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Multichannel quantum-defect theory is applied to the gerade n =2 and 3 states of H2. In the first pa-

per in this series [Phys. Rev. A 49, 4353 (1994)] we obtained the quantum-defect matrix of the strongly

interacting 'Xg double-minimum states of H2 by fitting to the ab initio clamped-nuclei electronic ener-

gies of Wclniewicz and Dressier. This matrix was used in the second paper [Phys. Rev. A 49, 4364

(1994)] to calculate the N =0 vibronic energies of the corresponding electronic states. In this paper we

calculate the N) 0 rovibronic energies of the singlet and triplet gerade n =2 and 3 states of H2. This ab

initio treatment accounts for both singly and doubly excited channels and reproduces the rovibronic en-

ergies with almost the same accuracy as the more traditional coupled-equations approach. Additionally,
the experimental singlet-triplet splittings for the f levels, and the evolution of these splittings with vibra-

tional and rotational quantum numbers, are reproduced very well.

PACS number(s): 33.10.Cs, 33.10.Lb, 34.10.+x, 34.80.Kw

I. INTRODUCTION

In the preceding two papers [1,2] we developed the ro-
vibronic multichannel quantum-defect theory (MQDT),
accounting for 1-mixing and coupling with states involv-

ing electronically excited cores. In the first of these
(which we refer to as "RJ-I")we used the highly accurate
potential-energy curves of Wolniewicz and Dressier [3]
for the excited 'X+ states of Hz to extract a nondiagonal
R-dependent quantum-defect matrix pertaining to the s
and d Rydberg channels, associated with Hz+ in its
ground electronic state, and to the p Rydberg channel, as-
sociated with H2+ in its Srst excited state. In the second
of the preceding papers (which we refer to as "RJ-II")we
used this matrix to calculate the J=0 'X+ vibronic lev-

els, including the levels of the EI' and GE double-
minimum states which experience strong nonadiabatic
efFects (as large as a couple of hundred wave-number
units). In that work we achieved excellent agreement
with experiment without having to laboriously evaluate
the nonadiabatic functions required by the usual formal-
ism. In the present paper we extend the treatment to lev-

els with rotational quantum number X different from
zero. Maintaining the restriction of our treatment to
l(2, this extension brings into play II and 6 states.
These are coupled with the X states by strong rotational-
electronic (1 uncoupling) interactions. The quality of the
results we obtain here is comparable to that obtained in
RJ-II, showing that the theory also accounts for these in-
teractions, in addition to the pure vibronic interactions.

%'e also apply the theory with equal success to the trip-
let manifold of states. In the energy range we consider
here, the triplet states are essentially unaffected by core-
excited states, but do experience s-d mixing, as first
recognized by Wakefield and Davidson [4] and most re-
cently considered by Schins et al. [5]. The treatment of

Schins et al. combines the high-quality ab initio
potential-energy curves with a least-squares fitting to ex-
perimental data of the sharply peaked nonadiabatic cou-
pling functions. Our calculation represents a fully ab ini
tio treatment of these states, agreeing with experiment to
within the order of 5-10 cm ', as in the singlet levels.
We further show that slight adjustment (less than 0.002
at R, ) of the quantum-defect functions can improve this
agreement to better than 0.2 cm '. We have also calcu-
lated the singlet-triplet splittings of the f-symmetry lev-

els, achieving agreement with experiment of better than 1

cm '.

II. THEORY
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FIG. l. Symbolized display of the electronic structure of the
rovibronic K matrix [Eq. (4) of RJ-II]. See text for description.

In this work we apply the treatment outlined in RJ-II.
The input data consist of the following.

(i) The ab initio potential-energy curves for the first two
states of H2+, log, and 1~„,as well as the corresponding
adiabatic corrections for nuclear motion for these two
states.

(ii) The R-dependent nondiagonal quantum-defect ma-
trices for A(l.
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In our calculations we restrict l to values less than or
equal to 2 because higher l states are nonpenetrating and
therefore do not strongly interact with the manifold con-
sidered here. For gerade states even-l values are associat-
ed with the 1o. ion core while odd-I values are associated
with the 1u„core. A ranges up to the lesser of N and l.
Figure 1 depicts this structure. In the body frame, A is a
good quantum number with the results that the X, II, and
6 blocks in Fig. 1 remain separate. However, as the elec-
tronic excitation is increased the Rydberg electron roams
increasingly far from the core into the region wherein the
lab frame is more appropriate for its description. In the

lab frame A is no longer conserved, and the A blocks of
Fig. 1 become mixed by the I-uncoupling interaction. In
MQDT the transition between these two regimes is ac-
counted for by the frame transformations of Eq. (14) of
RJ-II.

Because the Pauli principle forbids the
(1o„)(2po„)=(la„)state in the triplet, the lowest

(lo„)(npcr„)triplet state occurs for n =3, and lies to
much higher energy than the range we are considering.
For the triplet we therefore simplify the problem by
neglecting all states built on the 1cr„core;that is, by
neglecting all elements involving p in Fig. 1. Further-
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reflected in the p quantum defect by a rise by one unit as

