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We present a relativistic many-body calculation of the 2s,/; and 2p; 2 3/, ionization energies in
Li-like 238U, based on the coupled-cluster singles and doubles approximation with the inclusion of
the unretarded Breit interaction, using Dirac-Fock-Breit orbitals. A detailed comparison is made
with a similar calculation using ordinary Dirac-Fock orbitals. The calculation yields the transition
energies, and by comparison with the recently published experimental values we find the value
for the remaining quantum-electrodynamical correction, which is compared with recent Lamb-shift
calculations. The importance of an accurate nuclear model for evaluating the nuclear-size effect is

also discussed.

PACS number(s): 31.20.Tz, 31.30.Jv, 31.50.+w, 12.20.Ds

L. INTRODUCTION

Accurate calculations on highly charged ions pose sev-
eral fundamental problems since effects that cannot eas-
ily be included in a Hamiltonian formulation of quantum
mechanics can no longer be neglected. A full quantum
electrodynamical (QED) treatment of the atom is then
desired. This is, however, not feasible at present, and the
most accurate results will probably be obtained by some
combination of the many-body and the QED approaches.
The many-body approach, based on perturbation theory
or coupled-cluster methods, is known to yield quite ac-
curate results and the remaining QED effect can in most
cases be regarded as a small correction. The QED ef-
fect is then defined as everything that is left out in the
many-body calculation.

The dominating QED effect is for all heavy ions the
Lamb shift, which has a leading o®Z* dependence [using
hartree atomic units, or a(aZ)* using relativistic units].
The Feynman diagrams representing the first-order QED
effects contributing to the Lamb shift are shown in Fig. 1.
These effects are left out in all many-body calculations.
In addition, there are a number of effects with leading
(aZ)® dependence. These are mainly due to the virtual
electron-positron-pair creation and retardation effects.

For Li-like uranium the energy of the 2s; /5-2p; /; tran-
sition has been measured with high accuracy [1]. Also,
several accurate calculations of the Lamb-shift contri-
bution to this transition have recently been performed
[2-11]. In order to make comparison with the experi-
mental result it is important to have access to an ac-
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curate many-body value. For that reason we have per-
formed such a calculation, based on the coupled-cluster
approach with single and double excitations. A simi-
lar calculation has been performed by Blundell, John-
son, and Sapirstein [12] and a comparison of the present
results shows a small difference due to the inclusion of
higher-order terms involving the Breit interaction. It
should already here be pointed out that it is a matter
of choice whether the effects giving rise to this difference
are treated in the many-body procedure or considered as
QED corrections.

To match the present experimental accuracy it will also
be necessary to evaluate a number of two-photon effects,
from bound-state QED, which are left out in the above
consideration. These effects will be considered in future
works.

The paper is organized as follows. In Sec. II we con-
sider two different single-particle starting points, Dirac-
Fock orbitals and Dirac-Fock-Breit orbitals. In Sec. III
we investigate the importance of different nuclear charge
distributions. Furthermore, in Sec. IV and Sec. V we
present the coupled-cluster singles and doubles (CCSD)

0O
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FIG. 1. Feynman diagrams for the lowest-order
bound-state self-energy (a) and vacuum polarization (b).
Double lines represent propagation in the external potential
V(r).
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calculation. Finally, we give a summary and a future
outlook of the field in Sec. VI.

II. SINGLE-PARTICLE ENERGIES
A. Dirac-Fock orbitals

When the special theory of relativity needs to be taken
into account, the nonrelativistic Hamiltonian used in the
time independent Schrédinger equation is replaced by the
Dirac Hamiltonian [13]

N Ze?
H:Z (ca-p+ﬁmc2— 41‘_60?‘) ) (1)

where c is the speed of light in vacuum and matrices a
and 3 are defined as

(29) o-(5%) w

Here the o stands for the Pauli spin matrices and I is
the two-by-two identity matrix.

A natural extension of the Dirac theory to the many-
body case is to define, by analogy with the Hartree-Fock
procedure, equations that include the effects of the cen-
tral part of the field produced by the Coulomb electron-
electron interaction, i.e., the central field approximation.
This leads to the formulation of the Dirac-Fock (DF)
equations. This method has been extensively used for
many years, and even multiconfigurational approaches
are available [14-16]. The DF procedure provides a good
starting point for relativistic many-body calculations.

