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The performance of a recently proposed ab initio description of chemisorption problems, obtained by
reducing the total many-body Hamiltonian to a superposition of bond-pair Hamiltonians, is tested. This
scheme, which in its Hartree-Fock version leads to an independent-particle model of the tight-binding
form, is applied to analyze the interaction curves for the hydrides of the first-row elements as a function
of internuclear distances. By fixing the occupation numbers for the orthonormal spin orbitals at large in-
ternuclear separations, its relationship with results from both the valence-bond and the molecular-
orbital methods is established. It is shown that the model works fairly well in predicting binding ener-
gies, equilibrium distances, dipole moments, and vibrational frequencies for the whole series of the hy-
drides. It was also found that if a consistent expansion of the intervening parameters is made up to
second order in the atomic-orbital overlaps, reasonable results are obtained for the hydrides forming
bonds of nearly ionic character: LiH, OH, and FH.

PACS number(s): 31.20.6m, 31.20.Ej, 31.20.Rx

I. INTRODUCTION

The use of tight-binding (TB) or linear combination of
atomic orbitals methods is gaining increasing attention in
applications to a wide variety of problems in solid-state
physics. Its computational simplicity makes these
methods very attractive in dealing with periodic or non-
periodic systems where alternative methods require so-
phisticated programming and sometimes prohibitively
long computing times.

In particular, with regard to chemisorption problems a
great deal of progress has been achieved through ela-
borate numerical calculations based on the local-density
approximation (LDA) [1,2]. This approach has been suc-
cessfully applied to atoms adsorbed on metals or semi-
conductor surfaces and only to very simple cases of
chemisorbed molecules.

In the context of more complicated chemisorption sys-
tems or other problems of nonperiodic nature, it is highly
desirable to have a TB approach which may offer an al-
ternative to LDA calculations. Conventionally TB is a
semiempirical method in which the parameters entering
the Hamiltonian are determined from bulk band-
structure data. However, it is clear that seeking a TB
scheme able to compete with LDA should be attempted
without relying on the use of semiempirical or adjustable
parameters. Several theoretical efforts have been devoted
to putting this method on a more fundamental basis,
mainly on the grounds of the stationary properties of the
self-consistent solutions of the density-functional theory.
Liu et al. [3] presented a TB method based on a superpo-
sition of dimers treated within the LDA scheme, which
does not require arbitrary parameters, and applied it to
the calculation of the electronic structure for transition-
metal elements. It is also in this direction that Goldberg

et al. [4] and Garcia Vidal et al. [5] have recently
developed an approximate method in which an ab initio
procedure is proposed to obtain the TB parameters
without the use of adjustable "constants. "

The basic idea is to construct an effective Hamiltonian
which can be considered a superposition of Hamiltonians
defined for each pair of bonds. Starting with a many-
body Hamiltonian written in terms of an orthonormal
basis, only those terms leading to bond-pair interactions
are retained. The resulting many-body Hamiltonian
treated within a Hartree-Fock (H-F) approximation [4]
leads to a TB form, with parameters given in terms of
one- and two-electron integrals as well as certain averages
of fermionic creation and annihilation operators corre-
sponding to the orthonormal states. It is also possible to
go beyond the HF approximation by including electronic
correlations as in the LDA [5]. Under these schemes
only a few examples were examined: He on metals [4], H
on Al and Li [5], and the early stages of the interface for-
mation in K-GaAs(110) [6,7].

In order to test the capabilities of this model and aim-
ing to future applications to complex chemisorption sys-
tems as well as to dynamical problems such as scattering
and sputtering processes, a systematic analysis of its HF
version, when applied to diatomic systems containing hy-
drogen, is presented in this paper. The importance of in-
cluding spin-Sip terms in the Hamiltonian, which were
absent in [4] and [5], is also examined. We also consider
the approximation in which the TB parameters are ex-
panded up to second order in the atomic-orbital overlaps,
with particular attention to keeping the whole expansion
consistent up to this order.