R goes to infinity. The effect of promotion on the asymp-

totic behavior of the corresponding ri defects is obtained

by considering Eq. (4) of RJ-I:

tan(mv) + ( )
A(v)

where A (v) is given by Eq. (5) of RJ-I. For promotion
leading to n =3 at small R, the value of v as R —+ &m must
be 2. Thus, because the first term in Eq. (1) for v=2
equals 4n /3 as R ~~ for I =2, we must have

rtdd (R ~ 00 ) = —(1/m )arctan(4n /3) =0.574 59. This is
I

the asymptotic value to which the kidd and kidd defects in

Fig. 2(b) are seen to converge. Note that the gzz singlet
defect is somewhat special in that its rise occurs about 1.5
a.u. later than the triplet gdd defect, while the singlet and

triplet gdd defects remain close for all R values.
For small values of R the R dependence of the l=2

quantum-defect functions can be understood in a semi-

quantitative way by considering the medium- and long-
range forces as acting on the d electron which only weak-

ly penetrates the core. Retaining potential terms of the
form r "

up to n =4, the quantum defects can be ex-

pressed in first order (see, e.g., Ref. [12])as

p~q(e, R) =+0, (1+2e)a(R)—
Q2(R) ++(1+2e)—,

' [al(R) —aj(R)] (A —2),
105

(2)

tan(mp)= Al(v)tan(nq), (3)

where AI(v) is given by Eq. (5) of RJ-I. For R =0, Qz
and —,

' [a1(R ) —a~(R ) ] are exactly zero while a has a small

nonzero value. All three quantities increase rapidly as R
becomes larger, and Eq. (2) leads to g~q developing an in-

creasing A structure [12], with the mean value of the A

components also increasing.
Of course, the first-order expression in Eq. (2) is accu-

rate only for very small R values and becomes inadequate
as R increases. Furthermore, in this approximation the
singlet and triplet quantum defects coincide exactly. Fig-
ure 4 compares the g defects obtained from Eqs. (2) and

(3), with the corresponding ab initio ones used in this
work. It can be seen that, with the single exception of the
singlet gdd defect (not shown in Fig. 4), Eq. (2) represents
the gdd quantum defects surprisingly well. They all meet

quite smoothly with the ab initio defects around R =1 to
1.5 a.u. and remain in good agreement up to, and even

somewhat beyond, the core internuclear distance, R,+,
where the defects from Eq. (2) agree with the ab initio
ones to within 0.008.

The singlet gdd quantum defect is not shown in Fig. 4
since it follows a quite different route in this range of R
values, as mentioned above. Even this deviation from the
medium- and long-range force model can be understood,
at least qualitatively, with reference to the medium-range
polarization interaction. It is well known that polariza-
tion terms such as those in Eq. (2) effectively account for
electronic core excitations provoked by the electric field

of the Rydberg electron. However, in our approach, we

explicitly account for excitation of the electronic 'Xg

where Qz(R) is the molecular core quadrupole moment,
and where a(R ) = —,

' [al(R )+2a~(R )] and —,
' [al(R )

—a~(R)] are the spherical and nonspherical core dipole
polarizabilities, respectively, and e= —1/v . The polari-
zabilities are known accurately from theory for a wide

range of R values (Ref. [13]and references therein). For
the present purpose we must convert the p quantum de-

fects of Eq. (2) into g quantum defects. This is done by
using v=3 in the identity
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FIG. 4. Comparison of the gdd quantum defect from Born-

Oppenheimer potential-energy curves (singlet:solid curves,
triplet:dashed curves) with that from the long-range model (dot-

ted curves).

channels built on the first excited 1tr„core electronic
state, through the singlet ritz off-diagonal quantum-defect
function. Therefore the bulk of the positive polarization
contribution to the singlet ri&d quantum defect has al-

ready been removed, and this is why the corresponding
curve in Fig. 2 lies considerably below its triplet analog,

up to the point where the ol'-diagonal singlet ri&~ defect

goes to zero.
The rovibronic calculations were performed in essen-

tially the same manner as the vibronic calculations as de-
scribed in Sec. III D of RJ-II. The numbers of channels
(indicated by the range of v+ values) that we used for
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TABLE I. Brea~"reakdown of ionic vibration g

Singlet Triplet

core I' N+ e levels & lf evels e levels f levels

( log )s

( log )d
( lo.

g )1
( 1erg )d

N
N —2

N+2

0.44
0:44
0:44
0:44

015

0.15

0:44
0:14

0.14

015

0.15

(lo „)p
( lo „)p

N —1

%+1
0:109
0:109

'Electronic state of ionion core and I value of R dbo y erg electron.

each valuvalue of N are given in Table I bro
1

' f h
electron, and N+.

o e core, the 1 vvalue of the Rydberg

f
Note that due toto the restriction to I & 2

1 ofN h
number of channel th h

rea er t an 2 do not inv
'

volve a greater
s an those for N=2.

owing to the fact th h'
Additionally,

significantly penet t h, d
~ ~

ac t at higher I ch
ra e t e core, the d

Mt t 'th oth h
Q

o er c annels. Thus we d
serious dif6culties from

e o not anticipate

ions in energy ranges h h
per orm calcula-

es w ere they occur.

Thhe involved nature of the ro ram
htod loop an entirely independent co

gram. The agreement of h
en computer pro-

grams lends confidence to
en o t e results from theese two pro-

ence to t e programming.