B. Breit orbitals

When the expression for the electron-electron inter-
action is derived from QED, the choice of Coulomb
gauge has proven to be efficient for bound-state prob-
lems. In this gauge the electrons interact through a static
Coulomb field and via exchange of virtual transverse pho-
tons. In the limit when the energy of the exchanged
photon goes to zero, we get the frequency independent
interaction potential
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21‘{'2 (3)
where the second term is half of the unretarded Gaunt
interaction, which together with the third term forms the
well-known Breit interaction. This expression is correct
to order a? atomic units [17].

One approach to the inclusion of the Breit interac-
tion, adopted by Blundell, Johnson, and Sapirstein [12],
is to use Dirac-Fock orbitals as a starting point for the
perturbative expansion. The Breit interaction is then
added on as an additional perturbation to lowest or-

der. The diagrams included can be classified as the first-
order Breit interaction [Fig. 2(c)], the one-particle dia-
grams of Breit-RPA (random phase approximation) type
[Figs. 3(a,b)], and two-particle diagrams with one Breit
interaction [e.g., Fig. 5(b)].

We have adopted an alternative approach. Instead of
using the Dirac-Fock Hamiltonian as a basis for the cen-
tral field approximation, the Breit interaction is added
and a new set of one-particle orbitals, Dirac-Fock-Breit
(DFB) orbitals, is obtained. Thus the Breit interaction is
included self-consistently on the one-particle level. A dis-
cussion of the conceptual problems involved in this self-
consistent treatment of the Breit interaction has been
presented by, e.g., Lindroth et al. [18]. On the two-
particle level the Breit interaction is treated as a per-
turbation to first order.

Using DFB orbitals, the effect of all the diagrams
shown in Figs. 2, 3, and 4 are included in the orbital
energies. Matrix elements between positive-energy DFB
orbitals will, in fact, involve both positive- and negative-
energy DF orbitals. However, the use of the frequency
independent form of the Breit interaction is still justi-
fied as long as the Breit interaction occurs only between
positive-energy DFB orbitals [18]. In our self-consistent
approach we have, apart from all the diagrams of Blun-
dell et al. [12], also a number of higher-order diagrams.
These are the diagrams including two Breit interactions
in Fig. 4, and certain effects of negative-energy DF states,
as mentioned above. The size of these effects will be dis-
cussed in Sec. V.

III. NUCLEAR CHARGE DISTRIBUTIONS

In a heavy and highly ionized system such as Li-like
uranium it is expected that the extension of the nucleus
will have a significant influence on the orbital energies,
and consideration must be given as to which nuclear po-
tential to use. In a paper by Zumbro et al. [19] nuclear
parameters for the isotopes 233U, 234U, 235U, and 238U
were obtained from muonic x-ray experiments. In the
analysis of the muonic data the deformation of the nu-
clei was taken into account by the introduction of a de-
formed Fermi distribution, which contains an explicit de-
pendence on the angular coordinates.

(a) (b) | (c)

FIG. 2. Goldstone diagrams for the first-order Dirac-Fock,
(a) and (b), and Dirac-Fock-Breit (c) contributions to the
ionization energy. The dashed line represents the Coulomb
interaction and the dashed line with the dot the Breit inter-
action.
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(a)

FIG. 3. The second-order contributions to the Breit-RPA
chain. This type of diagram is included implicitly in the DFB
scheme adopted in this work. The diagrams in which the
down-going line represents negative orbitals are included in a
self-consistent procedure, but not in a Breit-RPA approach.

pesoa (F) = TRz (4
R =c[1+ B;Y20 (r) + B4Yso (r)]. (5)

The relevant values for the parameters for the different
isotopes are given in Table I. In the limit where the 3
coefficients go to zero the ordinary Fermi distribution

Po ( 6)

PFermi (r) = m

is restored.
For a given distribution p (r), the spherically averaged
potential is given by

r 12 oo
#()= [(o@) arag + [ p()rarast. ()

In the case of the original Fermi distribution [Eq. (6)],
following the procedure adopted in the general atomic
structure package of computer programs GRASP2 [15,16],
the angular dependence can be integrated out and the
radial integrals can be written in terms of infinite se-
ries, that when evaluated numerically converge to ma-
chine precision with just a few terms included. Let

n
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It can then be shown that the potential for » < ¢ can be
written as

In these equations N is given by

Z
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c2

N= (11)

which follows from the fact that the potential goes to
Z/r asr goes to infinity. These expressions for the Fermi
distribution can also be used to evaluate the radial parts
of the modified distribution for a fixed angle, giving a
fixed value of R and thereby an effective ¢ parameter for
each angle. Numerical integration over the angular co-
ordinates, using, for instance, Gaussian quadrature then
gives the spherically averaged potential originating from
the deformed nucleus.

