These properties have direct consequences on the lo-
cation of the Bender-Wu branch points—that they come
in groups of four. In particular, Eqs. (33) and (34) show
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that if f. is a branch point, then so are its reflection across
the imaginary axis |f.|e'(®*—28fc) and the two obtained
from these by rotation by 37, f.e?>™ and |f.|e(6" 28 f),
The four can be coupled into two pairs, one pair sym-
metrically placed in the third and fourth quadrants of
the first sheet and the other pair symmetrically placed in
the first and second quadrants of the third sheet. Here-
after we will add as a superscript f,g') (i =1,2,3,4) the
quadrant in which each branch point lies.

Branch cuts can be drawn between the two members
within each pair. It is convenient to draw the cuts on

the arcs |f| = |fc|, as has been done in Fig. 2(a) for fé3)

and fég) and in Fig. 2(d); this specification of the cuts
completes the recipe given in Sec. IIIB for the 8(1, f) on
the triple sheet T,.

The branch points accumulate at the origin, but with
what phase? The answer depends on the subsequence.
Consider the quarter of the branch points that lie in the
third quadrant of the first sheet, which we denote by

-,(11)"2(711—012 ,nz—n1+1n1+2 ) (The
ordermg of the labels n; and nz in _f,,l,., is unimpor-
tant; f,llﬂz is the same as _f nan,-) We examined the
limits of two subsequences numerically and found that
limy,, o arg £, = 37 /2, while lim,,, _, arg -f(::)n1+1 =
m, as can be inferred from Fig. 1(a). The first result
was proved rigorously by Simon (see Corollary 11.10.4 of
Ref. [29]). The second result could have been inferred
from Ref. [26] if it had been possible to assign the branch
points correctly.

We summarize the topological aspects of our discus-
sion by noting that the whole Riemann surface consists
of an infinite number of triple sheets T},, each labeled by
the quantum number of an anharmonic oscillator eigen-
value for the real self-adjoint equation. Any pair of triple
sheets, for instance, T,,, and T,,, associated with the
nyth and n,th eigenvalues, is connected by exactly two
branch cuts, one connecting the first sheets of the re-
spective triple sheets and the second connecting the third
sheets. One can pass directly from one triple sheet to any
other.

D. Trajectories for 3(1,|f|e’’) as f traverses a triple
circle; picture of a typical crossing

In this subsection we examine the trajectories of
B(1,]f|e®) as 6 runs from 0 to 6m. Some aspects have
not been anticipated in prior work, and it is possible to
give a detailed picture of the crossing of eigenvalues when
f passes through a branch point.

1. Large-scale picture

Figures 3(a)-3(e) show the paths traveled in the com-
plex plane by the four lowest m = 0 resonances, corre-
sponding to n = 0,1,2,3, for five values of |f|, all with
0 € [0,6w]. Figures 3(a)-3(e) have |f| = 0.080, 0.040,
0.020, 0.018, and 0.010, respectively.

Notice in Fig. 3(a) that as n increases from 0 to 3, the
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trajectories become more circular, which is a combined
consequence of Symanzik scaling, Eq. (11), and that as n
increases, the quadratic potential in Eq. (6) has a dimin-
ishing effect as a perturbation of the quartic oscillator.
That is, for large f, or for any f and large enough n, as f
moves along a triple circle, 8(1, f) is approximately f/3
times an unperturbed quartic oscillator eigenvalue

B(L, f) = fY2B(F7%/3,1) ~ £/°B(0, 1).

Already in Fig. 3(a), however, the n = 0 trajectory
is far from circular, and the outer three are flattened.
As |f| decreases to 0.040 [Fig. 3(b)], all the trajectories
contract, the outer three flatten further, and the pinched
sections of the n = 0 trajectory intersect each other to
form a three-lobed figure. By |f| = 0.020 [Fig. 3(c)—
note the change in scale between Figs. 3(b) and 3(c)],
the n = 0 middle lobe dwarfs the outer two, and the
n = 1 trajectory has become severely pinched. There is
an abrupt change in the topology between |f| = 0.020
and 0.018 [Fig. 3(d)]: The n = 0 and » = 1 trajecto-
ries seem to have exchanged their “middle” parts. This
is a consequence of the |f| = 0.020 and |f| = 0.018

triple circles being separated by the fm) branch points,

which have [£{)| = 0.0188384040780696. Figure 3(e)
at |f| = 0.010 shows the increasing intricacy as |f| has
been decreased past the second quartet of branch points

02 , which fall on |f| = 0.011 654 854 413201 8.