III. DISCUSSION OF RESULTS

A. General features

Tables II-V comparpare our ab initio ca
h ri n see ables for refere
h h'f dD' k' rip gi [14] by —149.6

Fi 5 h h ob d lated levels are plot-e o served and calcu
ese evels were obtained b a

ab initio approach. D
dff t h 1

c . espite the fact t
a regimes can be distinguished in Fi . 5

e treatment accounts for the va
'

efFects with quant't t'

(i) At the
i a ive accuracy.

the lowest energies [Fi . 5(a tg )j - p

while (ii) for the
o e simple un erturb

e e-smgle manifold the ( 1cr
p rbed 2s progression

bly excited state add
e cr„)(2pcr„)dou-

a s a second otentia
energy range. T 1'unne mg throu h the

'a minimum in this

g eb rie eads tot e

o „~ 2po „)levels lying below 105 000 cm
neling increases ra idlrapi y as the top of the barrier is

E (i000 cm i)
11Z-

EF27

109-

108- «»
Er12 ~
EF 11

106 - EF20

105—

104-

103-
F 3

102-
F 2--

E 1

a 6

a 5

a 3

E (1000 cm i)

- 122

- 110

- 109

- 108

- 107

- 106

- 105

- 104

- 102

E (f000 cm i)
117.5-

117,0-
EF 2$

J

116.5 - EF'27

GK 5
116.0 - EF'26

I 2

115.5 - EFZ

M 1
GK 4115.0 - EF z4 e~

J
214.5 - EF'23

I 2

114.0-
EF'22

2

9 2

a11

a10
i 1

h

9

N:questio

E (1000 cm t)
- 117.5

- 117.0

- 116~ 5

- 116.0

- 115.5

- 115.0

- 114.5

—114.0

a 2

101

'P 100

113,5-
EFZ2
GK 2

- 213.5

F' 0
99- E 0

98-
a 1

-99

-9B

113.0—
H 0

EF 20
222. 5-

—113.0

—122.5

95-

94-

~ Observed
~ MQDT

II I I I I

N: 01 2 3 4 5

a 0

II I I I I

N: os z 3 ~ S

-96

122.0— IE

N:O1Z a

0
222. O - E '9

GK 1

SKO~
EF 18 ~

h 0
09

a so»

I I I I

NO2ZS

~ Observed
~ MQDT

5
II I I I I

N02Za

—112.0

—122.5

(b) e Singlete Triplete Singlet f Singlet, Triplet

FIG. 5. serve solid c 1. Comparison of observed (solid circles se — re erence

e Triplet

d
'

) l L' 11es ine i e eye Observed levels for he e e. or " " in circle) are questionabl E
cm . (b) E) 111000cm

a e. nergies rela-



50 MULTICHANNEL QUANTUM-DEFECT THEORY OF n =2 AND 3. . . 4623

TABLE II. Comparison of observed and calculated rovibronic energies of singlet gerade e levels [parity ( —I ) ] of H2 (cm ).

Vibnaic State' N~0 N= 1 N~ 2 N~ 3 N~4 N~5
Observed' EM," Observed CM.' Observed OC Observed 0-C Observed 0-C Observed

Vibmrric State

IO

AI

1 EO
2 FO

3 Fl
4 El
5 E2
6 F3
7 E2
8 F4
9 FS
10 EH
11 Et70
12 EFll
13 EH2
14 EFIS
15 EF14
16 EFlS
17 EH6
18 EHT
19 EH8
20 GEO
21 GEl
22 EFl9
23
24
25 EE20
26 HO

27 GE2
28 EF21
29 ElM
30 GES
31 Il
32 EFD
33
34 EI24
35 GE4
36 Hl
37 EF2$
38 EF26
39 12
40 GES
41 EH 7
42
43 EE2$

99 228.2183 4.6
99 376.04 1.3

100 570.81 0.1

101 554.041 5.0
101 710.80 0.3
102 790.09 -1.1
103 605.58 -2.5
103 857.83 0.4
104 747.33 -2.9
105 415.23 -0.2
105 991.22 3.1

106 734.19 2.6
107 449.65 4.7
108 122.14 6.0
108 814.84 6.0
109 514.70 6.3
110 185.12 7.5
110 815.23 6.4
111 387.13 -4.5
111 650.27 -7.3
111 805.139 -2.5
112 126.13 7.1

112 135.260 3.7

99 164.7861 4.4
99 363.92 1.3

100 558.92 0.1

101 494.749 5.0
101 698.93 0.3
102 778.28 -1.2
103 559.59 -2.3
103 838.54 0.0
104 730.61 -3.1

105 3S4.90 -0.1

105 966.16 3.0
106 713.07 2.6
107 425.87 4.8
108 098.56 6.1

108 793.55 5.7
109 493.90 6.3
110 163.38 7.3
110 794.19 6.2
111 370.69 -4.6
111 628.81 -7.5
111 812.665 1.1
112 106.09 7.2

112 711.80 5.3
112 957.57 -10.3
113 258.24 2.7
113 393.50 2.5
113 861.40 4.7
114 044.66 -1.3

112 729.14 5.4
113 016.73 -11.7
113 277.69 1.5
113 418.81 1.7
113 879.34 4.0
114 030.86 -2.5
114 223.95 2.5
114 528.53 4, 3114 510.55 4.6

115 044.03 1.7
115 136.70 -15.2
115 296.88 2.6
115 577.68 -1.3
116 031.65 -2.1

116 103.65 0.2
116 233.76 3.1
116 523.55 5.2

115 024.83 1.3
115 099.84 -16.1
115 251.52 5.0
115 563.70 -1.4
116 041.59 -1.4

116 164.81 1.7
116 508.24 -5.2

116 915.41 -16.8 116 931.86 -17.3

99 354.572
99 400.52

100 594.82
101 671.649
101 735.03
102 813.85
103 690.13
103 903.00
104 780.20
105 473.97
106 042.58
106 776.46
107 496.55
108 169.59
108 857.39
109 555.93
110 228.21
110 857.53
111 420.72
111 693.73
111 827.768
112 167.83
112 282.303
112 536.772
112 763.87
113 134.08
113 316.60
113 470.58
113 920.31
114 046.36
114 353.75
114 566.16
114 721.42
115 079.95
115 207.34
115 393.84
115 606.77
116047.33

