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Multichannel quantum-defect theory is applied to the gerade n =2 and 3 states of H,. In the first pa-
per in this series [Phys. Rev. A 49, 4353 (1994)] we obtained the quantum-defect matrix of the strongly
interacting ‘Eg* double-minimum states of H, by fitting to the ab initio clamped-nuclei electronic ener-
gies of Wolniewicz and Dressler. This matrix was used in the second paper [Phys. Rev. A 49, 4364
(1994)] to calculate the N =0 vibronic energies of the corresponding electronic states. In this paper we
calculate the N 2 0 rovibronic energies of the singlet and triplet gerade n =2 and 3 states of H,. This ab
initio treatment accounts for both singly and doubly excited channels and reproduces the rovibronic en-
ergies with almost the same accuracy as the more traditional coupled-equations approach. Additionally,
the experimental singlet-triplet splittings for the f levels, and the evolution of these splittings with vibra-
tional and rotational quantum numbers, are reproduced very well.

PACS number(s): 33.10.Cs, 33.10.Lb, 34.10. +x, 34.80.Kw

I. INTRODUCTION

In the preceding two papers [1,2] we developed the ro-
vibronic multichannel quantum-defect theory (MQDT),
accounting for /-mixing and coupling with states involv-
ing electronically excited cores. In the first of these
(which we refer to as “RJ-I"’) we used the highly accurate
potential-energy curves of Wolniewicz and Dressler [3]
for the excited 12;' states of H, to extract a nondiagonal
R-dependent quantum-defect matrix pertaining to the s
and d Rydberg channels, associated with H in its
ground electronic state, and to the p Rydberg channel, as-
sociated with H; in its first excited state. In the second
of the preceding papers (which we refer to as “RJ-11") we
used this matrix to calculate the J=0 12; vibronic lev-
els, including the levels of the EF and GK double-
minimum states which experience strong nonadiabatic
effects (as large as a couple of hundred wave-number
units). In that work we achieved excellent agreement
with experiment without having to laboriously evaluate
the nonadiabatic functions required by the usual formal-
ism. In the present paper we extend the treatment to lev-
els with rotational quantum number N different from
zero. Maintaining the restriction of our treatment to
1 <2, this extension brings into play IT and A states.
These are coupled with the X states by strong rotational-
electronic (/ uncoupling) interactions. The quality of the
results we obtain here is comparable to that obtained in
RJ-II, showing that the theory also accounts for these in-
teractions, in addition to the pure vibronic interactions.

We also apply the theory with equal success to the trip-
let manifold of states. In the energy range we consider
here, the triplet states are essentially unaffected by core-
excited states, but do experience s-d mixing, as first
recognized by Wakefield and Davidson [4] and most re-
cently considered by Schins et al. [5]. The treatment of
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Schins et al. combines the high-quality ab initio
potential-energy curves with a least-squares fitting to ex-
perimental data of the sharply peaked nonadiabatic cou-
pling functions. Our calculation represents a fully ab ini-
tio treatment of these states, agreeing with experiment to
within the order of 5-10 cm ™!, as in the singlet levels.
We further show that slight adjustment (less than 0.002
at R,) of the quantum-defect functions can improve this
agreement to better than 0.2 cm™'. We have also calcu-
lated the singlet-triplet splittings of the f-symmetry lev-
els, a]chieving agreement with experiment of better than 1
cm™ .

II. THEORY

In this work we apply the treatment outlined in RJ-II.
The input data consist of the following.

(i) The ab initio potential-energy curves for the first two
states of H2+ s lag, and lo,, as well as the corresponding
adiabatic corrections for nuclear motion for these two
states.

(ii) The R-dependent nondiagonal quantum-defect ma-
trices for A< 1.
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FIG. 1. Symbolized display of the electronic structure of the
rovibronic K matrix [Eq. (4) of RJ-II]. See text for description.
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In our calculations we restrict / to values less than or
equal to 2 because higher [ states are nonpenetrating and
therefore do not strongly interact with the manifold con-
sidered here. For gerade states even-/ values are associat-
ed with the 10, ion core while odd-/ values are associated
with the 1o, core. A ranges up to the lesser of N and I
Figure 1 depicts this structure. In the body frame, A is a
good quantum number with the results that the =, I1, and
A blocks in Fig. 1 remain separate. However, as the elec-
tronic excitation is increased the Rydberg electron roams
increasingly far from the core into the region wherein the
lab frame is more appropriate for its description. In the
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lab frame A is no longer conserved, and the A blocks of
Fig. 1 become mixed by the l-uncoupling interaction. In
MQDT the transition between these two regimes is ac-
counted for by the frame transformations of Eq. (14) of
RJ-II.

