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Distortion of atomic states by time-dependent electric fields. II. Coupling to the continuum
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The previously derived approximation for an atom in time-dependent electric fields [P. Krstir'. aud Y.
Hahn, Phys. Rev. A 48, 4515 {1993}]is improved for electric pulses of both short and long duration. The
transitions that involve a distorted continuum are studied in detail, and the phenomenon of momentum

coherence is shown to greatly enhance the transition amplitudes. A detailed comparison with the recent
experiment of Jones, You, and Bucksbaum [Phys. Rev. Lett. 70, 1236 (1993)] is presented, where a half-

cycle high-power laser pulse was used to ionize Rydberg atoms.

PACS number(s): 32.60.+i, 31.70.Hq

I. INTRODUCTION

[iB/Bt H„+r F(t)]%=—0 . (1.2)

The exact solution to this problem can be written in a
form

%(r, t ) =exp(ig r)exp( iH„t )exp( iX)p—o(r—),
where X(r, t) satisfies the operator equation

(1.3)

ax/at =g'(t)/2 —i exp(iH„ t )g.V exp( —iH& t )

=g (t}/2 ig.V+ [8&,g.V]t—
+{i/2)[H„, [Hg, g.V]]t + ' {1.4)

Time-dependent fiuctuations in plasma may be de-
scribed, to lowest order, by a time-dependent electric field

(TDF). This can modify numerous atomic processes that
take place in the plasma environment [1—4]. Particularly
sensitive to the TDF are the processes that involve high
Rydberg states (HRS's) and a low-energy continuum.
Recent experiments [5] on ionization of HRS atoms by a
half-cycle pulse (HCP) as well as enhancement in radia-
tive recombination [8] of very-low-energy electrons con-
stitute grounds for testing the TDF effect on processes
that involve both bound states and a continuum.

The previously derived approximation [1] for distor-
tion of electronic wave functions 4„(r,t) in the central

0
potential V(r) and under the infiuence of a time-
dependent electric field F(t) takes a simple form

0"(r, t ) =exp[ig r —icr(t) ]exp( iH„ t )Po(r—),
where cr(t)= f' dt'gz(t')/2 and where g=g{t}
=f ' „F(t')dt' is the momentum of an electron that

moves classically with acceleration F(t) and g = ~g~. The
subscript 0 denotes a particular initial state j =0, where

j =(n, lj, rnj ) is a set of quantum numbers of unperturbed
atomic state H„P =E P The form g. iven in Eq. (1.1}is
an approximation to the initial-value problem
%(r,t~ —~ )=exp( iH„t }go(r), —as defined by the
Schrodinger equation

The approximation (1.1) is obtained keeping only the

g /2 term in the expansion (1.4), i.e., X—=o(t). The
neglected part of X is small for some values of the system
and the field parameters. This is extensively tested in
Ref. [1]and discussed later in this section.

If the exact wave function %(r, t) is expanded in the
complete set of unperturbed eigenfunctions [@J(r, t ) ]
= [exp( iH „t )P—;(r)] as

%(r, t)=pa (t)4 (r, t), (1.5)

The transition probabilities defined by the amplitudes
in Eq. (1.4), ~a'(t}~, have been tested extensively by
comparing them with the "exact" probabilities ~aj(t)~ of
Eq. (1.3), obtained from the large truncated basis of cou-
pled hydrogenic states up to n & 30. The bounds of valid-
ity of (1.1) are discussed below. Comparison showed
surprisingly good agreement for both the n and i, rn mix-
ing transition probabilities at different times t of the sys-
tem evolution.

The probabilities ~a'(t)~ are shown to be a good ap-
proximation if the field-induced displacement g~ of the
classical electron during the pulse duration ~ is smaller
than the wavelength 2m. /v of the orbiting electron with
velocity v —1/no. If ~ is small in comparison to the clas-
sical orbit period T-2m.no of the initial state, this yields
gvrl(2')-gal(2srno) &1. On the other hand, if T &r
and if the electron stays bound, the field-driven electron
displacement does not exceed gT, which yields
gT/(2'/v ) gn0 & 1.-For a continuum state 4 (r, t), the
above discussion yields grq, /(2n }&1, where q, is the
classical electron momentum in the presence of V(r},
q, [q 2V(r, )]'~, and r, is an a—verage distance of the

then Eqs. (1.2) and (1.5) with initial conditions
a (t~ —~)=. 5 0 yield a system of coupled difFerential

equations. It was solved numerically, with different
forms of time dependences for F(t} [1,2]. The similar ex-
pansion of 4'(r, t) of Eq. (1.1) gives

a'(t) =exp[i(E —Eo )t i o (t)]—
X r J rexpigt r Or
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electron from the nucleus, which depends upon the pro-
cess being studied. When q~0, a large Heisenberg un-

certainty of r means large r, and therefore small q, . In
effect, the dressing expressed in Eq. (1.1) becomes exact in
the limit of small continuum momenta. On the other
hand, Eq. (1.1) is also exact [1] in the limit no~oo,
yielding the smooth transition of the bounds of validity
from large no to the low-q continuum.