X
116 148.36
116 349.14
116 554.55
116 787.75
116 964.40

4.5 Q 99 437.16
1.3 Q 99 542.778
0.2 100 630.71
4.8 $101 768.53
0.5 +101 849.412

-1.0 102 849.33
-3.4 /103 789.97
1.3 F103 995.21

-2.6 104 828.38
-0.4 105 556.84
3.3 106 122.35
2.8 106 839.66
4.7 107 565.33
6.2 108 240.64
5.9 108 921.60
6.3 109 617.12
7.3 110 291.91
6.6 110 921.66

-4.5 111 472.60
-7.9 111 759.92
-5.3 111 893.099
7.3 112 230.94
7.1 112 471.058
1.1 112 774.608
5.3 112 818.87

-14.6 113 303.44
1.4 113 378.41
0.3 113 550.35
3.5 113 987.54

-3.2 114 093.58
3.4 114 502.49
4.1 114 636.18
0.6 114 923.50
1.3 115 131.12

-12.0 115 310.01
-1.8 115 544.94
-1.2 115 653.92
-2.5 116 088.60
0.5 116 214.23
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-4.4 103 S76.35
2.1 104 159.79

-2.1 104 891.67
. 8 105 657.72
3.5 106 232.94
2.9 106 924.53
4.5 107 654.30
6.3 108 334.74
6.1 109 007.77
6.3 109 697.67
7.3 110 374.77
6.9 111 007.66

-4.4 111 544.97
-9.2 111 845.27
-6.8 112 005.510
7.2 112 315.97
8.9 112 703.728
5.0 Q 112 887.08
5 9 R 113 078.218

-20.8 Q 113 434.33
2.8 R 113 548.77

-1.6 113 662.45
4.0 114 075.22

-4.6 114 180.25
7.8 Q 114 620.01
4.5 R 114 785.41
2.4 115 164.96'
1.0 115 207.34

-10.7 115 450.26
-8.8 Q 115 692.88
-1.0 R 115 777.13
-3.0 116 151.54
0.2 116 305.38

11.3 Q 116 633.51
-3.9 Q 116 701.85
1.2 Q 117 068.80

-172 R 117 193 20

1.3 99 546.83
4.6 100 098.27
0.1 100 738.19
0.3 101 875.04
4.7 102 367.17

-0.8 102 955.12
A. 1 103 953.06
1.4 104 386.90

-1.8 104 972.04
-1.1 105 770.18
3.6 106 374.20
3.2 107 033.08
4.5 107 761.75
6.3 108 450.46
6.3 109 116.60
6.2 109 797.51
7.1 110 475.26
7.4 111 114.66

-4.2 111 641.89
-10.4 111 941.78

-7.9 112 170.006
6.9 112 421.49
9.9 $112 966.347
5.3 R112 996.40

11.1 113 415.49
-3.0 113 536.24
-3.0 113 772.52
-2.2 113 &60.46
5.4 114 173.43

-6.7 114 318.58
11.4 114 711.68
7.4 115 004.91

V115 275.77
3.4 N15 459.50'

-8.3 115 646.21
-6.3 115 777.68

-10.0 116 034.92
-3.4 116 232.41
-0.8 116 424.46
2.1 116 721.99
5.7 116 883.64

-18.6 117 148.71
1.5 117 413.90

1.2
4.6
0.2
0.5
4.4

-0.7
~3 3
0.1

-0.8
-1.2
3.4
3.8
44
6.3
6.6
6.3
7.0
7.7

-3.4
-11.4
-9.2
6.4
8.2
8.8

14.7
2.2

-18.4
-16.4

6.2
-8.0
5.9

13.5
0.7

-0.6
-5.0
18.4
-4.0
-3.4
-4.8
14.2

-20.9
-9.3

EF21
GE2

HO

EF22
GES

EED

GE4
EI2$

EI26
GES

EP27

EH8

Hl

Fl

El

F4
E2

FS
EH
EFIO
EH1
EH2
EFIS
EF14
EHS
EH6
EHT
EHN

GEO
GEl

EF19
EI20

IO

' Levels numbered in energy order. Due to significant mixing of some levels the vibronic labels are sometimes of only notational convenience.
The approximate locations of avoided crossings are indicated by the X symbols.' Observed term values in cm ', relative to the N = 0, o = 0 level of the X 'g, ' ground state, from Ref. [16].' Observed minus calculated values in cm '.

' Ref. [2G]. N = 1 value obtained by adding N = 1, o = 0 X 'P, ' ground state energy of 118.4868 cm ' [21] to Q(1) transition of Ref. [20].
' Calculated value only, given in italics with no observed minus calculated value.

TABLE III. Comparison of observed and calculated rovibronic energies of singlet gerade f levels

[parity —( —I ) ] of H& (cm ').

Vik: Ig. N=1 N=2 N=3 N=4 N=5
EK' Obawl OC Ob d OC ~ OC ~ OC

IO
2
3 Il
4
5 Lf
6

JO
112 072.886 -0.9 112 147.640 -1.1 112 272. 108 -1.2 112 449. 120 -1.4

112 525.979 -0.6 112 743.568 -0.3 113018.385 -0.1

114 172.13 -0.6 114 252.86 -0.8 114 379.11 -1.0 114 552.96 - l.1
114 718.24 -0.0 114 914.55 0.3 115 166.62 0.6

116 114.42 0.1 116 197.52 -0.1 116 324.01 -0.2 116 494.72 -0.3
116 787.20 0.7 116963.16 0.9 117 191.62 1.2

112 679.102 -1.6
113 346.57 0.2
114 775.09 -1.3
115 470.26 0.9
116 709.73 -0.5
117467.44

Levels numbered in energy order.' Observed values in cm', relative to the J= 0, o = 0 level of the X 'g, ' ground state, from Ref.
[16]-' Observed minus calculated values in cm'.
Calculated value only, given in italics with no observed minus calculated value.
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TABLE IV. Comparison of observed and calculated rovibronic energies of triplet gerade e levels [parity ( —l ) ] of Hz (cm ' ).