Because the Pauli principle forbids the
(10,)(2po,)=(10,)? state in the triplet, the lowest
(lo,)npo,) triplet state occurs for n=3, and lies to
much higher energy than the range we are considering.
For the triplet we therefore simplify the problem by
neglecting all states built on the lo, core; that is, by
neglecting all elements involving p in Fig. 1. Further-

oef Lt 2 2 1 3 & 74, Y TS S S N N S S
pp
0.5 4 to.s 0.5 4 Lo.s
(a) (b) ndd
0.4{ | — Singlet La. 4 0.4 :u'\glet 0.4
— — Triplet riplet
0.3-% 0.3 0.3 4 > —> 0.3
\
\
0.2 4 N Lo.2 0.2 Lo.2
\
\
0.1 4 \ lo.1 0.1 4 to.1
\
\
0.0 + do.0 0.0 } 0.0
\\ , A
-0.1 { N z l-0.1 -0.1 - L-0.1
N P 4
~ ~ 7
Nss
-0.2 1 +-0.2 -0.2 4 l-0.2
-0.3 v . . r ' -0.3 -0.3 — — r . : . -0.3
0 1 2 3 4 s 6 7 ] 1 2 3 4 S 6 7
R (a.u.) R (a.u.)
e}t 2 3 1 3 & 74
0.54 [(c) ni:j(z) to.s
—— Singlet
0.4 | = — Triplet to.4
0.3 lo.3
ndp
0.2 4 0.2
nsp
0.11 FO.1
0.0 T — 0.0
W
-0.1 -0.1
-0.2 4 +-0.2
-0.3 . v - y v -0.3
0 1 2 S 6 7

3 4
R (a.u.)

FIG. 2. Quantum-defect functions used in this work, those for = symmetry from RJ-I. Defects not shown are fixed to zero. (a) Nss
and 7, defects for = symmetry. (b) 14, defects for =, I1, and A symmetries. (c) Off-diagonal defects for = symmetry.
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more, when f-symmetry levels are being considered, in-
stead of e levels, the = block in Fig. 1 does not occur. In
the e-symmetry states of the singlet, interactions involv-
ing doubly excited configurations are spread to all A
values by the /-uncoupling interaction. This is seen for-
mally in the summation on A in Eq. (4) of RJ-II, which is
symbolized in Fig. 1 by the projection of the various A
blocks onto each other, and leads to numerous possibili-
ties of interactions between various levels occurring in
the spectrum.

The evaluation of the elements of the rovibronic reac-
tion matrix of Eq. (4) of RJ-II requires the knowledge of
the R-dependent electronic reaction matrix which is
defined in terms of the quantum-defect functions via Eq.
(3) of RJ-II. Thus a variety of quantum-defect functions
are needed. For the 2 states we have used the quantum-
defect matrices determined in RJ-I and shown there in
Figs. 3(a) and 3(b). The only exception is the triplet
nZ,(R) defect, for which we found two forms in RJ-I. In
this work we use the second of these forms, which rises
quadratically from R =0 to 2 a.u., before smoothly de-
creasing to zero at R =0 a.u., as described in Sec. IV A of
RJ-L

The quantum defects related to the Il and A states
were derived from high-quality ab initio calculations by
the same technique as used in RJ-I. For the singlet levels
the II states built on the 1o, core all lie well above the
energy range considered here Thus, although we could
determine npp(R) from ab initio calculations such as
those of Guberman [6], we instead simply fix it to zero.
Likewise any interaction between the (lo,)epm, and

(lo,) edm, channels will have no s1gn1ﬁcant effect in this
energy range and we therefore also fix ndp (R) to zero.
7 (R), the remaining Il defect, was directly determined
from the ab initio Born-Oppenheimer potentlal-energy
curve of Dressler and Wolniewicz [7] for the I I, state.
Similarly, the n;(R) defect for the triplet states was
directly determined from the ab initio Born-Oppenheimer
potential-energy curve for the i °Il, state obtained by
Ko/os and Rychlewski [8]. Because of our restriction to
[ =2 the only A channel relevant to the present calcula-
tion is (lo,) edd,. We obtained the singlet and triplet
n44(R) defects from the ab initio Born-Oppenheimer
potential-energy curves for the J 1Ag [9] and j 3Ag [10]
states, respectively. Figure 2 shows all of the quantum
defects used in the current work, while Fig. 3 shows the
Born-Oppenheimer potential-energy curves for the states
considered here.

Mulliken [11] has considered in detail the evolution
with R of the n =3 orbitals of s and d character. From
Table I of Mulliken’s work it can be seen that at small
and large R the molecular orbitals behave approximately
as follows (small R forms given in the notation of RJ-1
and RJ-II):

Small R Large R
3so, — Og3s
3do, — 0g2p
3d‘n'g — Mg 2p
3dd, — 8,3d

S. C. ROSS AND CH. JUNGEN 50

It is thus already clear that when the two H atoms ap-
proach each other from large distances, the 3do, and
3dm, components are obtained by promotion whereas the
3so, and 3d3, components are not. This behavior has
its counterpart in the form of the diagonal quantum de-
fects shown in Fig. 2 [3sag as 12 in Fig. 2(a), and the
3dA, components as the 7}, in Fig. 2(b)]. Promotion is
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FIG. 3. Born-Oppenheimer potential-energy curves for

singlet (solid curves) and triplet (dashed curves) states con-
sidered in this work, with their traditional labels. The 1o, state
of Hy is shown by the heavy dashed line. (a) = states. (b) IT (I
and i states) and A (J and j states).
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reflected in the 4 quantum defect by a rise by one unit as
R goes to infinity. The effect of promotion on the asymp-
totic behavior of the corresponding 1 defects is obtained
by considering Eq. (4) of RJ-I:

tan(mv)