(36)

2. Details of a recombinant crossing

The T, and T, triple sheets have a common branch

point at |f{J)| = 0.0188384040780696, arg f> =
3.804652 181161 366 1, as indicated in Table I. The be-
havior of the n = 0 and n = 1 trajectories of 3(1, f) for
fixed |f|, as |f| passes through this value, are show in

detail in Fig. 4. The case that |f| = | féf)| is shown in
Fig. 4(b). When |f| is a little larger [Fig. 4(a)], the n =

trajectory approaches the image of the branch point fg; (3)
and then turns down sharply, while the n = 1 trajectory
turns up. When |f| = | féf)l, the sharp turns become
right angles, at the vertices of which the two trajecto-
ries touch. As |f| decreases from f(gf), the trajectories
“break” and “recombine” as they exchange the outgoing
legs of their right angles [Fig. 4(b) to Fig. 4(c)]. The gross
appearance is that the “identities” of the trajectories af-
ter the region of the branch point have been exchanged.
One can see immediately how if 3(1, f) started out on

the n = 0 sheet, and if f circled the branch point fé:;)
and returned to 6 = 0, then 3(1, f) would end up on the
n = 1 sheet, as illustrated in Fig. 2 for the fl(g) case.

On nomenclature, the trajectories do not literally cross
at the branch point. The B(1, f) coincide at the branch
point, and the trajectories exchange segments or detach
and recombine.

The 90° character of the trajectory at the branch point
is a consequence of the square-root nature of the branch
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FIG. 3. Trajectories of 3(1, f) at constant |f|, for the branches n = 0 through n = 3: (a) |f| = 0.080; (b) |f| = 0.040; (c)
|f| = 0.020; (d) |f| = 0.018; (e) |f| = 0.010. Note that the scale for (c)—(e) is magnified versus (a) and (b).

point. If |f| = |fé:;){e"9, then by Eq. (27)
Be(1,1£5D1e)
~ B I £ arp f P O 1]
~ (L 18)) £ arj2 £ 240 — 057) M2,

RAR Y

(38)

As (0 —6$)) increases through 0, its square root changes
from pure imaginary to real, and the trajectory makes a
90° turn.

3. Anti-Herglotz at large scale,
Herglotz at small scale

Consider now Fig. 5(a), on which is plotted |f| =
0.0001. According to Table I, many |f2)| and [f)]

n

branch points are already outside the three-sheeted cir-
cle traced by f. For this value of |f|, the JWKB method
of Bender and Wu is globally quite accurate, and from
a distance the trajectories appear uninteresting. But a
closer look reveals that the n = 1 trajectory seems to
dip immediately into the negative half plane. There is a
“cut Herglotz” property proved by Simon for the function
B(1, f) on the f plane cut from 0 to —oo:

Im B(1, f)
Im f > 0.

That is to say, the trajectory for ((1, f) should start
upwards with Im f, and it appears to start downwards
in Fig. 5(a). The same is true of every other trajectory
in Fig. 3 of Ref. [26]. The explanation can be uncovered
by blowing up the scale of the plot at the beginning of
the trajectories, as shown in Figs. 5(b) and 5(c). The

(39)
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FIG. 4. Details of trajectory recombination at a branch
point. Solid line, the n = 0 trajectory; dashed line, the n = 1
trajectory; solid circles, the branch points féf) (lower) and
fg) (upper); open circle, the beginning of the n = 0 tra-
jectory at & = 0. The arrowheads indicate the direction
of increasing 6 just before the vicinity of the branch point
7 at 6 = 3.804652181161366 1. (a) Just outside the (01)
branch cuts, |f| = 0.01885. (b) Right at the (01) branch cuts,
|f| = 0.0188384040780696. Note how the two trajectories
enter the images of the branch points collinearly and leave
collinearly, but perpendicularly to the incoming direction. (c)
Just inside the (01) branch cuts, |f| = 0.01883. Notice how
the outgoing trajectories have “detached” and “recombined”
with the opposite incoming trajectories. What happens at
féf) on the first sheet is mirrored at féf) on the third sheet.
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semicircular arcs from 6 = 0 to 7 are accurately given by
first-order perturbation theory:

B(1, f) ~ B(1,0)
+(6n% + 6n + 2 + m® + 3|m| + 6n|m|)f. (40)

Thus, on the one hand, the apparent “wrong direction” is
strictly an artifact of low resolution, while on the other,
the sharp twists visible at high resolution are somewhat
unexpected and are driven by nearby Bender-Wu branch
points.

IV. SEPARATION CONSTANTS
OF LoSURDO-STARK RESONANCES

In the preceding section we located and labeled the
Bender-Wu branch points, and we showed the behavior
of the eigenvalues along simple f contours. We now use
this information to understand the LoSurdo-Stark reso-
nances at large F' for a typical set of resonances, those
with principal quantum number n = 4. There are exper-
imental data for n = 4 up to moderately high fields (see
Ref. [20]), and the states of this manifold illustrate all
the different behaviors we have found.