In order to test the importance of the nuclear-
size effects we generated Dirac-Fock orbitals using
GRASP2 [15,16]. The valence orbitals were generated in
the frozen core Dirac-Fock potential of the two 1s elec-
trons. A grid with 950 radial points ranging from 0 to 10
bohrs was used. The results for the different isotopes and
different nuclear charge distributions were compared to
the ionization Dirac-Fock energy for the uranium point
nucleus. The results of these calculations are given in
Table II. The effect was found to be of the order of
1.3 a.u. for all isotopes when the experimental deforma-
tion parameters were used. The values of the parameters
were then varied according to the error estimates given
in Table I to obtain the errors given. For all the iso-
topes the errors were found to be of the order of 0.001
a.u. Considering that the error estimates of the defor-
mation parameters are given as “model dependent errors
only” [19], this must be regarded as a lower bound to
the error induced by the uncertainty of the nuclear pa-
rameters. The value obtained for the 238U isotope agrees
with the result given in Ref. [12]. Our error estimates
are, however, significantly larger.

To estimate the importance of the inclusion of the de-

FIG. 4. Second-order diagrams containing
two Breit interactions. In (a) and (c) the
down-going line can represent both the 1s
core orbital and the orbitals in the nega-
tive-energy continuum.
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TABLE I. The nuclear deformation parameters for a modified Fermi distribution, Egs. (4) and
(5) for the different uranium nuclei [19].

Isotope 233U 234U 235U 238U
Parameter
¢ (fm) 6.9518(16) 6.9703(13) 6.9858(17) 7.0110(12)
a (fm) 0.5125(12) 0.5089(10) 0.5029(13) 0.5046(9)
B2 0.2431(40) 0.2507(18) 0.2485(13) 0.2653(14)
Ba 0.091 (15) 0.0843(71) 0.0913(45) 0.0672(49)
(r®)'/? (fm)5.8158(66) 5.8289(31) 5.8343(28) 5.8604(23)

TABLE II. The nuclear-size contributions to the ground-state energies, in a.u., of the uranium
isotopes using a deformed Fermi nucleus, a fitted Fermi nucleus, a uniform distribution, and the
default Fermi nucleus, respectively. In the fitted Fermi and the uniform nucleus calculations the
rms radius values listed in Table III were used.

Isotope Deformed Fermi Fitted Fermi Uniform Default Fermi
233y 1.30180(136) 1.30153(126) 1.304 95 1.26944
24y 1.306 07(77) 1.305 81(80) 1.309 23 1.27182
35y 1.30787(74) 1.30761(77) 1.31099 1.27421
28y 1.316 40(66) 1.316 09(81) 1.31953 1.28132

TABLE III. Parameters for a fitted Fermi distribution using the deformation parameters in
Table I, keeping the value of the rms radius fixed.

Isotope 233U 234U 235U 238U
Parameter
¢ (fm) 6.9347(18) 6.9526(15) 6.9671(20) 6.9919(15)
a (fm) 0.5997(8) 0.5999(8) 0.5964(10) 0.6023(7)
(r®)*/2 (fm) 5.8158(66) 5.8289(31) 5.8343(28) 5.8604(23)

TABLE IV. The nuclear-size contributions to the ground-state ionization energies, in a.u., from
a Fermi distribution for 2*®U using varied values of the rms radius and the skin thickness parameter.

rms \a 1.2 0.9 0.6023 0.3

radius

(fm)

5.8550 1.30128 1.30952 1.31432 1.31694
5.8575 1.30210 1.31034 1.31514 1.31776
5.8600 1.30293 1.31116 1.31596 1.318 58
5.8625 1.30376 1.31198 1.316 78 1.31940
5.8650 1.30458 1.31280 1.31760 1.32022

TABLE V. The contributions to the ionization energies, in a.u., of the 2s,/; and 2p; /3 3/2 states
in Li-like 233U. FOBR is the retardation effect on the first-order Breit interaction.