A +tan(7n)=0, (1)

where A (v) is given by Eq. (5) of RJ-I. For promotion
leading to n =3 at small R, the value of v as R — c must
be 2. Thus, because the first term in Eq. (1) for v=2
equals 47/3 as R—o for /=2, we must have
75(R — 0 )= —(1/m)arctan(4m/3)=0.57459. This is
J

0,(R)
phi(e,R)=(1+2¢)a(R)— 105

where Q,(R) is the molecular core quadrupole moment,
and where a(R)=4{[e(R)+2a/(R)] and [ (R)
—a,(R)] are the spherical and nonspherical core dipole
polarizabilities, respectively, and e=—1/+. The polari-
zabilities are known accurately from theory for a wide
range of R values (Ref. [13] and references therein). For
the present purpose we must convert the p quantum de-
fects of Eq. (2) into 17 quantum defects. This is done by
using v=3 in the identity

tan(mu)= A4,(v)tan(my) , (3)

where A4;(v) is given by Eq. (5) of RJ-I. For R=0, Q,
and {[a (R)—a(R)]are exactly zero while a has a small
nonzero value. All three quantities increase rapidly as R
becomes larger, and Eq. (2) leads to %, developing an in-
creasing A structure [12], with the mean value of the A
components also increasing.

Of course, the first-order expression in Eq. (2) is accu-
rate only for very small R values and becomes inadequate
as R increases. Furthermore, in this approximation the
singlet and triplet quantum defects coincide exactly. Fig-
ure 4 compares the 7 defects obtained from Egs. (2) and
(3), with the corresponding ab initio ones used in this
work. It can be seen that, with the single exception of the
singlet 3, defect (not shown in Fig. 4), Eq. (2) represents
the 13; quantum defects surprisingly well. They all meet
quite smoothly with the ab initio defects around R =1 to
1.5 a.u. and remain in good agreement up to, and even
somewhat beyond, the core internuclear distance, Re+,
where the defects from Eq. (2) agree with the ab initio
ones to within 0.008.

The singlet 73, quantum defect is not shown in Fig. 4
since it follows a quite different route in this range of R
values, as mentioned above. Even this deviation from the
medium- and long-range force model can be understood,
at least qualitatively, with reference to the medium-range
polarization interaction. It is well known that polariza-
tion terms such as those in Eq. (2) effectively account for
electronic core excitations provoked by the electric field
of the Rydberg electron. However, in our approach, we
explicitly account for excitation of the electronic 12;
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the asymptotic value to which the 3, and 7, defects in
Fig. 2(b) are seen to converge. Note that the 77, singlet
defect is somewhat special in that its rise occurs about 1.5
a.u. later than the triplet 73, defect, while the singlet and
triplet L, defects remain close for all R values.

For small values of R the R dependence of the /=2
quantum-defect functions can be understood in a semi-
quantitative way by considering the medium- and long-
range forces as acting on the d electron which only weak-
ly penetrates the core. Retaining potential terms of the
form r " up to n=4, the quantum defects can be ex-
pressed in first order (see, e.g., Ref. [12]) as

+ 2:(14+2e)1[a(R)—a,(R)] [(A*=2) , @

—

channels built on the first excited 1o, core electronic
state, through the singlet nfp off-diagonal quantum-defect
function. Therefore the bulk of the positive polarization
contribution to the singlet 13, quantum defect has al-
ready been removed, and this is why the corresponding
curve in Fig. 2 lies considerably below its triplet analog,
up to the point where the off-diagonal singlet n,’;p defect
goes to zero.

The rovibronic calculations were performed in essen-
tially the same manner as the vibronic calculations as de-
scribed in Sec. III D of RJ-II. The numbers of channels
(indicated by the range of v* values) that we used for
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FIG. 4. Comparison of the 1,4, quantum defect from Born-
Oppenheimer potential-energy curves (singlet:solid curves,
triplet:dashed curves) with that from the long-range model (dot-
ted curves).
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TABLE I. Breakdown of ionic vibrational basis (range of v*
values) used in calculations.

Singlet Triplet
core [* Nt elevels flevels e levels f levels
(lag)s N 0:44 0:44
(lo,)d N-—2 0:44 0:15 0:14 0:15
(log)d N 0:44
(log,)d N+2 0:44 0:15 0:14 0:15
(lo,)p N—1  0:109
(lo,)p N4+1 0109

?Electronic state of ion core and / value of Rydberg electron.

each value of N are given in Table I, broken down by the
electronic state of the core, the / value of the Rydberg
electron, and N *.