Vibmnic
State

N=0 N=1 N=2 N=3 N=4 N=5
Ob ~' ' Ob a tbC Obe aa OC Cbeaaa OC ~ O.C ~ OC D taS

Za aO 95 076.298 -0.8
076.40 -0.7

al 97 600.619 -1.3
600.72 -1.2

a2 99 989.00 - l.5
a3 102 245. 13 -1.5
a4 104 3 (2.03 -0.9
aS 106 371.62 -0.5
a6 108 244.45 -0.5
a7 109 989.98
a8 111 604.30
a9 11308262

a10 114 415.78
al 1 115 589.43
alt 116581.68

100 049.26
102 302.30
104 426. 18
106 422.75
108 292.56
110 034.76
1 1 l 634.99
113 121.42
I I4 451.05
115 651.00
116 608.39

-1.5
- l. ')

-0.9
-0.5
-0.6
-0.4

- 1 l.4

95 142.982 -0.8
143.07 -0.7

97 664.044 -1.3
664.14 -1.2

95 275.792 -0.8
275.90 -0.7

97 790.352 - l.:3

790.46 -1.2
100 169.29 -1.5
102 416.21 -1.5)

104 534.05 -0.9
106 524.67 -0.5
108 388.55 -0.6
110 125.06
111 730.08
113 198.59
114 521.18
115 68295
116661,32

95 473.729 -0.7
473.84 -0.6

97 978.589 -1.3
978.70 -1.2

100 348, 13 -1.4
102 585.89 -1.5
104 694.7:3 -0.9
106 676.09 -1.0
108 531.13 -0.9
110258.91
111 854.64
113313.38
114 625.37
115 775.20
116 739.56

95 735.224 -0.7
735.33 -0.6

98 227.243 -1.3
227.35 -1.2

100 584.32 -1.4
102 809.92 -1.5
104 906.60 -1.2
106 876.61 -0.7
108 720.60
110 435.63
112018.99
113464, 60
114 769.42
115 896'.26
116841, 73

96 058.350 -0.7
058.44 -0.6

98 534.463 -1.3
534.54 -1.2

100 876.14 -1.3
103 086.73 -1.5
105 169.72'
107 124.68
108 953.27
110 653.21
112221.25
113650.66
114 930.72
116044.41
116965.94

Jungen et al. '
Dieke'

Jungen et al.
Dieke

Dieke
Dieke
Dieke
Dieke
Dieke
Dieke
Dieke
present calculations
present calculations
present calculations
present calculations

116389.04

h,O 111 948..'56 2. l
(ill 8(1.88 -54.5)' ( 933.11 -13.0) 112 050.12

hl (l 14 140.61 -30.4) 1 l 1 198.05 -7(.2 114 312.11
hZ (116 448.25

116 491.68

112 223.276 -2.0
-0.6 223.34 2.0 112 457.82 -3.1

-9.4 i14 482.28 -10.6 114 707.06 -11.6
-43.4) (116611.43 -43.3) (116827.05 -42.5)

116654.'74 116869.50

112 753, 79
114 984.50 -12.8

116133.93

Jungen et al.
Dieke

Dieke
Dieke
present calculations

8d gO ill 796.46( -4.8
(l 1 1 "W.58 8.2) 96.59

gl 11'3 886.'39 -5.4 11'3 883.81 -5.')

gZ 1 1 ) 84.97 -6.4 115 794.54 -4e 8

1 1 1 826.498 -2.5
826.63 -2.4

113910.96 -3.5

l 15 829.40 - 3.4

111 896.638 -1.5 112 017.210 -1.0 Jungen et al.
896.72 -1.5 017.36 -0.9 112 190.84 -0.8 Dieke

113 980.42 -2. 1 114 097.34 -1.5 114 263.83 -1.0 Dieke

115 901.99 -2.3 116 017.52 -1.6 116 178.49 -1.0 Dieke

112 15'3.630 O. H 112 '310.889 O.H

1 3'3.70 0.9 311.00 0.9
114 269. 16 11.7 114 4l9.39 11.2
116 182.22 -:3.'3 116 319.29

112 503.692 0. )
503.7'3 0.5 112 741.04 0.5 113027.04 0.5

114 614.15 10.5 l 14 850.24 10.1 115 129.19 10.5

116 504. 19 -11,6 ll6 731.46 -15.2 116999.71 -17.2

Jungen et aL
Dieke

Dieke

Dieke

8f jO 112 5)29.550 -1.2 112 7(9e414 -0. )
)29.6') - l. 1 779.49 -0.4

114 (12.0H -0. ( 114 924.70 0.0
116 777.92 -0.:3 l 16 962.18 0.2

Jungen et al.
l 13 092.96 0.0 113 460.59 0.4 Dieke

115 201.04 0.6 115 533.40 1.3 Dieke

l l 7 203.90 0.8 117 498.63 1.3 Dieke

t)leke's label for t,he electronic states, followed by the tra~litional labelling of the vibronic states.' ()bserved values in cm", relative to the .I = 0, U = 0 level of the X 'g ' ground state.
" ()bserved minus calculate(1 values in cm'.
' Ref. [1H).' Values from Ref'. [14] minus 149.6 cm' [15j.
'

(.",alculated values from current work, given in italics with no observed minus calculated value.
"' ()bserved levels in parenthesis are questionable.