In Sec. II a brief description of the model and the cal-
culation procedure are given. Numerical results and dis-
cussion are presented in Sec. III. Section IV is devoted to
concluding remarks.
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II. THEORY

A. Model Hamiltonian
hkJ= kr;r', kr J

r'l

r —r'

As a 6rst stage, the many-body Hamiltonian for a sys-
tem of interacting atoms written in a second-quantized
language is approximated as

8= ps, &,
i, a

+ —,'g UR; + g Jjhj + g Gjh,
i, cr j (Ai) j(+i)

+ Q ( ffj +
2 Jij Cj zci & )Ci~rrcj rr

I PJ, (T

a PZ Z'.~, IR.-R, I

The index i denotes the orthonormal atomic basis set

[P;I and n, =
c~ c~ is the fermionic number operator.

The last term in Eq. (1}corresponds to the repulsion be-
tween nuclei of charges Z, Z&. Equation (1), to be re-

ferred as MH-ORTH, an abbreviation of model
Hamiltonian-orthonormal, is obtained from the general
form of the Hamiltonian by neglecting all terms involving
four diferent spin orbitals, except those spin-Rip terms of
type cj c; c; cj . The result of this approximation is
a many-body Hamiltonian written as a superposition of
bond pairs. It is worth noting that if we were dealing
with a hydrogen molecule involving only states a and b

obtained from two mutually orthogonalized 1s H orbitals,
the approximation in Eq. (1) amounts to ignoring terms
of the form a b a b . These correspond to a
transference of two paired electrons from state b to a and
vice versa. The parameters and the operator f', in Eq".

(1}are given by (in a.u. ),

t,"=;r ——V, — r1 2 Za

EJ i JJ & I iii

kij= kr, . r', J r kr'1

r

J;"=h,", (2c)

G; =J; —J;",
f'; =r; +ghk;jRk'+g(hk;j —hk;j)hk

(2d)

where r and R denote electrdnic and nuclear coordinates,
respectively.

The orthonormal basis set [P, ] is assumed to be con-
structed according to the symmetric orthogonalization
procedure [8]:

iI); =+ (1+S), '~2', (3)

i, a

+—,'g UR'; + g Jj&j + Q Gj&, 8;
i, o j(pi) j(Ai)

ij 2 ij j rrci rr —)Citr Cj rr—
lAJ, cT

(4)

where f represents an atomic orbital (j labels the type of
orbital and the atom site) and S;j are the corresponding
overlap matrix elements. By expanding Eq. (3) up to
second order in the overlap S, replacing in Eqs. (2), and
retaining only those terms which maintain the Hamiltoni-
an as a superposition of bond pairs, we arrive at an ex-
pression completely equivalent to Eq. (1):

(2a) with parameters redefined as

birr Si g Sij ~ij +
g Q Sij Si + g Jik~k —n+ g (Jik ik )~krr Sj+g jk~k —(r+ X ( jk jk )

j j k k(AiWj) k k(AiXj)

(5a}

and
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k

(5b)

(5c)

(5d)

(5e)

In Eqs. (5a)—(Se) the parameters with a superscript 0 cor-
respond to expressions (2) obtained by replacing the
orthonormal states by the atomic orbitals. The hopping
operator 1 is kept in the orthonormal basis according to
Eq. (2e), having, in this form, the possibility of being as-
sociated with Bardeen's tunneling current [4].

It is important to note that the success of this kind of
model rests on a delicate balance among the difFerent in-
teractions retained. Thus one has to be sure that all ap-
proximate terms entering the Hamiltonian have been
consistently expanded up to the same order. %e found
that a consistent expansion of the model Hamiltonian up
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to second order in the atomic overlaps (hereinafter re-
ferred to as MH-S2) within the conception of bond-pair
superposition and requires the Coulomb interaction pa-
rameters in Eqs. (Sb)—(Sd) to be corrected through the
S J" terms. These corrections have not been taken into
account in previous works [4—7]. We have also retained
the spin-flip contributions expanded up to second order
to ensure the consistency of the MH-S2 model.

S. Calculation procedure

The calculation for the hydrides of the first-row ele-
ments was performed within an all-electron self-
consistent HF scheme, using the model Hamiltonian cor-
responding to MH-ORTH and MH-S2 according to Eqs.
(1) and (4), respectively. The main points on which the
computation is based are the following.