When ~& T and the velocity gain FT of the classical
electron in an electric field F = ~F ~

during the orbit time
T is small enough so that the corresponding wavelength
1/(FT} is much larger than the characteristic dimensions
of the atom (r ) n—o, the system responds to the electric
field adiabatically and transitions become possible only
within the degenerated set of states of the initial no. The
above condition is represented by the Inglis-Teller limit

3
Fn 0 & 1 . The adiabaticity can be estab 1ished aiso in

the opposite limit ~&&T, when the wavelength of the
electron gained in the filed pulse 2n/g is much larger
than the characteristic dimension of the atom nz, i.e.,
gno/(2tr) & 1. Then, assuming that there is no n mixing
of the states, an exact "adiabatic" solution to the field

dressing problem can be derived [1,3], using the fact that
the hydrogenic wave function in parabolic coordinates di-
agonalizes the electric dipole matrix element. It was
shown by projecting both initial and final spherical states
onto parabolic states that the wave function (1.1) is iden-
tical in the weak-field adiabatic limit to that obtained by
the parabolic solution expressed in terms of the Clebsch-
Gordan coefficients and linear Stark shift. Moreover,
4'(r, t) in Eq. (1.1) is the exact solution to the problem
Eq. (1.2) if the unperturbed Hamiltonian H„ is complete-

ly degenerate.
The numerical "experiments" reported in Ref. [1] were

carried out for the bound states, neglecting the electric-
field-induced coupling of the states to an atomic continu-
um. In most cases tested, transitions were localized in n

to the neighborhood of no of bound-state orbitals, while

transitions involving an atomic continuum are difficult to
test numerically. Rather than testing Eq. (1.1) directly,
we consider applications of 4'(r, t), and its improved
forms (Sec. II), to processes that involve a continuum. In
Sec. III the ionization probability is calculated and com-
pared with experimental data for ionization of highly ex-
cited sodium atoms by a short half-cycle electric pulse [5]
as well as with results of extensive classical and
quantum-mechanical calculations of Reinhold et aL [6,7].
In addition, details of energy and the angular spectrum of
photoelectrons are investigated. In Sec. IV radiative
recombination of electrons with atomic ions in the pres-
ence of an external TDF is calculated. Large enhance-
ment in the cross section is obtained, which may be
relevant to the enhancements observed in recent experi-
ments [8]. Our concluding remarks follow in Sec. V.

oscillations for large positive times t &)T &~, while the
a'„(t) in Eq. (1.6) oscillate as exp[i(E E—o)t]. These

phase are irrelevant in the calculation of transition proba-
bilities induced by the field, but may be important when

the approximate wave functions are used for a descrip-
tion of transitions induced by some other perturbation in

the presence of the short electric-field pulses. To correct
this situation we note that the ansatz

V(r, t ) =exp[i g r —io (t) ]g(r, t ), (2.1)

where 4' is the exact wave function of the Schrodinger
equation (1.2), gives the equation for f(r, t)

((a/ar —H„+ig V)q=o . (2.2)

g (r, t ) =exp[ i go r+—i(go/2)(t —r)]

Xexp[ iH„(t——r)]p, (r), r & r, (2.3)

where j spans all the quantum numbers of the unper-
turbed Hamiltonian H„. Expanding P(r, t) of Eq. (2.2)
in P, , we have, for %'(r, r),

--- 9((/~)/~,
F(t/~)/F, /

/

I
I

l

I

l
(

f

If F(t) is an odd function of time, we have g(t )r)~0.
But if F(t) is an even function (for example, a Gaussian
pulse F=Foexp[ —(t/r) ]),g(t) shows a typical stepwise
behavior, of the step "width" ~, as shown in Fig. 1. For
t ) r (region 2) g (t) is almost constant,
g(t) r)=go= f' F(t')dt'. On the other hand, for time

independent g= go Eq. (2.2) can be solved exactly as

II. IMPROVEMENTS DF THE THEORY

Investigation of the a, (t) and a,'(t) (rather than corre-
sponding probabilities) shows a discrepancy in the phases
for r& T; the exact a,.(t) does not have time-dependent