The LoSurdo-Stark resonances of atomic hydrogen
solve the system of Eqgs. (4), (5), and (7) with Z = 1
and k = —2F scaled out, i.e.,

m? -1

d? 1
(_SES_5 T fsz) b1(s) = Bn(s), (41)

d2 2 _ .
(——sﬁ + m4—sl + %s + fe_”'sz) $2(s) = B2da(s),

(42)

Bi(L, ) + Ba(L, e f) = (4f /F)/3. (43)

To be consistent with the definition of resonance, that
ImpB; < 0 for positive f, the —F in Eq. (5) must be
understood as F'e~i", as indicated by the fe™*" in Eq.
(42).

In contrast with the preceding section, where the f
contours were chosen to illustrate various points, here
the contour for f is completely specified by the system
of Egs. (41)-(43). That is, f(F) is a function obtained
by solving the system of equations, starting with a given
set of parabolic quantum numbers (n1,n2,m) at F = 0.

With the numerical method of Ref. [22] we have
tracked the ten states with principal quantum number
n = 4 as the electric field increases from zero to infin-
ity. Our numerical calculations show, independent of the
state, that the scaled field f starts at the origin and traces
a closed loop in the third “global” Riemann sheet, i.e.,
—27 < arg f < 0 (mod 67). The only branch points f or
fe~i™ can encounter are those with —27 < arg f < —.
The trajectories we have calculated all fall into three cat-
egories.

The first occurs when the initial state (n;,nz, m) has
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ny = ny and is illustrated by (1,1,1) in Fig. 6. The this case.)

coupling constant f traces an oval path in the lower half The second category occurs when n; > n; and is il-
plane of the third Riemann sheet, where there are no  lustrated by (3,0,0) in Fig. 7. The scaled field f starts
branch points, while the oval for fe™*" in the upper half ~ out tracing a smooth oval in the lower half plane of the
plane loops all pairs of branch points, but no branch cut  third Riemann sheet where there are no branch points,
is crossed. Only m = 1 branch points with labels (1,n)  but before returning to the origin, it crosses the negative
can be seen by 3(1, f) or B2(1, fe~'"), and in Fig. 6 the real axis and encircles exactly one branch point, the one
first few pairs are shown. At F' = oo, 3; returns to its  denoted f,(,i)nl = ég) in Sec. III, and then returns to the
initial value, while 3, returns to the negative of its initial ~ origin where §; now has the initial value of 3,. At the
value. (The initial values of 8, and (; are the same for same time, fe~*" crosses no branch cuts and (3, ends up
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FIG. 5. Possibly misleading anti-Herglotz appearance of constant-|f| trajectories when |f| is small. (a) n =0 and n =1
constant-|f| trajectories of B(1,|f|e*®) for |f| = 0.0800 (dashed lines) and |f| = 0.0001 (solid lines), with 8 € [0,3n/2]. The
two plots for |f| = 0.0800 constitute one-quarter [37/2 vs 6x] of the same plots given in Fig. 3(a) and are reproduced here
for reference. At 0 = 31/2, B(1,|f|e*?) always falls on the imaginary axis. The Herglotz property requires that Im 3(1, f) > 0
when 0 < arg f < 7. Unlike the other three, the n = 1 trajectory for |f| = 0.0001 appears to start out with negative imaginary
part, even though Im f starts out positive. (b) Greatly magnified blowup of the § = 0 end of the n = 0 trajectory. (c) Greatly
magnified blowup of the § = 0 end of the n = 1 trajectory. Both show structure not visible at the scale of (a). In this
microscopic view, it is clear that the Herglotz condition is satisfied and that the n = 1 trajectory does not begin its plunge into
the negative half plane until 6 has exceeded =.
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(n1,n2,m) = (1,1,1), for which n, = nz. Only (n,1) branch
points appear on the third sheet of the relevant T} triple sheet.
No branch cuts are crossed, but the e =*" f(F) trajectory loops
all the branch cuts. B1(1, f) returns to its initial value (= 2),
while B2(1, fe™*") returns to the negative of its initial value

(= —2).
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at F = oo with the negative of its initial value. Figure
7(a) shows the entire trajectories for f and fe~i*. On
this scale the branch points cannot be seen. Figure 7(b)
is a blowup of the region where 31(1, f) slices through
the (03) branch cut. While f is on the n = 3 triple sheet
T3, B1(1, f) “sees” only (n,3) branch points, which are
the only ones shown in Fig. 7(b). The trajectory appears
to cross not only the (0,3) branch cut, but also (1,3),
(2,3), (3,4), and (3,5) as well, but this is an artifact of
the diagram. As soon as f passes through the (0,3) cut,
f is on Tp, and none of the other (n,3) branch points are
visible: instead f now sees only (0,n) branch points, as
plotted in Fig. 7(c).