TABLE V. Comparison of observed and calculated rovibronic energies of triplet gerade f levels [parity —(
—l ) ] of H2

(cm ').

Vibmnic N = 1 N=2 N= 3 N=4 N=5
State ~' tbC Ob M O.C Ob W'O.C Cb M tbC ~ tbC D ta Seaaa

112 441.765 -1.7
441.73 -1.8

114 557.72 -1.5
116 523.33 - l. 1

3e iO

112 671.83 -1.9
il 114 779.60 -1.8
iS 1 l6 738.08 -1.4

Jungen et al.
Dieke'
Dieke
Dieke

8f jo 112 513.945 -1.4 112 (32.183 -1.2 Jungen et al.
514.02 -1.4 732.32 -1.0 11'3 007.64 -0.8 113 336.26 -0.6 Dieke

114 706.74 -0.9 114 904.56 -0.6 115 1M21 -0.2 115 463.41 0.0 Dieke
116 '776.30 -O. 1 116 954.80 -0.1 117 186.35 0.2 l 17 467. 10 0.5 Dieke

" Dieke's [14] label for the electronic states, followed by the traditional labelling of the vibronic states.
" Observed values in cm', relative to the J= 0, u= 0 level of the X'g,+ ground state.' Observed minus calculated values in cm'.
" Ref. [18j.
" Values from Ref. [14] minus 149.6 cm ' [15j.
" From "calculated" values of Tables VIII and IX of Ref. [19].
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reached, resulting in ever stronger interaction and wider
avoided crossings (cf. EO-FO, E1-F2, and E2-F4). (iii)
Above this, the e-singlet enters another regime as the two
series blend into a single progression of mixed singly and
doubly excited character.

Just above 111000 crn ' [Fig. 5(b)] both the e-singlet
and e-triplet manifolds experience the onset of the n =3
states. (iv) In the singlet the spectrum exhibits a compli-
cated pattern of avoided crossings of suf5cient strength to
separate the interacting levels and to produce a decep-
tively clean appearance. The spreading of the various
clumps of levels is due to the effects of 1 uncoupling, but
this is rather obscured by the other interactions. (v) In
the triplet manifold the only mixing is sd mixing, which is
sufficiently weak to allow may levels to approach each
other closely and thus result in a somewhat more cong-
ested appearance. The weakness of this mixing, however,
does allow the i uncoupling to be clearly seen, in groups
such as the levels from g 1 to j1 lying near 114000 cm
which spread increasingly apart as rotation increases.
(vi) Finally, the singlet and triplet f levels exhibit almost
identical patterns which reflect the effects of pure I-

uncoupling interaction.
Altogether the experimental e-symmetry levels are

reproduced extremely well, as indicated in the summary
Table VI. Here the rms errors of the MQDT calculated
energies are shown, along with the range of errors seen in
Tables II—V. Equivalent results for the coupled-
equations calculations of Yu and Dressier [16] are given
for comparison. Because the coupled-equations energies
always lie above the true values, whereas the MQDT re-
sults scatter on either side, the simple rms error is not ap-
propriate for comparing the results obtained from the
two treatments. To this end the rms about the average
deviation is also shown in the table. This, together with
the ranges of the errors, indicate that our current MQDT
results for the e-symmetry levels are only a factor of
2-2.5 times worse than those obtained using the
coupled-equations approach. Because our fitting of the
quantum defects involved here only reproduces the
Born-Oppenheimer potential-energy curves to within 8
cm ' (1.7-crn ' rms) in any case, the rms error of the e-

singlet and e-triplet vibronic energy levels of 6.6 cm

and 5.0 cm, respectively, is entirely satisfying.
The f-singlet and f-triplet levels shown at the right of

Fig. 5(b) are examples of pure 1 uncoupling which MQDT
is ideally suited to treat. The lack of electronic
configuration mixing for these levels allows the full accu-
racy of the theory to reveal itself, devoid of inaccuracies
resulting from any inadequacies in the fitting of the in-
teraction quantum defects in RJ-I. Thus for these levels
the quality of agreement between the calculated and ob-
served levels is of the order of 1 cm ', with all differences
being less than 2 cm '. For the f-singlet levels the
coupled-equations technique [16] is about four times
worse, with the largest difFerence being 9.8 cm '. Essen-
tially, the coupled-equations results are no better or
worse for the f-symmetry levels than they were for the e-

symmetry ones.

B. Singlet-triplet splittings

Figure 6 compares our calculated singlet-triplet split-
tings for the f-symmetry levels with the experimental
splittings (obtained from the data given in Tables III and
V). The MQDT results are in excellent agreement with
experiment, all lying within better than 1.0 cm (rms de-
viation 0.7 cm ) of the observed differences. Note that
this accuracy is almost as good as the experimental re-
sults obtained by Miller and Freund in their pioneering
singlet-triplet anticrossing experiments on these same
states [17]. It is only recently that this accuracy has been
surpassed by experiment [18].

The absence of the n =2 doubly excited state in the
triplet manifold means that there is not a one-to-one
correspondence between singlet and triplet levels of e
symmetry. Thus for e symmetry the singlet-triplet split-
tings have no evident meaning and we do not consider
them.