FIG. 1. The normalized Gaussian electric pulse

F( t /r }/Fo =exp[ ( t /r) ] (solid—line) and the normalized

field-induced momentum of a classical electron

g(r/r}/Fo= f exp[ —(t'/r) ]dr' (dashed line) are presented.
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%(r, t ) —=exp[ —i o (r)]QC exp[ —iH„(t —r) ]P (r),

(2.4)

for CJ,

C =exp( —(ger) fdr g'(r)exp(ige r)()e(r) . (2.5)

where C are constant expansion amplitudes. Matching
4'(r, t) of Eq. (1.1) with )II of Eq. (2.4) at t =~, we have,

Finally, summing over the complete set [P ], the approx-
imate wave function for the problem (1.2) may be written
as

exp[ig r —io (t)]exp( iH—„t )(tIp(r), t & r
0 "(r,r)=

exp[ i o—(r) iE—p~]exp[ iH„—(t —r)]exp[ig(~) r](I{)p(r), t & ~ . (2.6)

g01
&1

2n n (1+~/T)
(2.7)

and this applies to cases of both "short" (r&T} and
"long" (r & T}electric pulses [1].

As related to Eq. (2.6), we consider an alternate form
of the wave function dressing by short electric-field pulses

The amplitude a"( t & ~) of the expansion
'II"'(r, t &r)=gjai(t)exp( iH„—t)P (r) is now equal to
C, up to a constant phase, and does not oscillate with

time. This was the desired behavior, as expected from
the exact numerical solution.

Since ~ai(t)~ =~aj'(t)(, the transition probabilities in-

duced solely by the electric field F(t) are not sensitive to
the choice of the above approximate forms. When the
transition is mediated by an external perturbation V' oth-
er than r F(t), but in the presence of the field F(t), the
corresponding amplitude may be sensitive to the
modification introduced by Eq. (2.6).

When F(t) is an odd function, the two approximations
are identical 4"(r, t) =4'(r, t} and reestablish the initial
state exp( —iEpt)gp(r) for t &~, the behavior that was
also seen in the exact numerical solution [1].

According to the discussion given in the Introduction,
the range of validity of qg"(r, t) in Eq. (2.6) can be ex-
pressed as

Expanding formally

exp(iH„t }Fr exp( iH„—t }

=F r+i[H„,F r]t —[H„,[H„,F r]]t2/2+

(2.11)

where

[H„,F r]=—F V, [H„,[H„,F r]]=F VV, (2.12)

we get

i){)'+(r,t ) =(I}p(r)exp[io'(t) ], (2.13)

where (Q{p is the initial atomic state and
o''(t) = J

' dt't'F(t'}g{t'}. The error introduced by it)'pi

is estimated from the matrix element of the next-order
term

I'p(t) = ( gag(t) Vgp) -Fpd/n~-Fpd~~(r/T)'~

(2.14)

where h(t)= J' „dt't'F(t') and Fp is the field peak
value. Note that g' ' contains (r'(t), which is a part of
the contribution of the term proportional to t in Eq.
(2.11}. Since Bcr'(t)/Bt is proportional to Fpv, it belongs
to zeroth-order term in the expansion of H' in powers of
r/T. The first order correction then gives

4'"(r, t )=exp[ iH„(t tp)—]—
XexP[i@(r rp)Fp r](}}p(r) .

f"'(r, t)=exp[io'(t)]Pp{r+h(t)),
{2I where the error is now

(2.15)

)Ig"'(r, t) is an exact solution of the initial value problem
of Eq. (1.2) for F(t)=Fp5(t —tp), where 5(t) is the Dirac
delta function and 8(t) is the unit step function. Assum-
ing a finite ~&& T of F(t), with the ansatz

)Ig =exp( iH& t )exp{ig r)f—' (2.9)

where

in Eq. (1.2), the equation for g'(r, t) can be written in the
form

(2.10a)

I,(t)= ( P w(t) V V (r)P }-F Hr/T

with

w(r)= f Ch'(r'/2)F{r') .

Finally, the second-order approximation for it)' is

g(~~{r,t)=exp[icr'{t)]exp[ iw(t) VV—{r)]glgp{r+h)

with the error term

(2.16)

(2.17)

(2.18)

H'=F. r —exp( i g r)exp(iH„ t—}F.r.

Xexp( iH& t)e p(ixg. r)—.

I,(t)-F,H(~/T )' (2.19)

(2.10b) and so on. We note that if F(t) is an even function of
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time, then h( ~ )=0 and g'"(r, t~ oo )

=exp[io'(taboo )]go(r)=%' '(r, t~ ). Therefore

4 —exp( iH—
& t )exp(ig r)Po(r)exp[i''(t)], t ~ oo

(2.20)

is valid in the limit t~ oo if Fp r/T & l. On the other
hand, if F(t) is an odd function, g ( oo ) =0, tp( oo )=0, and

4-exp( iH&—t)go(r+iii}exp[icr'( oo )], t~ oo (2.21)

0.3

0.1

5~=10 c).u.

is the first nonvanishing approximation at t ~ 00, with er-
ror I -Fpd(r/T) .