The third category occurs when n; < ng and is illus-
trated by (0, 3,0) in Fig. 8. The scaled field f stays com-
pletely in the lower half plane of the third Riemann sheet
where there are no branch points, and when F = oo, 5
returns to its initial value. Meanwhile, fe™*" stays com-
pletely in the upper half plane. But unlike the first two
cases, the trajectory of fe*" passes through exactly one
branch cut, the one joining f(g) and fé;), and then re-
turns to the origin where 8, now has the negative of the
initial value of 8;. The (n,3) branch points are shown in
Fig. 8(a). They are visible to B2(1, fe™i") at the begin-
ning of the trajectory. When fe*" passes through the
(0,3) branch cut, only the (0,n) branch points are visi-
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ble, as is shown in Fig. 8(b). Note in Fig. 8(b) that the
trajectory of fe™*" passes to the right of all the (0,7n)
branch cuts (n > 4), while in Fig. 7(c) the trajectory
of f passes to the left of the same branch cuts. This
is why B2(1, fe™*") ends up at the negative of £;(1,0)
in the (0,3,0) case, while 3,(1, f) ends up equaling (the
positive) B2(1,0) in the (3,0,0) case.

We do not have a general proof, but this behavior has
been confirmed in all the cases we have tested: If n; # no,
the coupling constant of the equation corresponding to
the largest separation constant at zero field crosses the
ny ¢ ng branch cut, and as the electric field F tends to

infinity, 8, — min ( §°) z(,o))’ [2 = —min ( %0)’ §°)).

V. ASYMPTOTIC BEHAVIOR
OF LoSURDO-STARK RESONANCES
AT LARGE FIELD

The numerical study of the preceding section showed
that as F' — oo, the scaled field f — 0 with asymp-
totic phase —= (mod 6), and the separation constants
approach + a common unperturbed eigenvalue. In this
section we use this information in deriving an asymptotic

formula for E(F).

A. Starting formulas

Let

Noo = min(ny,ng). (44)
An empirical result of Sec. IV is that as FF — oo, 31 —
Neo + (m + 1)/2, and, B2 = —[ne + (m + 1)/2]. Near
F = oo both separation constants have values on the
same triple sheet corresponding to ns, B; at arg f =
—7m = 57 (mod6w), and B, at arg(fe ") = 4m. It is
convenient to use the notation §(1, f) for 8;, because for
B2 on the same triple sheet it follows with the aid of Eq.
(33) that 8, = B(1, fe~i") = —B(1, fe*"). The implicit
Eq. (43) for f(F) then becomes

. af 1/3

B(1, f) — B(1, fe'*™) = (F) . (45)
The left-hand side of Eq. (45) is the discontinuity of
B(1, f) between two successive sheets of the triple sheet
belonging to n,. The region of interest is arg f =~ —m,
so that the discontinuity is at the negative real axis be-
tween the third and first sheets. Reference [15] gives an
asymptotic expansion for the discontinuity (45), valid for
—37/2 < arg f < —m/2 and |f| sufficiently small:

B, f) — B(1, fe'*™)

o ()T 1Y 5y (N
ool (Moo + m)! <6f)NZ=:Ob°° ="