1. The self-consistent procedure

The ground state is taken as a single Slater determinant
~4) constructed by occupying with N electrons the
lowest-energy one-electron molecular orbitals (MOs)

These MOs are assumed to be expanded in an

orthonormal atomic basis I P, ] and consequently the den-

sity matrix elements are given by

3. Basis set

The more appropriate minimal basis set of an atom is
the set of the HF atomic orbitals. These can be selected
as the Clementi-Roetti [9] atomic orbitals based on the
Slater-type orbitals (STOs) [10]. However, several au-
thors favored the use of Gaussian-type orbitals (GTOs)
instead of STOs for calculations involving polyatomic
systems. In the present work we use the HF atomic basis
set calculated in terms of GTOs given by Huzinaga [11].

4. Interaction energy

E;„,(R}=E~H(R) (E~+—EH) . (9)

E„and EH are the total energies of the isolated atoms A

and H, respectively. EzH(R } is the total energy when A

and H are brought together at an internuclear distance R.
However, if finite atomic basis sets are used to calculate

The interaction energy between atom A and H is
defined as

=pc, P;=-pj= g c; c, =(c~c, )
a occ

(6)

where (c; c ) denotes the average value on the ground
state ~4) of the fermionic operators creating and des-

troying the orthonormalized atomic states. At large in-

ternuclear distances these matrix elements are given by

5," if i =j corresponds an occupied atomic state
0 (7)0 otherwise .

The self-consistent calculation starts with the
configuration given by Eq. (7) as it follows from the appli-
cation of Hund's rules to each atom. The initial point is
taken as the separate atom limit for which the charge
configuration is known. The spin component s, for the
molecule is selected by pairing the corresponding states
of the atoms forming the dimers. This produces the ini-

tial set of MOs and also the output values of p; . For de-

creasing internuclear distances, the inputs p; are taken as
the corresponding self-consistent output values of the
previous point. In this form self-consistency is achieved
more efficiently.

2. Total energy

In each step the total energy is calculated as
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where c is the eigenvalue of the corresponding occupied
MO and [X] symbolizes the whole set of terms to be sub-
tracted according with the HF approximation for the
Hamiltonians in Eqs. (1) or (4}.

Internuclear Distance (a.u. )

FIG. 1. The H2 molecule. (a), the MH-ORTH calcula-
tion; ———,a complete Hamiltonian calculation. (b) The
MH-82 calculation. , the S J renormalization and the
spin-flip terms included; - ~ ~ ., the S J" renormalization and
the spin-flip terms both neglected; —- —- —-, the S J" renor-
malization included while the spin-flip terms are neglected.
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TABLE I. Electronic energies from different methods at different internuclear distances.

Method of
calculation R =1.5 a.u. R =3.0 a.u

EMQ

EvB
EMH

2c,+ U/2+ J/2+ J"+2(t+h) 2c+ U/2+ J/2+ J"+2(t +h) 2m+ U!2+J/2+ J +2(t +h)
28+J 2@+J 2c.+J

2m+ U/2+ J/2+ J"/2+2(t +h) 2m+0. 17U+0.83J+ 1.16(t +h) 2c, +J

molecular and atomic energies, an erroneous result for
E;„, is obtained using Eq. (9} [11]. This effect can be
corrected by keeping the basis sets on sites A and H, but
removing the nucleus and the electrons corresponding to
the atom H ( A) in each case. Thus the calculation of the
"atomic" energy of A (H) is performed in the presence of
the "ghost atom" orbitals H ( A } at a distance R [11].
The model Hamiltonian based on an orthonormal basis
set provides a natural way to the ghost atom concept in
the calculation of the atomic energies E„(„)(R). The
corrected interaction energy expression is

E(~t(R )=E„H(R ) —[Eq(H)(R )+EH( q)(R )]
(10)

E~(H)( ~ )+EH(„)(~ ) =E„+E„.