When the electric field changes slowly on the atomic
time scale T, the approximation (1.1) may be valid if the
adiabaticity condition (gno &1) is fulfilled. We may im-

prove Eq. (1.1} beyond this condition; the field-induced
classical momentum g(t) does not take into account the
feedback effect on g(t} of the field-induced dressing of the
atom. When the field mixes various energy components
of the wave function, the characteristic time of the mix-

ing is limited to the period of the transitions ~, —1/t0,
where co is the frequency of transition; for bound states
co-1/no -1/T. This partially restricts the efFective time

to ~, &~. We take this into account by replacing g(t)
with g„,(t},where

g„,(t) =g(t)/(1+~/T), (2.22)

4,'„(r,t)~C gP )(P exp(ig„, r)Pp)exp[ —itr„„(t)]
jAO

+ Pp ) ( Ppexp( ig.r)Po )exp[ —io ( t ) ]

Xexp( i Eot ), —

where C is the field-dependent normalization factor

(2.24a)

C=[1+~(Poexp(ig r}Pp)~

~(koexp('g 'r)4o)
~ ] (2.24b)

with T=2n.no. The simplicity of Eq. (1.1) is preserved
and we have

4,'„(r,t ) =exp[ig„, r —io „,(t)]exp( iH„t)gp—(r} .

(2.23)

Since Eq. (2.22} specifically takes into account the
eff'ect of relative transition frequencies, those components
of (2.22} associated with the states which are degenerate
with Pp(r) should not be modified. Thus 4'„,(r, t) is finally

written as

0.0
0 6 8

FIG. 2. The I-mixing transition probabilities induced by the
adiabatically varying electric field F(t) =Foexp( —

~
t

~
/r) are

shown, where different wave functions are employed: "exact"
numerical solution (solid line), approximate wave function of
Eq. (1.1) (triangles), and wave functions of Eq. (2.24) (circles).

zero magnetic quantum number m and all I and n 25.
The n mixing is expected to be insignificant in this case
since Eno (0.01. Evidently, this is well represented by
the exact numerical solution. For a given pulse duration
w, it follows that g( oo ) =0.02 and gn p =2, and the wave

function in Eq. (1.1) gives a spurious n mixing of about
50% (triangles in Fig. 2). On the other hand, the transi-
tion probabilities calculated from the wave function
(2.24) contains almost no n mixing ( &0.02%) and the re-
sulting 1 distribution (circles} almost coincides with the
exact one. Another application of the dressed wave func-
tions (2.23) and (2.24) is shown in the next section, where
ionization of Rydberg atoms by a half-cycle electromag-
netic pulse is considered.

III. IONIZATION BY A HALF-CYCLE PULSE

In this section we test the proposed field-dressing for-
mulas on a process that involves both bound and continu-
um states, i.e., ionization of high-Rydberg-state atoms by
an electric pulse. The result is then compared with the
experimental data of Jones, You, and Bucksbaum [5].

A half-cycle electric pulse was applied on sodium
atoms, which were preexcited by two dye lasers to high
Rydberg d states, of effective principal quantum numbers
n =15, 20, and 35. The pulse F(t) was approximately of
triangular shape, with a half rise time of ~—=500 fs. The
exact S matrix for ionization into a final continuum state

'(r, t) of momentum q can be written in the form

(3.1)

Note that, in Eq. (2.24a), the second term in large curly
brackets contains the bare g and not g„,.

An application of Eq. (2.24} to the dressing of the
bound states is shown in Fig. 2. The full line represents
the field-induced l mixing transition probabilities within
the set of hydrogenic states that are degenerate with ini-
tial state (no, lo, m ) =(10,1,0). It is obtained by the solu-
tion of coupled equations with all hydrogenic states of

where ( ) means spatial integration and %~&+ '(r, t) satisfies
the exact Schrodinger equation of the problem Eq. (1.2}
with the initial condition %z '(r, t ~ —oo )

=exp( iEpt)gp(r) and 4~ —'(r, t)=exp( iE t)P' '(r)—.
We approximate 4 '(~or, t ~ oo) by 4"(r, t~ oo }
of Eq. (2.6}, with appropriate modifications in Eqs.
(2.22) —(2.24). The total ionization probability Pz is then

given by the integral over q
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Ig= q Sq0 =C q qexp lg~~ I' 0, (3.2)
1.0

o
where C is the normalization constant, defined by Eq.
(2.24b), and g,~=g„,(cc)=g, (t)r). The initial and
final atomic states are defined before the pulse is switched
on and after it was switched oi; respectively.