Note that due to the restriction to [/ <2, calculations
for values of N greater than 2 do not involve a greater
number of channels than those for N=2. Additionally,
owing to the fact that higher / channels do not
significantly penetrate the core, they do not significantly
interact with other channels. Thus we do not anticipate
serious difficulties from them when we perform calcula-
tions in energy ranges where they occur.
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The involved nature of the programming has lead us
each to develop an entirely independent computer pro-
gram. The agreement of the results from these two pro-
grams lends confidence to the programming.

II1. DISCUSSION OF RESULTS

A. General features

Tables II-V compare our ab initio calculated energies
with experiment (see Tables for references and note that
we have shifted Dieke’s triplet energies [14] by —149.6
cm ™! [15]). The same data are displayed graphically in
Fig. 5, where the observed and calculated levels are plot-
ted. All of these levels were obtained by a single, unified,
ab initio approach. Despite the fact that at least six
different physical regimes can be distinguished in Fig. 5,
the MQDT treatment accounts for the variety of physical
effects with quantitative accuracy.

(1) At the lowest energies [Fig. 5(a)] the e-triplet mani-
fold consists of the simple unperturbed 2s progression,
while (ii) for the e-single manifold the (1o,) (2po, ) dou-
bly excited state adds a second potential minimum in this
energy range. Tunneling through the barrier leads to the
avoided crossings seen between the (lo;) (2s0,) and
(1o, (2po,) levels lying below 105000 cm™~'. The tun-
neling increases rapidly as the top of the barrier is

E (1000 cm™1)

r117.5

g n:queutiona/ l 117.0

-116.5

Calculation . A
~
Limit _~
32 j2

a2 0@

g
116.0
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F115.0
F114.5
114.0
F113.5
F113.0
+112.5
+112.0