5. Dimer characterization

tu= g &q. lrlq. &= g &a.'.~'..&(t;Irlk, &,
Q OCC l,JQ OCC

The magnitudes chosen to characterize each dimer are
the binding energy (Es ), the equilibrium distance (R, ),
the vibrational frequency (co, }, and the dipole moment
()M). The Es and R, values are obtained from the interac-
tion energy curve, while co, is obtained by fitting the cal-
culated results to a Morse potential. The dipole moment
is calculated using

(a) BH molecule
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FIG. 2. (a) Differences between the atomic energy calculated
in the presence of the ghost atom and the HF value for the iso-
lated atom. MH-S2 calculation for A-like atom energy; L
MH-ORTH calculation; ~, complete Hamiltonian calculation.
The empty symbols are the results for the H-atom energy. (b)
Differences between the calculated total energy and the experi-
mental value. ~ MH-S2 calculation; A, MH-ORTH calcula-
tion; ~, complete Hamiltonian with atomic basis set; +, com-
plete Hamiltonian with molecular basis set.

Internuclear Distance (a.u. )

FIG. 3. Interaction energies for the (a) BH molecule, (b) CH
molecule, and (c) NH molecule. The following symbols are the
result for all cases: , MH-S2 calculation; A, MH-ORTH cal-
culation; ~, complete Hamiltonian with atomic basis set; +,
complete Hamiltonian with molecular basis set. Broken or con-
tinuous lines are guides to the eye.
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where a' is the weight of the orthonormal atomic func-
tion P; in the a molecular orbital with spin o, qr .

HI. RESUI.TS AND DISCUSSION

Before considering hydrides, it is convenient to exam-
ine the significance of the terms neglected in Eq. (1) and
the consistency effects on the expansion up to second or-
der in the overlaps by analyzing our results for the Hz
molecule.

A. 82 molecule

In Fig. 1(a) the results corresponding to the application
of the MH-ORTH are compared with those obtained by
using the complete Hamiltonian [12], both calculated
with the same basis set. It can be observed that in the re-

gion where the atoms interact strongly, the results are
practically the same. However, in the dissociation limit,
those obtained with the complete Hamiltonian exhibit the
well-known behavior of the molecular-orbital method due
to the overestimation of the weight of the ionic
configurations on the ground state. This does not occur
in our model and the reason can be traced back to the sit-
uation selected as the starting point for doing the calcula-
tion. This selection plays an essential role in our method
since it results in an unbalance in the diagonal matrix ele-
ments of the Hamiltonian, thus avoiding spurious degen-
eracies after diagonalization. The molecular-orbital
method applied to homonuclear modules [13] assumes,
based on symmetry, that similar atomic orbitals form a
molecular orbital with the same weight (~1/W2~ either
for the bonding or antibonding state). This gives rise to
an equal occupation of the orthogonalized atomic states.

TABLE II. Dimer characterization. R, is expressed in a.u., E in eV, p, in debyes, and u, in cm . R, and E& were obtained

from the calculated interaction energy curve, while co, from a fitting with a Morse curve.

LiH

Hydride

R,
E
P
e

Model Hamiltonian
ORTH

3.0
—0.88

5.009
664.3

S2

3.0
—0.95

5.702
576.3

Complete Hamiltonian'

3.0
—0.86

5.085

Expt b

3.015
—2.52

5.882'
1405.6

BeH R,
E
p

Ci)q

3.0
—0.55

0.994
576.8

2.5
—3.33

1.542
1653.3

2.8
—0.933

1.208

2.538
—2.6

2058.6

BH 2.7
—1.65
—0.819
907.7

2.1
—6.00
—0.240

2160.6

2.6
—1.71
—1.536

2.336
—3.58
—13

2367.5

CH R,
E
p

COq

2.3
—1.17
—1.201
959.5

2.1
—4.39
—0.515

2347.5

2.46
—1.15
—1.134

2.124
—3.65
—1.46'

2868.5

NH R,
Eg
P
e

2.2
—0.76
—1.292
937.3

2.0
—2.71
—0.946

2140.6

2.24
—0.65
—1.245

1.9614
—3.80
—13

3125.6

OH 2.0
—1.30
—1.673

1258.2

2.0
—2.06
—0.958

1973.4

2.0
—1.13
—1.666

1.8342
—4.63
—1.66'

3735.2

FH R,

P
cue

1.89
—2.11
—1.797

1701.6

1.85
—2.40
—1.708

2009.5

1.90
—2.56
—1.811

1.7328
—6.12
—1.8195'

4139.0

'Reference [12].
Reference [14].