C. Fine adjustment
of triplet quantum defects

It is possible to perform a fine adjustment of the ab ini-
tio quantum defects to further improve the agreement
with experiment. Although such an adjustment is not a

TABLE VI. Rms errors of calculated energies from MQDT (present work) and coupled-equation
(Ref. [16])approaches.

Singlet Triplet

range num. ' rms-avr rms range num. rms-avr

e levels MQDT' 6.6
CEf 42

—20 9 18.4 (247)
0.1:11.8 (247)

6.6
2.8

5.0 —17.2:11.2 (82) 4.6

f levels MQDT
CE

0.8
5.5

—1.6:1.2 (26)
0.9:9.8 (26)

0.7
3.2

—1.9:0.5 (27) 0.6

'Root-mean-square error of theoretical calculations.
Range of deviations with experiment (cm ').

'Number of levels used in calculating the rms error.
The rms deviation (cm ') around the average deviation.

'Present work.
fCoupled equations [16]statistics calculated for the same levels as used for the MQDT levels.
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(cm ') Singlet-Triplet Splittings (c~- )

20- -20

10-

~ & Observed

0~ MQDT --20

-30- --30

-40- I I

N:01 2
- -4C]

FIG. 6. Comparison of experimental and MQDT singlet-

triplet splittings for the f-symmetry levels.

principle aim of this work, we do wish to illustrate this

possibility and to this end have performed a limited
least-squares fitting involving only the 17 v=0 triplet lev-

els reported by Jungen et al. [18]. These levels have an

absolute accuracy of 0.05 cm ' and we used them in a
least-squares fitting of the triplet quantum defects around

R, . This was done by representing the quantum defects
in the region near R, as quadratic functions of R. The
quadratic coefficients were fixed to values determined
from the ab initio values, while the values for R =2 a.u.
and the linear coefficients were adjusted in the fitting.
The fitted defects are

functions, with the largest change in equilibrium value

being only 0.0018 for g,&. The fitted quantum-defect
functions are compared with the ab initio ones from RJ-I
in Fig. 7. The fitted ones are only shown over a region of
+0.3 a.u. around R„i.e., roughly the region of R ex-

plored by the v=0 vibrational levels included in the
fitting.

Schins et al. [5] have used the coupled-equations ap-
proach to study the n =3 triplet gerade manifold. In
their work the four vibrational matrix element functions,
which arise from the electronic coupling between the s
and d channels, are each modeled as a four-term series in

Hermite polynomials and fitted to the experimental data
of Alikacem and Larzilliere [19]. These vibrational ma-

trix elements are functions of R with very sharp peaks
around the equilibrium geometry. Setting these functions
to zero, and thus performing a pure ab initio calculation,
"agreement with experiment down to 30 cm ' was
found" [5]. The current ab initio MQDT calculations for
the triplet levels are therefore about an order of magni-
tude more accurate than the ab initio coupled-equations
calculations of Schins et al. Bak and Linderberg [22] had
earlier performed fully ab initio coupled-equations calcu-
lations of the n =3 triplet gerade manifold. Their results,
however, were in disagreement with experiment by
several hundreds of wave-number units.

By performing a least-squares adjustment of the 16
coefficients multiplying the Hermite polynomials used to
describe the vibrational matrix element functions, Schins
et al. obtained much better results. They tested the phy-
sicality of their fitted model by using the same parameters
to calculate the equivalent energy levels of HD and Dz.
The agreement with experiment for all three isotopes is of
the order of one wave number, indicating the quality of
their fitted model (see Appendix A for more discussion of

ri,*,=0.048 51(19)—0. 1084(57)(R —2 a. u. )

+0.011 816(R —2 a.u. )

rizz
———0.013 97(79)—0.001(15)(R—2 a.u. }

+0.01109(R—2 a.u. )

o. 2o

0. 15-

1.6 1.8 2. 0 2;2 '%.zo

-0 ~ 15

ritz =0.1173(12)+0.1187(98)(R—2 a.u. )

+0.047661(R —2 a. u. )

riz&=0. 07342(50)+0.0871(53}(R—2 a.u. )

+0.030152(R —2 a.u. )

qz~e
———0.02907(53)—0.0537(90}(R—2 a.u. )

—0.003 147(R —2 a. u. )

0. 10-

0.05-

0.00

-0 ~ 10

-0.05

0.00

(with numbers in parentheses representing standard er-
rors in units of the last digit reported for the parameter. )

The ab initio MQDT results for the fitted rovibronic
levels had a rms error of 1.8 cm ', which was reduced to
0.14 cm ' by fitting the quantum defects. This was
achieved by only marginal changes in the quantum-defect
functions, with the largest change in equilibrium value

being only 0.0018 for q,&. The fitted quantum-defect

-0.051.4 1.8 2. 0

R (a.u. )

2. 2 2. 4
-0.05

2. 6

FIG. 7. Comparison of the fitted (dashed lines) triplet
quantum-defect functions with the ab initio ones (solid curves).
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this point).
Because of the different data sets used, it is not possible

to make a direct comparison of the fitted MQDT results

with those of the coupled-equations techniques. The rms
error of the results obtained by Schins et al. for the v=0
levels they included in their fitting is 0.8 cm . This is

not as good as the 0.14-cm ' rms error obtained with the
MQDT approach. Their fitting, however, also included
v=1, 2, and 3 states, and relied upon the data of Alika-
cem and Larzilliere [19], which may be somewhat prob-
lematic, as discussed in the Appendix.