111.S

-111.0

e Singlet e Triplet f Singlet, Triplet

FIG. 5. Comparison of observed (solid circles, see Tables I-IV for references) and calculated (open circles, many obscured by ob-
served points) term values. Lines are drawn to aid the eye. Observed levels for A2 (‘X in circle) are questionable. Energies rela-
tive to the J=0, v=0 level of the X '2, ground state. (a) E <112000cm™'. (b) E> 111000 cm™".
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TABLE II. Comparison of observed and calculated rovibronic energies of singlet gerade e levels [parity (—1)¥] of H, (cm ™).
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Vibronic State* N=0 N=1 N=2 N=3 N=4 N=§ Vibronic State
Observed® O-C° Observed O-C  Observed O-C  Observed O-C  Observed O-C  Observed O-C
1 E0 99 164.7861° 4.4 99 2282183 46 99 354.572 45 99 437.16 1.3 99 485.98 13 99 546.83 1.2 P
2 y2/ 99 363.92 13 99 376.04 13 99 400.52 13 99 542778 4.6 99 791.34 4.6 100 098.27 46 EO
3 F1 100 558.92 0.1 100 570.81 0.1 100 594.82 0.2 100630.71 0.1 100 678.52 0.1 100 738.19 0.2 F1
4 E1 101 494749 50 101 554.041 50 101671649 4.8\/101 76853 0.3 101 816.10 0.3 101 875.04 0.5 PR
5 J 4 101 698.93 0.3 101 710.80 0.3 101 735.03 0.5 /\101 849412 49 102 081.05 4.7 102 367.17 44 El
6 F3 10277828 -1.2 10279009 -1.1 10281385 -1.0 10284933 -1.0 1028949 -08 10295512 -0.7 F3
7 E2 103 559.59 -2.3 10360558 -25 103690.13 -3.4\f103789.97 -44 10387635 -41 103953.06 -3.3 F4
8 F4 103 838.54 0.0 103 857.83 0.4 103 903.00 1.3 /4103 995.21 2.1 104 159.79 1.4 104 386.90 0.1 E2
9 Fs 104 730.61 -3.1 104 74733 -2.9 104 780.20 -2.6 104 82838 -2.1 104 89167 -1.8 10497204 -08 F5
10 EP 10538490 -0.1 10541523 -02 10547397 -04 10555684 -08 10565772 -11 105770.18 -1.2 EP
11 EFI10 105 966.16 3.0 105991.22 3.1 106 042.58 33 10612235 35 106 232.94 3.6 106 374.20 34 EF10
12 EFl11 106 713.07 26 106 734.19 2.6 106 776.46 2.8 10683966 2.9 106 924.53 3.2 107 033.08 38 EF11
13 EFI12 107 425.87 4.8 107 449.65 4.7 107 496.55 47 10756533 4.5 107 654.30 4.5 107 761.75 44 EF12
14 EF13 108 098.56 6.1 108 122.14 6.0 108 169.59 6.2 10824064 6.3 108 334.74 6.3 108 450.46 6.3 EF13
15 EFl4 108 793.55 5.7 108 814.84 6.0 108 857.39 59 10892160 6.1 109 007.77 6.3 109 116.60 6.6 EF14
16 EF1S 109 493.90 6.3 109 514.70 6.3 109 555.93 63 109617.12 63 109 697.67 6.2 109 797.51 6.3 EF15
17 EFI6 110 163.38 73 11018512 75 11022821 7.3 11029191 73 11037477 7.1 110 475.26 7.0 EF16
18 EF17 110 794.19 6.2 11081523 64 11085753 66 11092166 6.9 111 007.66 74 111 114.66 17 EF17
19 EF18 111 37069 -46 111387.13 -45 11142072 -45 11147260 -44 11154497 -42 11164189 -34 EF18
20 GKO 111 62881 -7.5 11165027 -7.3 111693.73 -79 11175992 -9.2 11184527 -104 11194178 -11.4 GKo
21 GK1 111 812665 1.1 111805.139 -2.5 111827.768 -53 111893.099 -68 112005510 -79 112170.006 -9.2 GK1
22 EF19 112 106.09 7.2 112 126.13 7.1 112 167.83 73 11223094 7.2 11231597 6.9 11242149 6.4 EF19
23 I0 112135260 3.7 112282303 7.1 112471058 89 112703.728 9.9 \J/112966.347 82 EF20
24 v 112536772 1.1 112774608 50\ 112 887.08 5.3 /\112 996.40 88 I0
25 EF20 112 711.80 53 112 729.14 54 112 763.87 53 11281887 59/\113078218 11.1 11341549 147
26 Ho 112 957.57 -103 113016.73 -11.7 11313408 -146 11330344 -20.8\/ 113 43433 -3.0 11353624 22 EFR21
27 GK2 113 258.24 2.7 113 277.69 1.5 \J113 316.60 14 11337841 28 /\ 11354877 -30\/113772.52 -184 GK2
28 EF21 113 393.50 2.5 113 418.81 1.7 /\113 470.58 03 11355035 -16 11366245 -2.2/\113 86046 -164 Ho
29 EF22 113 861.40 4.7 113 879.34 4.0 11392031 35 11398754 40 11407522 54 11417343 6.2 EF22
30 GK3 11404466 -1.3 11403086 -2.5 11404636 -3.2 11409358 -46 11418025 -6.7 11431858 -80 GK3
31 n 114 223.95 25 11435375 34 11450249 78\ 11462001 114 11471168 59 EF23
32 EF23 114 510.55 46 11452853 43 114 566.16 4.1 114636.18 4.5/\ 114 78541 74 11500491 135 n
33 J1 114 721.42 06 11492350 24 11516496 115 275.77 0.7 EF24
34 EF24 115 024.83 1.3 115044.03 1.7 115079.95 1.3 11513112 1.0 11520734 3.4 /]\115 459.50°
35 GK4 115099.84 -16.1 115136.70 -152 115207.34 -12.0 11531001 -10.7 11545026 -83 11564621 -0.6 GK4
36 HI1 115 251.52 50 115296.88 26 11539384 -1.8 11554494 -88Y\/ 11569288 -63 11577768 -50 EF2S
37 EF25 115563.70 -1.4 11557768 -1.3 11560677 -1.2 11565392 -1.0/\115777.13 -100 11603492 184 HI
38 EF26 116 041.59 -1.4 11603165 -21 11604733 -25 11608860 -3.0 116151.54 -34 11623241 -40 EF26
39 R 116 103.65 0.2 \/116 148.36 05 11621423 02 11630538 -08 11642446 -34 GKS
40 GKS 116 164.81 1.7 116 233.76 3.1 /A116 349.14 60 11649505 11.3 116 633.51 21 11672199 -48 EF27
41 EF27 116 508.24 -52 116 523.55 52 11655455 -49 116604.10 -3.9/\ 116 701.85 57 11688364 142 n
42 2 116 787.75 1.9 116960.16 1.2\ 11706880 -186 11714871 -20.9 EF28
43 EF28 116 915.41 -168 116931.86 -17.3 11696440 -19.0 117 016.19 -17.2 /A 117 193.20 1.5 11741390 -93

®* Levels numbered in energy order. Due to significant mixing of some levels the vibronic labels are sometimes of only notational convenience.

The approximate locations of avoided crossings are indicated by the X symbols.
® Observed term values in cm™, relative to the N = 0, v = 0 level of the X 'Z* ground state, from Ref. [16].
¢ Observed minus calculated values in cm™.

4 Ref. [20]. N =1 value obtained by adding N =1, v=0X 'Z; ground state energy of 118.4868 cm™ [21] to Q(1) transition of Ref. [20].

° Calculated value only, given in italics with no observed minus calculated value.

TABLE III. Comparison of observed and calculated rovibronic energies of singlet gerade f levels

[parity —(—1)"] of H, (cm™1).