'J. Pople and D. Beveridge, Approximate Molecular Orbital Theory (McGraw-Hill, New York, 1970).
A. A. Radzig and B. M. Smirov, in Reference Data on Atoms, Molecules and Ions, edited by V. I. Goldanskii, R. Gomer, F. P.

Schafer, and J.P. Toennies, Series in Chemical Physics, Vol. 31 (Springer-Verlag, Berlin, 1985).
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Thus the assumption that similar states on different
atoms participate equally in forming the molecular orbit-
als precludes the localization of electrons around any par-
ticular nucleus. Although this is not serious in the re-
gions where the atoms interact strongly, it is the source
of the de6ciencies of the molecular-orbital method at
large internuclear separations.

In Table I we show the results for the total electronic
energy in the singlet ground state obtained by using two
Is orthonormal states, corresponding to (i) the MO
method (E }, (ii) the valence-bond method (E ), and
(iii) the MH-ORTH (E ). The latter was obtained by
taking the occupation numbers which result from the
self-consistent procedure at each internuclear distance. It
can be seen that our description behaves as the valence-
bond method at R ~~, while at the equilibrium distance
it approaches the MO method. The difference in J /2
with this latter scheme arises from the terms
a 6 a b, which has been ignored in our treatment.
It is interesting to note that at R =3.0 a.u. the MO
method overestimates the on-site Coulombic repulsion
with reference to our model (0.5U against 0. 17U) and
underestimates the intersite interaction (0.5J against
0.83J). For decreasing distances the density-matrix ele-
ments at the previous point are taken as input values for
the new self-consistent calculation. Thus the system
"remembers" the total spin symmetry of the ground state
at each point and this determines the "path" followed in
searching for the energy minimum at the next point. In
Fig. 1(b) we observe three interaction energy curves ob-
tained by applying the MH-S2 model, with (a) corrections
of the type S J" and spin-fiip terms included, (b} both
effects neglected, and (c) corrections S J" included while
the spin-Hip terms are ignored. It can be observed that

one arrives at a very poor description when terms of the
same order of importance are not treated on an equal
footing. Also it is noted that the MH-S2 description
leads to a binding energy larger than that obtained from a
MH-ORTH calculation.

B. Hydrides AH {A =Li, Be, B, C, N, 0, and F)

In Fig. 2(a) the differences between HF atomic energies
calculated with and without the presence of the ghost
atom are shown. Results for the atomic energies ob-
tained from the MH-ORTH and the MH-S2 models are
compared with the results obtained from a full a11-

electron HF calculation. These all correspond to the
theoretical equilibrium distance for the respective dimer
AH. In general, the MH-S2 introduces marked changes
of the "atom energy" in the molecule with reference to
the isolated atom values, giving systematically an energy
smaller for the A atom and larger for H in the different
hydrides.

Total-energy differences with respect to the experimen-
tal values calculated with our model and the complete
Hamiltonian at the theoretical equilibrium distances are
shown in Fig. 2(b). The filled-inverted triangle curve
shows the difference between the experimental values and
the Cade-Huo results [14]. As this calculation was per-
formed within a full all-electron self-consistent HF
scheme using an atomic basis set optimized for the mole-
cule, we can assume that it represents the best approxi-
mation in an independent-particle model. The Glled-

square curve corresponds to an equivalent calculation
[12], but using a non-molecular-optimized atomic set.
Therefore, in order to visualize the approximations intro-
duced by our model we must compare our results with

TABLE III. Contribution (in hartrees) to the total energy of each term in the model Hamiltonian at
the calculated equilibrium distance.

Contribution Type of
term calculation LiH BeH BH CH NH OH FH

Diagonal ORTH
S2

—11.908 —21.334 —35.576 —55.079 —79.909 —111.12 —148.76
—11.974 —21.619 —35.905 —55.080 —79.611 —110.70 —148.21