Although formally simple, actual calculation of the
ionization probability by direct integration of (3.2} is
difficult and numerically unstable for states with n ~ 15.
The sum over all continuum states is therefore replaced
by the complement of a semiclassical projection operator
[9] which projects onto the subset of all hydrogenic
bound states. It was given by

A&=1 qpq r ipq r

0.8—

C3

0.6—
0
L

CL

C
0

0.4-
N

~ ~
C
0

0.2—

0

(a, i}=(r,2}

= g yj. (r')qj. (r)
J

=[1/(2m u )][sin(6)—6 cos(G)], (3.3a)

0.0
0.0

o
0.1 0.2 0.3

g (a.u. )

0.4 0.5

where

6 =(4/v)'~ u, u = (r —r'(, v = ~r+r'~ . (3.3b)

The ionization probability of Eq. (3.2) can now be written
in the form Pz= 1 —QJ, where Qz, after averaging over
magnetic quantum numbers of the initial state, is reduced
to a three-dimensional integral

1 sin(g„~u )
Qz=-—f f f du dr'1@sin(8)

reso~

X [sin(6) —6 cos(6)]

XR„t(~u+r'I )R„t(r')P((x) (3.4}

and now 6=(4/~u+2r'~)'"u, x=(u r'+r')/l~+r'I, &

is the angle between u and r', and PI(x) with x =cos(8) is

the Legendre polynomial arising from the angular depen-
dence of the initial bound state of angular momentum l.
The quantization axis is assumed in the direction of elec-
tric field. Since PJ involves high Rydberg states and con-

tinua, we neglected the sodium core, which is replaced by
a hydrogenic model with minimal error. The operator
As in Eq. (3.3a) can readily be improved using a model

potential, if necessary [10,11].
The effectiveness of the approximate projection opera-

tor Eq. (3.3) is checked in two ways.
(i) In the limit g„~—+0, the integral (3.4) is expected to

be equal to 1 for any bound state (n, l). The calculated
values are 0.99 for (n, l)=5d and 0.997 for (n, l)=10d
and becomes numerically indistinguishable from the six-

digit value of 1.00000 for states with n ~ 15.
(ii) Calculation of the ionization probability from the

state (n, l) =(5,2) is done by direct integration Eq. (3.2)
for a few values of g„~ (filled circles in Fig. 3}and using
the projection operator Eq. (3.4) (hollow circles in Fig. 3}.
The agreement of the two calculations is excellent.

The field- and time-dependent energy shift a,~(r), cu-
mulated in the phase of the wave function for the pulse
duration, does not infiuence the transitions between
bound states, but can play an important role in bound-

continuum transitions. The continuum threshold is
effectively shifted downward by the value of classical
kinetic energy g, (t)/2 gained by the electron in the
electric field. We take into account this shift through the
average value tT of tr, (t} for the triangular pulse dura-

tion, defined as o =I',o(t)dt /(2r) =(23/120)For .
Then, Eq. (3.4) preserves its form, but with 6 redefined as
6=(—2o+4/v)'~ u. In the calculation of g,~c and o,
the actual F(t) was approximated by a triangle of the 1 ps
base width and the height equal to the peak value Fo of
the pulsed electric field [5].

We discuss the threshold behavior of the ionization
probabilities as shown in Fig. 4. The effect of the energy
exponent cr,~(t}in Eq. (2.23) is the shift of the continuum
edge downward by a value of the kinetic energy g,~(t)/2
gained by the electron in the electric field, where g„, is
the reduced momentum transfer. Therefore, if the time
of the pulse duration is r, the ionization threshold is
defined by g,~(r)/2=1/(2n ), i.e., g,~ =1/n. Following
the definition ofg„,(t) Eq. (2.22), this yields

g(r) = 1/n +(1/2n )rln (3.5a)

If one approximates g(r)= Far, where Fa —is the mean
electric-field amplitude during the pulse duration, then
Eq. (3.5a) is rewritten as

Fa =1/(nr}+(1/2n }1/n (3.5b)

In the adiabatic limit (r +Da), this takes the —well-known
form of the classical field ionization threshold law
—1/n, with 1/(2m. } in place of the classical —,'. In the