(46)
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where 442 155
b = 57863, — 9263, — "Bl — 9000 —
Boo =Moo +(m +1)/2 (47)
—51(m? — 1)B2, + 25(m? — 1)fu
and the b%Y) are known functions of B and m [6,15].
13 9
For example, +?( 2 1)+ §(m2 —1)2 (50)
5 3 All the asymptotic expansions derived below follow from
bl = —3482 — 1284 — = + =(m? — 1), 49 ymp p
had Poo Poo =3+ 2( ) (49) Egs. (45) and (46).
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01 F ; . ; 0.005 ‘ (13) . . (1.3 "
2 oo P B T
01 F ] ! : ]
3 1 -0.005 : 1
L (n4,n,,m) =(3,0,0) 1 I (ny,n,,m) =(3,0,0 . 1
02 F 172 f ] i 1:N2m) = ( ) ; ]
os b ¥ ; 001 | -
i : 3 XN ey
04 Dot st T T S _0.015' R T AT A T
-04 -03 -02 -01 O 0.1 0.2 03 0.4 -0.015 -0.01 -0.005 O 0.005 0.01 0.015
Re f Re f
0.015 | . ——
0.01 | .
©3) ]
- (04 ]
0.005 | & ]
]
Y~ r E
E 0r
-0.005 | : ]
F (n1,n2,m)= (3,0,0) ]
-0.01 | -
[ \ o ]
_0.015’..ALL...AA_LAl.|..‘L|“....|....‘
-0.015 -0.01 -0.005 0 0.005 0.01 0.015
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FIG. 7. Trajectories as F increases from 0 to oo for f(F) (solid line) and e *"f(F) (dashed line) on the B3:(1, f) and
B2(1, fe*™) Riemann surface for the resonance (n1,n2,m) = (3,0,0), for which n; > nz. (a) Large-scale view of the trajectories.
Notice that f loops into the lower half plane (third sheet of T3), but swings into the upper half plane before returning to the
origin. (b) Blowup of the region near the origin to show the Bender-Wu branch points. Initially the only relevant branch points
to f are the (n,3) on T3, which are shown. The trajectory for f crosses the ég) - é;) branch cut onto the triple sheet Tp.
(c) Blowup of the region near the origin with the (0, n) branch points on To shown. These are the ones visible to f after passing
through the f{2) — f{2) cut. None of the other (0,n) branch cuts are crossed. These are also the branch points visible to fe ',
which does not cross any branch cut, but encircles all of them. 8:1(1, f) returns at F = oo to the initial value of 32, 1/2, while

Ba2(1, fe~*™) returns to the negative of its initial value, —1/2.
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B. Trajectory equation: arg f as a function of |f|

To obtain asymptotic equations for the modulus and
argument of f, we first substitute Eq. (46) for the discon-
tinuity into Eq. (45) and indicate separately the modulus
and argument of f to obtain

0.01 — T T T T
a) -
(@) . 03) e (03) T
I ; e-mf
0.005 ‘@3 . K . (13) ]
L ' ]
r ‘ ;
r 23) . (35 @5)," . (23
- e
E of ‘ )

-0.005
-0.01 ———t
-0.01 -0.005 0 0.005 0.01
Re f
0.01 L S b e S B B
: () 03) ."._ 03)
S ©4 . o
0.005 | : . ©5) - . (05 E
| : e -ITT f (0.6) ., .- (0.6)
“. \ < ." A
—
E of ]
-0.005 | 1
i
. ]
-0.01 ————l *
-0.01 -0.005 0 0.005 0.01
Re f

FIG. 8. Trajectories as F increases from 0 to oo for
F(F) (solid line) and f(F)e '™ (dashed line) on the
Bi1(1, f) and B2(1, fe *™) Riemann surface for the resonance
(n1,n2,m) = (0,3,0), for which n; < naz. The trajectory
for f lies entirely in the lower half plane (third sheet of To),
where there are no branch points. £:1(1, f) returns to its ini-
tial value, 1/2, at F' = co. The trajectory for fe " starts off
on the third sheet of T3 and passes through the g) - é;)
cut onto Tp. (a) The view from T3 of the trajectories and
branch points. (b) The view from To: The trajectory for
fe™'™ passes to the right of all subsequent branch cuts and
B2(1, fe™'™) ends up with the negative of the initial value of
B, —1/2.
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—1

(|f|ei(ars f+7r))—2ﬁm ( 1 )
exp

Noo! (Moo + m)! 6|f|etae f

N i(ar . 4feiargf 1/3
xS s emy o (AET)
N=0

(51)

Next we set equal the arguments of both sides of Eq. (51)
(the magnitudes will be treated later):

sin(arg f)

T
-3~ 2B (arg f + 7) — o17|

oo ) 1
+arg (Z bﬁi”’(lf|e'<mf*”’)”) ~ 5 arg f + 2k,

N=0

(52)

where k = 0,%1,+2,... [the integer k here is not to be
confused with the “force constant k” in Egs. (6) and (23)].

Since Eq. (52) does not depend explicitly on F, it can
be solved for arg f as a function of |f|. That is, it is an
equation for the (large-F') end of the trajectory in the f
plane for all states ending up with a particular ny, (and
m). Notice that only one of the two quantum numbers
(n1,n2) appears explicitly via no, S0, and the b)), The
second comes in via k. [See Eq. (60) below.]