Contribution 2812 2p1/2 2p3/2
DFB eigenvalue —1208.456 70 —1196.572 33 —1042.878 43
Dirac-Fock point —1211.02891 —1199.30571 —1043.786 26
Nuclear size 1.316 40(66) 0.12883(7) —0.008 23(5)
FOB 1.263 82 2.628 51 0.926 09
HOB —0.008 01 —0.023 96 —0.01003
FOBR 0.02394 0.010 42 —0.23535
CCSD —0.01841 —0.04403 —0.01588
CCSD-Coulomb —-0.01073 —-0.03077 —0.01229
Breit-orb in CCSD —0.00001 0.00011 —0.00001
Coulomb-Breit —0.00767 —0.01337 —0.00358
Reduced mass 0.002 79 0.002 76 0.002 40

Total —1208.448 38(66) —1196.603 18(7) —1043.12726(5)




formation the distributions obtained with the parameters
in Table I were fitted to a Fermi distribution, Eq. (6), al-
lowing the ¢ and a parameters to float freely, but keeping
the root-mean-square (rms) value constant. The results
of this fitting are shown in Table III. In the literature [20]
the rms value 5.8625 fm for 238U has been used. This
value seems to be in error since we have been able to re-
produce the rms values for all the isotopes except 233U,
for which we find 5.8604 fm. When using the fitted Fermi
distributions in Table III the values for the energy were
shifted by less than 0.0005 a.u. compared to the deformed
Fermi distribution (see Table II).

In Table IV the rms and the skin thickness parame-
ter, for 238U, from the deformed distribution were varied
to investigate the sensitivity of the size corrections. The
deviation is significant already when small variations are
introduced. The importance of the use of accurate nu-
clear parameters can also be seen by using the default
Fermi distribution given in GrAsP2 [15,16] as

(r®)1/2 = 0.836 M1/2 + 0.570,
y o 230
" 4In3’

(7'2) = gc2 + —'5Z7|'2a2

(12)

for comparison. Here the mass of the nucleus is used to
give the values of ¢ and a for a Fermi distribution. To fur-
ther investigate the model dependence of the nuclear-size
corrections the rms value obtained in the fitting proce-
dure was used in a uniform distribution, i.e., in the limit
a — 0. The result was a shift in the third decimal place
of the energy.

The conclusion is thus that the error introduced by
fitting the deformed distribution to a Fermi distribution
introduces errors that are somewhat smaller than the
errors originating from the uncertainties in the experi-
mental deformation parameters. It is also clear that a
relatively crude model, such as the uniform distribution,
gives only small errors in the third decimal place as long
as the rms value is kept constant. This behavior was
noted in a recent paper by Franosch and Soff [21] for the
hydrogenlike system. It is, however, essential to have de-
tailed knowledge of the nuclear distribution to obtain a
credible value of the rms. As a striking example of this
feature the default distribution derived from the mass
of the nucleus, Eq. (12), is, as can be seen in Table II,
clearly inadequate and introduces errors in the first dec-
imal place of the ionization energy.

IV. CCSD CALCULATION

To evaluate the effect of the electron-electron interac-
tion given in Eq. (3), the CCSD scheme was employed.
The exact wave function is written in terms of a zeroth-
order wave function, taken to be the Slater determinant
of single-particle orbitals, and a wave operator written in
the exp(S) form

|¥) = {exp (5)} |¥7), (13)
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where the curly brackets denote normal ordering and S
is the cluster operator, which can be divided into one-
,- - - yn-particle excitations

S=81+824 -+ Sn. (14)

The exponential ansatz in combination with the
Schrodinger equation leads to a set of coupled equa-
tions for the cluster operators. In the CCSD approach
only the cluster operators representing one- and two-
particle effects are considered. The code that was used
for the CCSD calculation is based on a series of previous
works [22,23]. The version used in this work is described
by Salomonson and Oster [24,25].