FIG. 3. Ionization probabilities from the state Sd of hydro-

gen are given. They are calculated using the semiclassical pro-
jection operator of Eq. (3.3) (hollow circles) and by the direct in-

tegration over all the final continuum states of Eq. (3.2) (filled

circles).
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Ex
----[R I

Q
I

I
I
I

I
I
I

I
I

I
I g(w) =c, /n +(1/2m )czar/n (3.6)

data of Ref. [5] (triangles} are shown after reducing them
by a factor of 0.54. Therefore a formula for the ioniza-
tion threshold induced by an electric field of an arbitrary
duration may be written in the form

o 0.6-
0

Q

C
Q

o 0.4-
N

C
0

0.2—
'15d

0.0
&0' 10'

F, (kV/cm)

02

FIG. 4. The experimental ionization probabilities of Jones,
You, and Bucksbaum [5] are compared with the theory: the
effective hydrogenic states 15d, 20d, and 35d {solid lines}; the
full classical calculation in Ref. [5] {dashed lines); present calcu-
lation, using Eq. (2.23) (triangles) and Eq. (2.24} (hollow circles).

0 10%, scaled [Ref.6]
50% [Ref.6]
Present

101

C
C)

Q
2 to-'

~/T

FIG. 5. The scaled total Seld momentum g(~)n vs the scaled
Geld pulse duration ~/T at the ionization threshold; solid line,
Eq. (3.5a); circles, 50% ionization threshold, Ref. [6]; triangles,
10% ionization threshold, scaled by a factor of 0.54 of the result
given in Refs. [5,6].

limit of short pulses, Eq. (3.5a} yields g(z)=1/n, which
was obtained by Reinhold et al. [6] by extensive
quantum-mechanical and classical calculations. The
comparison of Eq. (3.5a) (solid line) with the result of
Ref. [6] (symbols} is presented in Fig. 5. For 50% ioniza-
tion threshold, the hollow circles show excellent agree-
ment with Eq. (3.5a), while the 10% ionization threshold

where parameters c, and c2 depend upon the degree of
ionization q and can be determined from extensive calcu-
lations in the "sudden" and adiabatic limit, as was done
in Ref. [6]. Comparing with Eq. (3.5a), we have
c, =c2=1. c, =l was obtained in Ref. [6] for i)=50%.
For a classical threshold field in adiabatic limit
[1/(9n ) ], we obtain instead c2 =0.7 by fitting their data.
On the other hand, for g=10% their result yields
c, =0.54. As pointed out by Reinhold et al. [6], the ion-
ization threshold behavior —1/n, which follows from
the experimental results of Jones, You, and Bucksbaum
[5], Fig. 4, may be interpreted as a form intermediate be-
tween the short pulse and adiabatic limit in Fig. 5.

Calculation of ionization probabilities using Eq. (3.4)
and including the shift of the continuum edge gives the
result shown in Fig. 4 (circles). The dashed lines are the
classical calculations of Ref. [4]. The ionization probabil-
ities were also evaluated using the wave function (2.23)
(triangles). The increased probabilities near the ioniza-
tion threshold, especially for no=15, may be due to a
small spurious n mixing produced by ip'(r, t) when r) T,
as discussed at the end of the Introduction and in Ref.
[1). The Inglis-Teller adiabatic limit Fan a/3 —= 1 gives for
no=15 the limiting electric field Fa=20 kV/cm. This
happens to correspond to the experimental threshold in
Fig. 3. At the same time, gana/(2~)) 1 for Fa(20
kV/cm. The normalization constant C [Eq. (2.24b)]
suppresses the spurious n mixing and thus improves the
field dressed functions with the energies about the ioniza-
tion thresho1d. On the other hand, ~&& T when no=35
and the adiabatic limit [1] is defined by gano/(2n)—= 1.
As long as ga~/(2m no ) ( 1 (which corresponds to
Fa ( -3 kV/cm), the n mixing of the initial bound state
is localized to a few neighboring states and ionization
remains small. As seen in Fig. 4, the ionization curve for
no=35 suddenly changes its slope when Fo reaches 3
kV/cm.

Expressing g«,a
——ga/k, we note that k = 1.07 for

no=35 k=l 40 for no=20 and k=&.94 for no=
The modification introduced in Eq. {2.22) influences the
location of the probability curves, shifting them toward
higher Fo, but does not influence their slopes. This shift
is negligible for the curve with no =35, while the effect of
lowering the continuum edge o.(~) is sizable for this no.
The o(~) increases the slope of the curve at higher field
intensities, causing the calculated values to diverge from
the experimental data. %'e blame this discrepancy on the
neglect of the second-order Stark shift o;o of the initial
state, where aa has opposite sign to o(r) and is propor-
tional to no. Its effect becomes significant for larger no.
Our estimates show that ao is almost negligible as com-
pared to o (~) for na =15,20, but becomes comparable in
magnitude to o (w) for na =35.