We look for a series solution

arg f ~ —m +aV|f| + a@|f|" + a@|f* + - (53)

Because of the way that k and Bo, enter the a(¥), the
formulas are a little simpler if we define

g = (12k + 1)m, (54)
S0 = 2(6Bc0 + 1). (55)

One finds that
oM =g, (56)
a® = gse, (57)
a® =g (%q2 +8% - befo’) : (58)

a® = q(ngs°<> + 83 —126W s, + 6612 — 12bg§>).
(59)

For each integer k there is a different solution for arg f.
All the solutions for arg f approach —, but the slope
of each is different, corresponding to ¢ = (12k + 1)7.
Note that the trajectories for f = |fle’2®8f ~ —|f| —
ig|f|?> + - - - all end at —0 with zero slope, but the curves
separate as f moves away from the origin. By examining
numerical solutions for all the resonances stemming from
states with principal quantum number n < 4, we have
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found that in each case k is given by
k= Ty — Ng. (60)
C. Expansions for arg f and |f| as functions of F

We return now to Eq. (51) and equate the magnitudes
of both sides:

| £| =3P cos(arg f)
nm!(noo+m)!exP( 6|f| )

o| S5 s spetemssemy
N=0

< (42)" @

Equation (61) can easily be solved for F in terms of |f|
and arg f:

F 3 cos(arg f)
o 4 [0 (noo +m)1J° (60 + 1) In 171 2|f|
—3In Z bV (| f|eierg f+mHN
N=0
(62)

Further, arg f can be eliminated via Eq. (53) to give an
equation for F(|f|) that has the form

d 1
In 4 [noo! (Moo + m)1]? ~ (6800 + 1) In(|f]) + == 317
+ Z dM|F|V. (63)
N=1

The first couple of dV) are

1
dV = —Zq2 —3b1), (64)
d® = —%qzsw + gbg)z - 3612, (65)

What is really needed, however, is not F as a function
of | f|, but |f| as a function of F, that is, the reversion of
Eq. (63). The result is more complicated, because there
are terms in Inln F' as well as In F. Some simplification
comes from the groupings

v= ! (66)

F
20 e e T

1
~ 2InF’ (67)
W= —Sx lnv (68)
F
= Sooln (2 In Al £ m)!]:,) (69)
~ 2(600o + 1)In (2In F), (70)

and from rewriting Eq. (63) in the form

If] ~ v — vwl|f] + 20| | Z dM| iV

+5000|f] In [1 + ('f| 1)] . (71)
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One finds for |f| the series

1
If| ~ v —v?w + v* [-— <§q2 + ﬁbg)) — SoW +w2]
+--- (72)

oo N
~v—viw + ZUN“Zf}SN)wP. (73)
N =0

The series for 1/|f| is more directly related to that for

|E| [cf. Eq. (81) below]:
11 1,
—~—+w+v - +6bg))+soow]+~~ 74
i [(2'1 )
~—+w+z NZg(N)w” (75)

p=0

Although it is not obvious alone from the expansion (73)
for |f| that the expansion (75) for 1/|f| has no terms of
the form vV w™¥*! except for the first two (all others have
v to at least as high a power as w), it can be readily seen
with the aid of 1/(v|f]) times Eq. (71).

The series for arg f in terms of v and w follows from
the composition of Egs. (53) and (73):

arg f ~ —m + qu + qv* (500 — W) + -+ (76)

oo N
~mg 3 NS M, ()
N= p=0

The coefficients f,(, , g,(,N), and 0,(,N), for N < 3, are
tabulated in Table III.

D. Large-F expansions for E(F)

The corresponding expansions for E follow immedi-
ately, since

2
argF = -7 — 3 arg f (78)
~ /3= a0 20 (500 — W)
2
——gqv3 {(—qu - 8% - 12bg)) — 35w + wz]
+--- (79)
~ /3 — —qv Z o ZB(N)w” (80)
N=0 p=0
1 F 123
|E| =3 ’E (81)
LWEPRL 2
2 |4v 3
1 2 1
2 2 (1) — —w?
+v [(3 + 4b ) 3s°ow 9w]+ }
(82)
1| F 2/3 oo
ST Sl oS )
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TABLE III. The coefficients for the large-F asymptotic expansions of |f|, 1/|f|, arg E, and |E|
given in Egs. (73), (75), (80), and (83), respectively.

Formulas
N N
11~ Z RS e Vi~ 1/ 4w+ z T o
p=0 p"O
oo oo
2/3
arg B —3m - f"”Z DI B~ 33 S er
p=0 N=0 p=0
— —_ 1
q=[12(nz —mn1) + 17 800 = 2(68c0 + 1)
Coefficients
N N
N p £V %" 6" e
0 0 1 0 1 1
1 1 -1 Sco -1 2
0 0 14 +6bY) Soo 0
2 2 1 —%soo 1 -1
1 -3 -——q + 82 — 6b%) —33 %sm
0 —1g¢®-6b) 30500 + B300bY) —17+s% - 1268 1g® + 4l
-3 + 662
3 3 -1 %sm -1 L
2 250 310° - 33 + 6bg,) %s —$50
1 3¢* -3+ 186%Y) -4 .~J¢,<> + 83 ¢ — 652 + 36b%%) —3q% + 253,
~1850,b82) + 66 — 1850
-126%)
0 ——q Soo — Gsoob(l) ——%q‘ + 3q232 11¢12-‘1c’<> + 300 ) 4230o +24soobg)
+3b(1)‘ 6b2 ~15¢%6%) + 652,05 —30s,0b5L) + 9b%Y —26)° + 46

~365)% —

3.9(,<,b‘(,i,)2 -18b%2

+268)° 4 650,62
—6656%) + 65

Benassi and Grecchi [25] gave the first two terms in Eq.
(82) for |E|. For argE, their second term is the same
as ours when corrected by a factor of 2. The coefficients

,(,N) for N < 3 are also listed in Table III.