Vibranic N=1 N=2 N=3 N=4 N=5
State* Observed® O-C° Observed O-C Observed O-C Observed O-C Observed O-C

1 I0 112 072.886 -0.9 112 147.640 -1.1 112 272.108 -1.2 112 449.120 -1.4 112679.102 -1.6
2 JO 112 525.979 -0.6 112 743.568 -0.3 113018.385 -0.1 113 346.57 0.2
3 11 114 172.13 -06 11425286 -0.8 114379.11 -1.0 11455296 -1.1 11477509 -13
4 J1 114 71824 -0.0 11491455 0.3 11516662 0.6 11547026 0.9
5 I2 116 11442 0.1 11619752 -0.1 116324.01 -0.2 11649472 -0.3 116 709.73 -0.5
6 J2 116 787.20 0.7 116963.16 0.9 11719162 12 117 467.44°

* Levels numbered in energy order.
® Observed values in cm’, relative to the J = 0, v = 0 level of the X 'T." ground state, from Ref.

[16].
¢ Observed minus calculated values in cm™.

¢ Calculated value only, given in italics with no observed minus calculated value.



4624

S. C. ROSS AND CH. JUNGEN

TABLE IV. Comparison of observed and calculated rovibronic energies of triplet gerade e levels [parity (—1)¥] of H, cm™}).

Vibronic N=0 N=1 N=2 N=3 N=4 N=5
State®  Observed® O-C° Observed O-C Observed O-C Observed O-C Observed O-C Observed O-C Data Source
2a al 95 076.298 -0.8 95 142.982 -0.8 95 275.792 -0.8 95 473.729 -0.7 95 735.224 -0.7 96 058.350 -0.7 Jungen et al!
076.40 -0.7 143.07 -0.7 27590 -0.7 473.84 -0.6 735.33 -0.6 058.44 -0.6 Dieke®
al 97 600.619 -1.3 97 664.044 -1.3 97 790.352 -1.3 97 978.589 -1.3 98 227.243 -1.3 98 534.463 -1.3 Jungen et al.
600.72 -1.2 664.14 -1.2 790.46 -1.2 978.70 -1.2 22735 -1.2 534.54 -1.2 Dieke
a2 99 989.00 -1.5 100049.26 -1.5 100 169.29 -1.5 100 348.13 -1.4 10058432 -14 100876.14 -1.3 Dieke
a3 10224513 -1.5 10230230 -1.5 102416.21 -1.5 10258589 -1.5 10280992 -1.5 103086.73 -1.5 Dieke
ad 104 372.03 -0.9 104 426.18 -0.9 104 534.05 -0.9 104 694.73 -0.9 104906.60 -1.2 105 169.72f Dieke
a5 106 371.62 -0.5 106 422.75 -0.5 106 524.67 -0.5 106676.09 -1.0 106876.61 -0.7 107 124.68 Dieke
a6 108 244.45 -0.5 108 29256 -0.6 108 388.55 -0.6 108 331.13 -0.9 108 720.60 108 953.27 Dieke
a7 109 989.98 110 034.76 -0.4 110 125.06 110 258.91 110 435.63 110 653.21 Dieke
a8 111 604.30 11163499 -11.4 111 730.08 111 854.64 112 018.99 112 221.25 Dieke
a9 11308262 113 121.42 113 198.59 113 313.38 113 464.60 113 650.66 present calculations
al0 11411578 114 451.05 11452118 114 625.37 114 762.42 114 930.72 present calculations
all 11558913 115 651.00 115 682.95 115775.20 115 896.26 116 044.41 present calculations
al2 116 581.68 116 608.39 116 661.32 116 739.56 116 841.73 116 965.94 present calculations
3a ho 111 948.156 2.1 112 223.276 -2.0 Jungen et al.
(111 871.88 -54.5)% (933.11 -13.0) 112 050.12 -0.6 223.34 -2.0 11245782 -3.1 11275379 Dieke
h1I (114 140.61 -30.4) 114 198.05 -7.2 11431211 -9.4 114 482.28 -10.6 114 707.06 -11.6 114 984.50 -12.8 Dieke
h2 (116 448.25 -43.4) (116 611.43 -43.3) (116 827.05 -42.5) Dieke
116 326.95 116 382.04 116 191.68 116 654:74 116 869.50 116 133.93 present calculations
3d g0 111 796.467 -4.8 111 826.498 -2.5 111896.638 -1.5 112 017.210 -1.0 Jungen et al.
(111 798.58 8.2) 796.59 -4.7 826.63 -2.4 896.72 -1.5 017.36 -0.9 11219084 -0.8 Dieke
gl 113886.39 -54 11388381 -55 11391096 -3.5 113980.42 -2.1 114097.34 -1.5 114 263.83 -1.0 Dieke
g2 11578497 -6.4 11579454 -48 11582940 -3.4 11590199 -2.3 11601752 -1.6 116 17849 -1.0 Dieke
3e i0 112 153.630 0.8 112 310.889 0.8 112 503.692 0.5 Jungen et al.
133.70 0.9 311.00 0.9 503.73 0.5 112741.04 0.5 113027.04 0.5 Dieke
il 114 269.16 11.7 11441939 11.2 11461415 105 114850.24 10.1 115129.19 10.5 Dieke
2 116 18222 -33 116319.29 -7.5 116504.19 -11.6 116 731.46 -15.2 116 999.71 -17.2 Dieke
3f . jo 112 529.550 -1.2 112 779.414 -0.5 Jungen et al.
529.65 -1.1 779.49 -0.4 11309296 00 11346059 0.4 Dieke
j1 114 712.08 -0.7 11492470 0.0 115201.04 06 115533.40 1.3 Dieke
j2 116 77792 -0.3 116962.18 0.2 11720390 0.8 117498.63 1.3 Dieke