The field dressing of the system produces interesting
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features in the energy spectrum and angular distribution
of the photoelectrons. %'e show in Fig. 6 the qualitative
features of the spectra for ionization by electric pulse
from hydrogenic state 5d, where the momentum (solid
lines) and energy (dashed lines) spectra of the photoelec-
trons for three values of g=g(ao) are presented. They
are defined as

dan/Bq =q f dIIq ~&gqexp(igo. r)&0& I

M' /aE =W' /(qaq) .
(3.7)

The peaks in the spectra are a consequence of the con-
structive interference of the factor exp(igo r) and the con-
tinuum state P' '(r). We call this the momentum coher-
ence (MC) effect. This effect can be illustrated for a
simplified case of a plane-wave final state
P (r) =—exp(iq r). If the atom is ionized to a continuum
state of momentum q, the corresponding amplitude Eq.
(3.2) is the largest when exp( iq —r)=exp(igo r) Th.is
produces peaks 2 and 3 in Fig. 6 [continuum-state
momentum coherence (CSMC)]. On the other hand, for
q=0 (zero-energy photoelectrons), the electron in the
field of the parent ion has a classical momentum

q, =v' 2V(—r), which produces slow oscillations in the
zero-energy continuum wave function. When go —= I /no,
this oscillation will again be partially canceled by the field
dressing factor and an enhancement is produced in the
energy spectrum [the bound-state momentum coherence
(BSMC)]. Finally, when the electron is ionized with the
final momentum q=go —1/no, the oscillations due to
both q and q, are canceled and give peak 1 in Fig. 3. For
the curve with go =0.2, BSMC appears as the low-energy
amplification in the energy spectrum, which coexists with
the CSMC peak at q=0. 2. For go=0. 1 only the CSMC

In Eq. (3.8)j,(gor) is the spherical Bessel function. The
momentum coherence is seen in the radial matrix ele-
ments through the constructive interference of the three
oscillating functions in the integrand, as shown in Fig.
7(a) (solid line), for the CSMC peak 3 in Fig. 6. The in-
tegrands (dashed line) for the BSMC with g=0.2 and

q =0.05 are also shown. In both cases the integrands are
of definite sign, thus significantly increasing the ampli-
tude. The squared matrix elements that correspond to
Fig. 7(a) are shown in Fig. 7(b) as functions of q (CSMC)
and in Fig. 7(c) as functions of g (BSMC). In producing
the momentum coherence, the respective intrinsic phases
also match up. That is, P, —=P, where

p, =pl l, Ir/—2+5& for the Coulomb and core phase

shifts p and 5, respectively, and p = III/2 —of the spher-
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bound dressed state radial matrix elements are illustrated: (a)
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elements, for a selected set of values of q and go; (b) the CSMC
matrix element with l„ I, and go as in (a) versus continuum
momentum q; (c) the BSMC matrix element with q, l„and l as
in (a) versus the "field" momentum go.
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ical Bessel functions associated with the dressing. They
can be arranged in diferent ways, thus broadening the
MC peaks. This is illustrated in Fig. 6.

Many I, 's also take part in CSMC and the resulting
peaks are the product of both increased radial matrix ele-
ments and multiplicity of the I, . On the other hand,
BSMC is restricted to a few angular components of con-
tinuum, ground the value of the initial 10. These features
are clearly seen in the angular spectrum of photoelec-
trons in Fig. 8, where BPJIB[cos(8)] versus cos(e} is

presented. We have

dP~/d[cos(8)) =q' J dq, i(g, exp(igo r)$0) i',
cos(8) =q go .

(3.9)

For BSMC of Figs. 8(a) and 8(c), the electron spectra
have rich structures. The presence of the BSMC com-
ponent in peak 3 of Fig. 6 contributes to the structure in
Fig. 8(f}. Typical angular spectrum of the CSMC is
spread in the direction of the applied field [Fig. 8(b} and
8(e)]. The stronger the field the more arrowlike the angu-
lar distribution obtained, as seen in Figs. 8(d) and 8(e}.

The angular spectrum can thus be used to distinguish be-
tween the BSMC and CSMC peaks in the energy spec-
trum of photoelectrons.