Solving the CCSD equations yields the effects of the
Coulomb interaction to all orders. This can be repre-
sented by diagrams with intermediate states having one
or two particles excited. In addition, effects from one
Breit and an arbitrary number of Coulomb interactions
are included in this work. The no-virtual-pair approxi-
mation (NVPA) is employed, i.e., the intermediate states
are limited to the positive-energy range.

V. NUMERICAL RESULTS
OF CCSD CALCULATION

First, the CCSD calculation was done with DFB or-
bitals as a starting point. The calculation was per-
formed using a radial grid with 121 points ranging from
exp (—8) /Z to exp (4) /Z. The Coulomb and Breit inter-
actions were expanded in terms of partial waves, which
were limited to terms of rank 6 or lower. The numerical
results are presented in Table V. In the first line we have
the DFB orbital eigenvalues when using a deformed nu-
clear Fermi distribution with nuclear parameters of Zum-
bro et al. The retardation effect on the first-order Breit
interaction was evaluated separately and is presented in
line 6 (FOBR). Together with the CCSD contribution
and the reduced mass effect we obtain the total energies.

In order to do a detailed comparison with the work
of Blundell et al. [12] we have analyzed our DFB cal-
culation in terms of a CCSD calculation based on DF
orbitals. Thus in Table V we have separated the DFB
eigenvalue into the DF eigenvalue and modifications of
this eigenvalue from the first-order Breit (FOB) and the
remaining part that is due to higher-order effects involv-
ing at least one Breit interaction (HOB). The latter part
includes diagrams of the type shown in Figs. 3 and 4. All
these diagrams are written using a DF basis. It should
be noted that it is in this higher-order contribution that
the only significant difference between the present calcu-
lation and the one performed by Blundell et al. is found,
and by comparing our HOB numbers with the Breit-RPA
numbers by Blundell et al. one can note this small but
significant discrepancy. In fact, the main difference of
the calculated level energies between the two approaches
originates from the difference in these values. The dis-
crepancy is partly due to the higher orders of the Breit
interaction included in the DFB orbitals and partly due
to the effect on these from the negative-energy DF or-



4676 A. YNNERMAN et al. 50

bitals. In Fig. 4 some additional diagrams involving two
Breit interactions, that are included by using DFB or-
bitals, are shown. In the diagrams in Figs. 3 and 4(a,c)
the down-going line represents both the negative-energy
continuum and the 1s core orbital. In a previous cal-
culation of atomic g; factors, see Lindroth and Ynner-
man [27], this type of negative-energy contributions was
found to be very important as well. In Table VI a sum-
mary of the contributions from these higher-order Breit
diagrams is shown.

As can be seen in Table VI the sum of these second-
order effects is quite close to our HOB value. Only the
core contributions to the diagrams in Fig. 3, i.e., the
first line in Table VI, are included in the calculation by
Blundell et al. These values are also quite close to their
Breit-RPA values. The small differences in both these
comparisons are due to effects beyond second order.

We have also separated the CCSD calculation into
three different contributions which are given in Table V:
First, a pure Coulomb part [e.g., Fig. 5(a) and corre-
sponding higher-order Coulomb diagrams|; second, the
effect of using DFB orbitals when evaluating the above
diagrams (“Breit-orb in CCSD”) which gives very small
contributions; and finally, a Breit-Coulomb part [e.g.,
Fig. 5(b) and corresponding higher-order diagrams in the
Coulomb interaction]. These diagrams enter in relative
order Z%202. Note that the contribution from this effect,
given in Table V, is of the same order of magnitude as
the second-order Coulomb contribution.

Given that we have calculated an accurate relativis-
tic many-body perturbation theory (RMBPT) value, and

FIG. 5. Second-order diagrams involving
the combination of the Coulomb interaction
and the Breit interaction. In the actual cal-
culation the Coulomb interaction was repre-
sented by the two-particle cluster operator S
and the diagram in (c) was neglected.

taken the nuclear recoil and polarization into account, we
can assign the difference between the calculated and the
measured transition energy to the pure QED effects. In
Table VII the calculated transition energies for 2p, /2,3/2"
2812 are given with error estimates.