* Dicke's label for the electronic states, followed by the traditional labelling of the vibronic states.
" Observed values in cm™, relative to the /= 0, v = 0 level of the X 'Z.* ground state.
“ Observed minus calculated values in ¢m™.
! Ref. [18].
“ Values from Ref. [14] minus 149.6 cm™ [15].
" Calculated values from current work, given in italics with no observed minus calculated value.
¢ Observed levels in parenthesis are questionable.

TABLE V. Comparison of observed and calculated rovibronic energies of triplet gerade f levels [parity —(—1)¥] of H,

(cm™1).
Vibronic N=1 N=2 N=3 N=4 N=5
State® Observed® O-C° Observed O-C Observed O-C Observed O-C Observed O-C Data Source
3e 0 112066652 -1.0 112140816 -1.2 112264.876 -1.5 112 441.765 -1.7 Jungen et al.¢
066.82 -0.8 140.97 -1.1 264.97 -1.4 441.73 -1.8 112671.83 -1.9  Dieke®
i1 114180.18 0.1 11425901 -1.1 11438433 -1.3 11455772 -1.5 11477960 -1.8 Dieke
i2 11614569 -0.6 11622791 -08 11635337 -1.0 11652333 -1.1 11673808 -1.4  Dieke
3f jo 112 513.945 -1.4 112 732.183 -1.2 Jungen et al.
514.02 -1.4 732.32 -1.0 113007.64 -0.8 11333626 -06 Dieke
Jj1 114 706.74 -0.9 114904.56 -0.6 115158.21 -0.2 11546341 0.0 Dieke
j2 116 776.30 -0.1 116954.80 -0.1 11718635 0.2 11746710 0.5 Dieke

* Dieke's [14] label for the electronic states, followed by the traditional labelling of the vibronic states.

" Observed values in cm’, relative to the J = 0, v = 0 level of the X 'X_* ground state.
¢ Observed minus calculated values in cm™.
4 Ref. [18].
 Values from Ref. [14] minus 149.6 cm™ [15].
" From "calculated" values of Tables VIII and 1X of Ref. [19].
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reached, resulting in ever stronger interaction and wider
avoided crossings (cf. E0-FO, E1-F2, and E2-F4). (iii)
Above this, the e-singlet enters another regime as the two
series blend into a single progression of mixed singly and
doubly excited character.

Just above 111000 cm ™! [Fig. 5(b)] both the e-singlet
and e-triplet manifolds experience the onset of the n =3
states. (iv) In the singlet the spectrum exhibits a compli-
cated pattern of avoided crossings of sufficient strength to
separate the interacting levels and to produce a decep-
tively clean appearance. The spreading of the various
clumps of levels is due to the effects of / uncoupling, but
this is rather obscured by the other interactions. (v) In
the triplet manifold the only mixing is sd mixing, which is
sufficiently weak to allow may levels to approach each
other closely and thus result in a somewhat more cong-
ested appearance. The weakness of this mixing, however,
does allow the / uncoupling to be clearly seen, in groups
such as the levels from g1 to j1 lying near 114000 cm ™!
which spread increasingly apart as rotation increases.
(vi) Finally, the singlet and triplet f levels exhibit almost
identical patterns which reflect the effects of pure I-
uncoupling interaction.

Altogether the experimental e-symmetry levels are
reproduced extremely well, as indicated in the summary
Table VI. Here the rms errors of the MQDT calculated
energies are shown, along with the range of errors seen in
Tables II-V. Equivalent results for the coupled-
equations calculations of Yu and Dressler [16] are given
for comparison. Because the coupled-equations energies
always lie above the true values, whereas the MQDT re-
sults scatter on either side, the simple rms error is not ap-
propriate for comparing the results obtained from the
two treatments. To this end the rms about the average
deviation is also shown in the table. This, together with
the ranges of the errors, indicate that our current MQDT
results for the e-symmetry levels are only a factor of
2-2.5 times worse than those obtained using the
coupled-equations approach. Because our fitting of the
quantum defects involved here only reproduces the
Born-Oppenheimer potential-energy curves to within 8
cm™! (1.7-cm ™! rms) in any case, the rms error of the e-
singlet and e-triplet vibronic energy levels of 6.6 cm™!
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and 5.0 cm !, respectively, is entirely satisfying.