IV. RADIATIVE RECOMBINATION IN THE
PRESENCE OF AN ELECTRIC-FIELD PULSE

The MC e5ect is a consequence of the constructive in-
terference in the matrix elements between the field dress-
ing term exp(ig r) and the continuum state or the high
Rydberg state. Therefore, it is not specific to the ioniza-
tion process, but rather common to all processes that in-
volve oscillating wave functions. We explicitly evaluate a
radiative recombination (RR) cross section as it is
modified by the field [12]. The RR amplitude assumes
the form

LP~ i g.rei& LP[+]

where a, is the polarization vector of an emitted photon, b
and c denote the bound and continuum states, respective-
ly, and the tilde stands for the field distorted states, with
outgoing (+) or incoming (—) wave boundary conditions.
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as the result of ionization of state 5d by the
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Using the field dressing (1.1} and neglecting the field-
induced energy shift o'(t), the dressed initial continuum
state with outgoing boundary conditions takes the form

+',+'=exp i f F(t') rdt' P, (r)exp( iE—,t) . (4.2)

TRR ~ ] g.reig(m) r (+)

Xexp[i(to+ Eb E, )t ]—, (4.4)

which (upon averaging over co, a, and the incident elec-
tron directions and summing over the magnetic quantum
numbers) yields the cross section

o —=(Sm. /3q )a b,,„
Xg (2l, +1)QN(l„l, li, )

l l

X )(Rb& ~rjl(gor)~R i )), (4.5)

where af is the fine-structure constant, N is the usual an-

gular factor in terms of the 3j symbols

N(l„lb, l ) =(2lb+1)(2l+1)

li, l I+1
X (i&+1) p p p

lb l l, —1

+'00 0 (4.6)

The dressed final bound state with ingoing boundary
conditions is then defined as a state that evolves in the
electric field backward in time, starting from the bare
bound state 4„& (r } at t = + aa. This yields

'—=exp i F t' r t nlm r exp —iEn
00

Replacing (4.2} and (4.3) in the S-matrix element in Eq.
(4.1) yields exactly

The MC effect is here demonstrated through the
momentum boost g of the continuum electron, and both
CSMC (g= —q} and BSMC (g=l/n) maxima are ob-
tained when the electron is slowed to almost zero energy.
Similar coherence patterns, with large enhancement of
the matrix elements as shown in Fig. 7, may also be
shown for this case [12].

The RR cross section in the absence of the field era is
calculated and compared with o&, of Eq. (4.3}. The
enhancements, defined as oi""(nf )/oo "(nf) for nf =10,
are presented in Fig. 9 as a function of the incident elec-
tron momentum q. Very large enhancements, of -10,
are obtained for go —=g( ao )=0.2 at the peak CSMC. The
curve for go=0. 1 shows the BSMC efFect at lower mo-
menta. In addition, the CSMC peak is also present at
q =0.1.

A possible indication of the presence of this efFect
might have been seen in a recent experiment by Grimm,
Schussler, and Muller [8], who abserved an excessive
number of soft phatans in the RR experiment with very
slow electrons. Detailed study of the BSMC efFect in the
total RR cross section and comparison with experiments
will be given elsewhere.

V. DISCUSSION

The simple dressing procedure for atomic wave func-
tions in a time-dependent electric field of arbitrary time
dependence and orientation was develaped in Ref. [1).
Its efFectiveness is further demonstrated here in order to
clarify the bounds of validity as well as to improve it
without significant loss in simplicity. The improved wave
functions in Sec. II are applied to cases of current experi-
mental interest. The consequences of the dressing on the

10

and b,,b =E, E&. In the lim—it g ~0, we recover the un-

perturbed RR cross section.
The transition amplitude given by Eq. (4.4} contains

the same form of the classical scaling law which is
present in the ionization process and noticed before for
processes with the Rydberg states [5,6]. Particularly, it
shows that within the range of validity of approximation
(1.1) the total inomentum transferred by the field is an
important quantity rather than the field at impact.

The actual length of the field pulse defines the bounds
of the validity of approximation (1.1) and therefore the
validity of the results in Sec. IV. Because of the scaling
property of the cross section, the pulse duration need not
be specified and can be defined later for the specific appli-
cation.

On the other hand, inclusion of the energy shift cr(t),
as well as correction (2.22} to the definition of g(aa},
would inhuence the ionization threshold in the problem,
as defined by Eqs. (3.5). This would suppress the RR pro-
cess when g(aa) is larger than the ionization threshold
value and, depending upon the pulse duration, a part of
the curves in the Fig. 9 could be unphysical.

10
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10
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FIG. 9. The enhancement in the RR cross sections into the
state with nf = 10 due to the MC effects, which is induced by go
of an electric-field pulse, as a function of the incident electron
momentum q.
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processes that involve atomic continuum and high Ryd-
berg states have been studied in detail. As the first appli-
cation, comparison with the experimental ionization
probabilities of HRS by the HCP [5] is presented in Sec.
III. Qualitative features of the energy and angular spec-
tra of photoelectrons offer mechanisms for testing the
MC effect experimentally. In addition, the large MC
enhancements are obtained for the RR cross sections in
the presence of an electric-field pulse. The MC mecha-

nism as a possible explanation of the recent RR experi-
ments is suggested.
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