E. Trajectories for f revisited backwards

It is informative to take another qualitative look at the
path f follows as F runs from oo back towards 0 in the
light of the asymptotic formula (76). First fix ne,. Take
Ny = Noo, and let successively n; =N + 1,10 + 2, ... .
This is the case that the f curve ends up on the n; triple
sheet, which means that (8; ends up at —f,(1,0), and
that the f trajectory has to pass through the (ny,n;)
branch cut between the n; and n, triple sheets. Our aim
is to describe how this happens by starting from F = oo.

As F decreases from oo, arg f is given initially by [re-
call that v ~ 1/(21n F)]

arg f ~ —2m + [12k + 1]vw
~ —1 — [12(ny — ng) — 1jvm. (84)

As n; —ny = —k takes on the values 1, 2, ..., the scaled
field f lifts progressively higher into the second quadrant.
Refer to Fig. 7(c), for which n,, = n, = 0 and n; = 3.
The curve for f for n; = 4, traversed backwards from the
origin on the n; triple sheet, will rise faster than the (0,3)

curve, and will “pick off” the next branch point (0,4). For
each successively higher n; the f trajectory rises faster
to pass to the right of the next succeeding branch point.
The branch points f( 2 imat k| in the second quadrant lie
on a convex upwards arc [compare also Fig. 1(a) for the
f nam; |, Which makes it possible to pick off the branch
points in a monotonic manner.

Second take n; = n,, and let successively ny = no, +
1,n0 + 2,.... This is the case that the f curve ends
up on the n, triple sheet, which means that 3; ends up
at —(31(1,0) and that the fe~*™ trajectory has to pass
through the (ny,n;) branch cut between the n; and n,
triple sheets. As F' decreases from oo, arg(fe~*") is given
initially by

arg(fe ™) ~ —2m + [12k + 1jomr

~ =21+ [12(ng — nq) + 1jom. (85)
As n; increases from n;, the trajectory for fe=*" rises
more strongly in the first quadrant and can pick off the
next higher branch point _f(1 R Figure 8(b), with
the dashed curve traced counterclockwme, is useful for
visualizing this process.

In the view from F' = oo, the initial triple sheet is T},
Whether the f trajectory or the fe—*" trajectory tra-
verses a branch cut—which determines whether 3;(1, f)
or B2(1, fe~i") changes branches—is determined by the
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FIG. 9. Scaled field f vs F as given by exact calculation
and by asymptotic formulas for the (0,1,0) resonance. Solid
line, exact calculation; small open circles, asymptotic formu-
las (73) and (77) [cf. also Table III] with N = 1; filled circles,
asymptotic formulas with N = 4; large open circle, the high-
est field calculated by Benassi and Grecchi [25]. (a) |f| vs
log,o F. (b) arg f vs log,, F.

sign of K = ny — ny. If £ < 0, then consistent with
Eq. (84), f passes through the (ne,ne + |k|) branch
cut, and 1y = ne + |k|, leaving ny = ne. If k£ > 0,
then consistent with Eq. (85), fe™*" passes through the
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F. Onset of the asymptotic regime for f

When is f given accurately by the asymptotic for-
mula? The answer depends on the quantum numbers
of the resonance and is illustrated in Fig. 9 for the
excited state calculated by Benassi and Grecchi [25],
(n1,n2,m) = (0,1,0). On the scale of Fig. 9(a), the
asymptotic formula (73) with N = 4 gives |f| accurately
at F ~ 10%°. For arg f, however, formula (77) with
N = 4 is already accurate at F ~ 10!°. The highest-
field calculations of Benassi and Grecchi are indicated by
large open circles in Figs. 9(a) and 9(b).

G. Trajectories for E

We end this section with pictures of E for three scales
of F: physical, atomic, and unphysically large—the last
to answer the question, when is E given accurately by
the asymptotic formula. The trajectories for all the res-
onances with n = 4 are illustrated in Fig. 10.