Direct ORTH
Coulombic S2

2.696
2.717

4.155
4.173

6.697 10.083 14.056
6.585 9.786 13.749

20.424
19.966

27.815
27.372

Exchange ORTH
Coulombic S2

0.619
0.644

1.418
1.462

2.778
2.734

5 ~ 171
4.961

8.762
8.440

12.459
12.089

17.533
17.172

Hopping

Spin-Aip

Nuclear
repulsion

Total
energy

ORTH
S2

ORTH
S2

ORTH
S2

ORTH
S2

—0.363 —0.804
—0.359 —0.838

—0.856 —1.029
—1.169 —1.292

—1.032 —1.129 —1.198
—1.152 —1.263 —1.125

0.002
0.020

0.002
0.051

0.014
0.111

0.014
0.105

0.013
0.062

0.013
0.056

0.011
0.031

1.000
1.000

1.481
1.600

1.852
2.381

2.609
3.158

3.182
3.500

4.000
4.444

4.737
4.737

—7.954 —15.081 —25.092 —38.232 —54.928 —75.354 —99.865
—7.952 —15.175 —25.262 —38.362 —55.011 —75.410 —100.02
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those of this latter case, since both calculations use the
same basis set. These are presented for both MH-ORTH
and MH-S2 descriptions. From this comparison, we con-
clude that the many-body terms neglected in deriving Eq.
(1}do not seem to be critical as far as the calculation of
total energies is concerned. In comparison with the
Cade-Huo results, we infer that the discrepancies are
mainly due to the use of the different basis sets. The
MH-S2 calculation tends to overestimate total energies
with respect to the MH-ORTH and we can see that, in
applying the MH-S2 model, the use of ghost atom orbit-
als becomes particularly relevant.

In Table II the binding energies of the different hy-
drides calculated at its equilibrium distances are shown
for the following cases: (i) our MH-S2 calculation, (ii) our
MH-ORTH calculation, and (iii) full all-electron HF cal-
culation using atomic basis set [12]. The experimental
binding energies are also included. Here we observe that
the many-body Hamiltonian approximated by a superpo-
sition of bond-pair Hamiltonians in the HF approxima-
tion works fairly well in describing binding energies. The
second-order expansion in S of the parameters leads to
different effects in the binding energies, depending not
only on the magnitude of the overlaps, but also on the
kind of chemical bond, i.e., the amount of charge transfer
involved. For nearly ioniclike systems (LiH, OH, and
FH) the results from MH-S2 are in good agreement with
those obtained using MH-ORTH, predicting binding en-
ergies smaller than the experimental values. For covalent
systems MH-S2 leads to an underestimation of repulsive
effects, consequently producing large binding energies,
and gives the wrong trend when different hydrides of this
type are compared. In this table the equilibrium dis-
tances, vibrational frequencies, and dipole moments for
all the dimers according to each approximation are also
shown.

The interaction energy curves for the BH, CH, and
NH molecules are displayed in Fig. 3. In each case, the
results from the model Hamiltonian [Eqs. (1) and (4)] are

compared with those obtained by solving the complete
Hamiltonian either by using an atomic basis set opti-
mized [14] or nonoptimized [12] for molecules. In all
cases it is verified that the expansion in S underestimates
repulsive effects at all distances. This obviously leads to
smaller equilibrium distances and to deeper wells.

Finally, Table III shows the contributions of the
different terms of the model Hamiltonian to the total en-
ergy at the equilibrium distance for both options. Each
row corresponds to a given term in either Eq. (1}or (4),
respectively, i.e., the first row corresponds to the sum of
E parameters, the second to the sums involving U and J,
and the next one to the sum of G=J—J" terms. The
contributions to the hopping T, spin-flip, and nuclear
repulsion terms are displayed in the last three rows.

IV. CONCLUSIONS

A model based on a truncated second-quantized Ham-
iltonian, recently proposed to describe the interactions
between adsorbates and solid surfaces as a bond-pair su-
perposition between dimers, has been analyzed by apply-
ing this description to the hydrides of the first-row ele-
ments. We found the following. (i) The superposition of
a bond-pair Hamiltonian in Eq. (1} gives results in fair
agreement with those obtained from the complete Hamil-
tonian, as it follows from the comparison with the full
all-electron molecular calculations [12]. (ii) The
separated-atom limit situation is well described by the
valence-bond nature of the model at large internuclear
separations. (iii) The expansion of the Hamiltonian pa-
rameters, carried out consistently up to second order in
the atomic overlaps, is a good approximation for nearly
ionic hydrides: LiH, OH, and FH.
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