A striking feature of the ab initio MQDT and the
coupled-equations calculations is that they both indicate
that the b 2 and It 3 levels identified by Dieke [14] and Ali-

kacem and Larzilliere [19]are most likely incorrect. The
various determinations of the h2 and h3 levels are com-

pared in Table VII. It is clear that neither the present

MQDT nor the fitted coupled-equations results are in

agreement with the experimental energies. What is clear,
however, is that the MQDT and coupled-equations re-

sults are in good agreement with each other. This despite
the fact that the coupled-equations calculations are actu-

ally based on a fitting to the data of Ref. [19]. That the

two very different theoretical models should agree with

each other so well indicates that the experimental values

for It 2 and h 3 are very likely incorrect, and that the true
levels must lie relatively close to the theoretical ones.

Finally, it is worth pointing out that a distinct advan-

tage of using the MQDT approach in a least-squares

fitting is that the quantities being fitted are the quantum-

defect functions which are smooth functions of R, rather
than the very sharply peaked vibrational matrix element

functions of the coupled-equations approach.

IV. CONCLUSION

In these three papers we have shown that MQDT pro-
vides a unified and quantitative description of all the
gerade electronically excited singlet and triplet levels of
Hz up to within 0.2 eV of the n =2 dissociation limit.

Except for the illustrative example in Sec. III C, these
rovibronic calculations involved no adjustment of the pa-
rameters and thus represent a pure ab initio calculation of
the gerade energy level spectrum of Hz which completely
avoids the detailed state-by-state evaluation of the rovib-
ronic coupling. The success of the calculations not only
confirms the quantum-defect theory approach used here,
but also reconfirms the quality of the clamped-nuclei ab
initio calculations from which the quantum defects were
abstracted, in particular those of Wolniewicz and
Dressier [3].

This work shows the feasibility of nonperturbative ro-
vibronic MQDT, allowing for electronic excitation of the
core. Owing to the —I/R forin of the EF potential-
energy function in the region where it corresponds to the
H+ + H ionic state, the vibrational level density in-
creases in an analogous way to the increase in electronic
state density in a Rydberg series. In the present calcula-
tion this manifests itself by the need for an extensive
basis. This clearly points to the necessity for a channel
treatment of the vibrational coordinate as well. This next
phase of the work is in progress, and we anticipate that it
will allow us to calculate all levels up to the n =2 dissoci-
ation limit and beyond, and thus to calculate resonances
in the H( ls)+ H(n =2) vibrational continuum.
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TABLE VII. Comparison of experiment and theory for h 2 and h 3 levels.

N Observed' MQDT» CE' Obs-MQDT Obs-CE' CE-MQDT'

h2 116284.06
116338.98
116448.39
116612.06
116827.15
117093.62

116326.95
116382.04
116491.68
116654.74
116869.50
117 133.93

116331.11
116387.34
116498.97
116664.26

—42.89
—43.06
—43.29
—42.68
—42.35
—40.13

—47.05
—48.36
—50.58
—52.20

4.16
5.30
7.19
9.52

h3 118271.10
118323.81
118428.79
118585.19

118363.13
118414.82
118517.75
118671.04

118359.57
118411.34
118514.37
118667.64

—92.03
—91.01
—88.96
—85.85

—88.47
—87.52
—85.58
—82.45

—3.56
—3.48
—3.38
—3.40

'Observed term energies (cm ') from Ref. [19].
Ab initio calculated MQDT energies (cm ') from present work.

'Fitted coupled-equation energies (cm ') from Ref. [5].
Observed minus MQDT (cm ').

'Observed minus coupled equations (cm ').
Coupled equations minus MQDT (cm ').
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APPENDIX

The manifold of triplet states has been recently reex-
amined by Alikacem and Larzilliere [19]. However, it

FIG. 8. Differences between experimental ("obs") and

MQDT ("calc") term values for f levels of triplet i and j states.
Reference [19]at top, and Dieke [14] at bottom. The difFerence

between the fitted terms of Schins et al. [5] and the MQDT
terms are also shown in the upper part, shifted down by 5 cm
with dashed lines indicating the corresponding zero line.

turns out that for the same levels the term values that
they determined show greater scatter around our MQDT
predicted values than do the much earlier term values of
Dieke [14]. This is particularly evident in the f states to
which A=O does not contribute, so that electronic mix-

ing is absent, as described in Sec. II. Thus only rotational
channel interactions ( l uncoupling) play a significant role.
This simphcity leads to the MQDT calculations being
especially accurate for these states. The difFerences be-
tween the observed and calculated term values are illus-
trated in Fig. 8. In this figure Dieke's term values are
seen to be in excellent agreement with the current
theoretical values, with the observed minus calculated
difFerences exhibiting a very smooth variation with N.
Alikacem and Larzilliere's values, however, not only
scatter more erratically, but also deviate from our
MQDT predictions with a greater rms deviation: 3.0
cm ' compared to the 1.0-cm ' rms deviation of Dieke's
data.

As discussed above, Schins et al. [5] fitted Alikacem
and Larzilliere's term values with a physically con-
strained model. The difFerences between their calculated
term values and ours are also shown in Fig. 8 (shifted
down by 5 cm ' to avoid congestion). It is striking that
these difFerences exhibit a much smoother variation with
N than do the experimental data upon which their fitting
was based. Indeed, their fitted term values are in better
agreement with the current MQDT predictions (rms de-
viation 1.1 cm ') than are the experimental terms of Ref.
[19] themselves (rms deviation of 1.9 cm ' for the same
levels). We have therefore not included data from Ref.
[19]in our tables (except Table VII) and figures.
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