The physical region here is arbitrarily defined to in-
clude fields up to 0.001 au. ~ 5 x 10® V/cm. In
Fig. 10(a) the trajectories all start on the real axis at
E,-4 = —1/32. As F increases, the energies spread out
in a “fan” vs F. However, the real parts of the ener-
gies are plotted here vs the imaginary parts, not F'. The
imaginary parts are initially exponentially small, and the
result is that the energies appear to spread out to the
left and right while staying on the real axis. When F in-
creases sufficiently for the imaginary parts to be visible,
the trajectories quickly descend through the exponential
regime and spread out into a Re £ vs Im E fan pointing
downward.

The “atomic” region here is arbitrarily defined to mean
that F is approximately 1 a.u. Figure 10(b) shows
the same trajectories as in Fig. 10(a), except that the
scale is now a.u. rather than hundredths or thousands
of an a.u. The spokes of the Re E vs ImFE fan now
look almost like straight lines. Note that in all parts
of Fig. 10, three “pairs” of trajectories are grouped nat-

(Moos Moo + k) branch cut, and n, = ne + k, leaving  urally by their values of n; — ny. The asymptotic expan-
Ny = Neo- sions are not appropriate for the atomic region because
0.001 ——— T e
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FIG. 10 (Continued).
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F < 4[no!(ne + m)!]3. Thus v would be negative, and
w would be the logarithm of a negative number.

In Fig. 10(c) the same trajectories are carried to F ~
1 x 10% a.u. Figure 10(d) is the same as Fig. 10(c),
except that the asymptotic formulas (80) and (83) with
N = 3 were used to calculate the energies. On the one
hand, it is clear that the asymptotic formulas reproduce
the exact calculation very well. On the other hand, the
clear implication of Eq. (80) is that all the trajectories
should have asymptotic phase —7 /3. Yet the trajectories
are substantially spread out in Figs. 10(c) and 10(d). The
explanation is simple. The leading term in the deviation
from —m/3 is —2qu/3. When F ~ 10°, one finds that

argE+m/3 ~ —gqv (86)

~ _gm(nz —n1) +1jr/(2In F) (87)

~ —[12(n2 — ny) + 1] /(3 x 30 x In10) (88)
~ —0.058(ny — nq)m, (89)

which implies an approximately 60° difference between
arg E for (3,0,0) vs (0,3,0).

VI. SUMMARY

In the LoSurdo-Stark effect, as the electric field FF —
00, the resonance eigenvalues asymptotically tend to in-
finity along the ray, arg E = —n/3. The leading term
of the asymptotic magnitudes (independent of the reso-
nance) is given by

2/3

|E| ~ % ‘%FlnF , (90)

while the full expansion is given by Egs. (53)-(81).

The derivation of the asymptotics is perhaps even more
interesting, because it leads to results on the analytic
structure of the (radially symmetric two-dimensional)
quarticly anharmonic oscillator, whose eigenvalue, equa-
tion is equivalent to the separated equations for the
LoSurdo-Stark effect in parabolic coordinates. The Rie-
mann surface of the anharmonic oscillator consists of
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an infinite number of triple sheets. Each triple sheet
is identified with a single unperturbed harmonic oscilla-
tor eigenvalue, and every pair of triple sheets is joined
by exactly two branch cuts. The structure is richer than
that conjectured by Bender and Wu, who initially sug-
gested that only the triple sheets corresponding to ad-
jacent quantum numbers (differing by +1 in the present
case) were joined together. A FORTRAN computer pro-
gram, designed to compute resonances at physical field
strengths, was used without modification to compute res-
onances at highly nonphysical field strengths. With a
slight alteration to the iteration strategy, the same pro-
gram efficiently found the exact location of the Bender-
Wu branch points, tables of which have been given for
m=0,1, and 2.

Because of the simple formula that connects the
LoSurdo-Stark energy to the inverse square of the sum of
the separation constants, the sum of the separation con-
stants must tend to zero as F' — oco. We have found nu-
merically that the separation constant (3; returns either
to its unperturbed value ﬂgo) or to ,82(,0), the unperturbed
value of (35, whichever is smaller. At the same time, 3,
tends to the negative of whichever unperturbed eigen-
value is smaller. We understood this numerical behavior
by following the trajectory of the complex scaled field f.
As the real electric field F increased from 0 to oo, in each
case that ﬁ%o) and ﬁgo) were not equal, the trajectory of
either f or of e7*" f looped around a single branch point
and passed through the cut that joined the two ( {0) and
,Béo)) Riemann triple sheets. All other branch cuts were

avoided. No branch cuts were crossed if ﬁ§°) = ;o)-

We derived the large- F' asymptotic expansion for F via
the known small-f asymptotic expansion for the discon-
tinuity of the separation constant in the f plane across
the negative real axis.
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