A comparison with the experimental value 1] gives a
value of -41.84(25) eV. The major contribution to the
error in this number comes from the uncertainty in the
experimental value, 280.59(10) eV and the estimates of
the nuclear recoil, -0.08(8) eV, Ref. [6], and nuclear polar-
ization, 0.18(5) eV, Ref. [26]. The Lamb-shift calculation
by Persson et al. [10,11] lies, as can be seen in Table VII,
well within the error limits. However, there are certain
two-photon effects which are left out in that calculation.
These effects are discussed below in the summary. Also
the calculation by Blundell [6], based on methods devel-
oped by Snyderman and Blundell [4,5], is within the error
limits.

VI. SUMMARY AND OUTLOOK

An accurate RMBPT calculation of the ionization en-
ergies of the 2s;/; and 2p, /3 3/2 states in Li-like uranium
has been performed. The nuclear-size corrections are
calculated using the potential from a deformed nuclear
Fermi distribution, with parameters obtained in muonic
experiments. For the highly ionized uranium isotopes the
inclusion of the Breit interaction in the RMBPT scheme
is of great importance both on the one- and the two-
particle level.

TABLE VI. The higher-order contribution from the frequency independent Breit interaction.
The entries correspond to the diagrams in Figs. 3 and 4. The contributions have been split up
into two parts for each diagram containing internal down-going lines, one for the case when the
line represents the core orbital and one when the negative-energy orbitals are included. Entries are
given in units of 10~2 a.u. The total sum compares with the HOB entry in Table V.

Diagram 281/2 2p1/2 2p3/2

Figs. 3(a,b) core —5.775 —18.774 —8.981
Figs. 3(a,b) neg ~0.612 ~0.193 ~0.201
Fig. 4(a) core —2.737 —0.470 0.304
Fig. 4(a) neg 0.220 —0.898 0.838
Fig. 4(b) —2.940 ~9.571 —2.004
Fig. 4(c) core 3.637 0.0 0.0
Fig. 4(c) neg 0.195 5.845 0.004
Total —8.012 —24.061 —10.040
HOB (This work) —8.01 —23.96 ~10.03
Breit-RPA (Blundell et al. ®) -5.91 —18.83 -9.01

®Reference [12].
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TABLE VII. The contributions to the 2p; /2 3/2-281/2, transitions in Li-like U%*® in eV.

Contribution 2p1/2‘231[2 2p3/3-231/2
RMBPT [6,12] 322.324(20) 4498.618
Nuclear recoil® —0.08(8) —0.04(4)
Nuclear polarization [29] 0.18(5) 0.20(5)
Total 322.43(10) 4498.78(7)
Experiment {1] 280.59(10)

Difference —41.84

QED Persson et al. [32] —41.924

QED Blundell [6] —41.68

*Based on p = —iV and p = ca for the momentum operator for the two initial states 2p, /3 s/,

respectively.

Using the accurate experimental value for the 2s;/,-
2p,/2 transition a value for the QED effects is extracted
and compared with recent Lamb-shift calculations [2-11].
These calculations explain essentially all of the QED shift
of the transistion energy. In addition to the first-order
self-energy and vacuum polarization, a subset of higher-
order QED terms such as the screened self-energy, the
screened vacuum polarization, and the combined self-
energy vacuum polarization provides a good approxima-
tion of the QED shift. Nevertheless, it should be empha-
sized that to achieve a reliable theoretical value with an
uncertainty comparable to the experimental one would
require a complete ab initio evaluation of all two-photon
QED effects. The two-photon effects we have not taken
into account in Li-like uranium can be classified into three
important categories.

(i) First, there is a part of the two-photon exchange
between the electrons, crossed and uncrossed, which is
not included in the RMBPT calculation. These effects
will be of the same order of magnitude as the higher-
order Breit interaction contributions that were evaluated
in the present work. Whether these higher-order Breit in-
teractions should be included in the RMBPT calculation
or in a QED treatment is a matter of definition.

(ii) Second, there are some second-order self-energy
contributions which are expected to be significant at this
level of accuracy.

(iii) Finally, the electron screening of the Lamb shift
is included only approximately in our earlier calculation
procedure.

All these effects are now possible to calculate and will
be considered in future works.

In addition, the comparatively low accuracy of the nu-
clear recoil and polarization estimates limits the extrac-
tion of the QED value and an improvement of these val-
ues is desirable.
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