The f-singlet and f-triplet levels shown at the right of
Fig. 5(b) are examples of pure / uncoupling which MQDT
is ideally suited to treat. The lack of electronic
configuration mixing for these levels allows the full accu-
racy of the theory to reveal itself, devoid of inaccuracies
resulting from any inadequacies in the fitting of the in-
teraction quantum defects in RJ-I. Thus for these levels
the quality of agreement between the calculated and ob-
served levels is of the order of 1 cm™!, with all differences
being less than 2 cm™'. For the f-singlet levels the
coupled-equations technique [16] is about four times
worse, with the largest difference being 9.8 cm~!. Essen-
tially, the coupled-equations results are no better or
worse for the f-symmetry levels than they were for the e-
symmetry ones.

B. Singlet-triplet splittings

Figure 6 compares our calculated singlet-triplet split-
tings for the f-symmetry levels with the experimental
splittings (obtained from the data given in Tables III and
V). The MQDT results are in excellent agreement with
experiment, all lying within better than 1.0 cm ™! (rms de-
viation 0.7 cm™!) of the observed differences. Note that
this accuracy is almost as good as the experimental re-
sults obtained by Miller and Freund in their pioneering
singlet-triplet anticrossing experiments on these same
states [17]. It is only recently that this accuracy has been
surpassed by experiment [18]. '

The absence of the n=2 doubly excited state in the
triplet manifold means that there is not a one-to-one
correspondence between singlet and triplet levels of e
symmetry. Thus for e symmetry the singlet-triplet split-
tings have no evident meaning and we do not consider
them.

C. Fine adjustment
of triplet quantum defects

It is possible to perform a fine adjustment of the ab ini-
tio quantum defects to further improve the agreement
with experiment. Although such an adjustment is not a

TABLE VI. Rms errors of calculated energies from MQDT (present work) and coupled-equation

(Ref. [16]) approaches.

Singlet Triplet
rms® range® num.® rms-avr! rms range num. rms-avr
e levels MQDT* 6.6 —20.9:184 (247) 6.6 50 —17.2:112  (82) 4.6
CEf 42 0.1:11.8  (247) 2.8
f levels MQDT 0.8 —1.6:1.2 (26) 0.7 1.1 —1.9:05 (27) 0.6
CE 5.5 0.9:9.8  (26) 3.2

*Root-mean-square error of theoretical calculations.

®Range of deviations with experiment (cm ™).
°Number of levels used in calculating the rms error.

9The rms deviation (cm™!) around the average deviation.

“Present work.

{Coupled equations [16] statistics calculated for the same levels as used for the MQDT levels.
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FIG. 6. Comparison of experimental and MQDT singlet-
triplet splittings for the f-symmetry levels.

principle aim of this work, we do wish to illustrate this
possibility and to this end have performed a limited
least-squares fitting involving only the 17 v=0 triplet lev-
els reported by Jungen et al. [18]. These levels have an
absolute accuracy of 0.05 cm ™! and we used them in a
least-squares fitting of the triplet quantum defects around
R,. This was done by representing the quantum defects
in the region near R, as quadratic functions of R. The
quadratic coefficients were fixed to values determined
from the ab initio values, while the values for R =2 a.u.
and the linear coefficients were adjusted in the fitting.
The fitted defects are

7% =0.04851(19)—0.1084(57)(R —2 a.u.)
+0.011816(R —2 a.u.)?,

7%, =—0.01397(79)—0.001(15)(R —2 a.u.)
+0.01109(R —2 a.u.)?,

73;=0.1173(12)+0.1187(98)(R —2 a.u.)
+0.047 661(R —2 a.u.)?,

75, =0.073 42(50)+0.0871(53)(R —2 a.u.)
+0.030152(R —2 a.u.)?,

144 = —0.02907(53)—0.0537(90)(R —2 a.u.)
—0.003 147(R —2 a.u.)?

(with numbers in parentheses representing standard er-
rors in units of the last digit reported for the parameter.)
The ab initio MQDT results for the fitted rovibronic
levels had a rms error of 1.8 cm ™!, which was reduced to
0.14 cm™! by fitting the quantum defects. This was
achieved by only marginal changes in the quantum-defect
functions, with the largest change in equilibrium value
being only 0.0018 for 7Z,. The fitted quantum-defect
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functions, with the largest change in equilibrium value
being only 0.0018 for 7Z. The fitted quantum-defect
functions are compared with the ab initio ones from RJ-I
in Fig. 7. The fitted ones are only shown over a region of
+0.3 a.u. around R,, i.e., roughly the region of R ex-
plored by the v=0 vibrational levels included in the
fitting.

Schins et al. [5] have used the coupled-equations ap-
proach to study the n =3 triplet gerade manifold. In
their work the four vibrational matrix element functions,
which arise from the electronic coupling between the s
and d channels, are each modeled as a four-term series in
Hermite polynomials and fitted to the experimental data
of Alikacem and Larzilliere [19]. These vibrational ma-
trix elements are functions of R with very sharp peaks
around the equilibrium geometry. Setting these functions
to zero, and thus performing a pure ab initio calculation,
“agreement with experiment down to 30 cm™' was
found” [5]. The current ab initio MQDT calculations for
the triplet levels are therefore about an order of magni-
tude more accurate than the ab initio coupled-equations
calculations of Schins et al. Bak and Linderberg [22] had
earlier performed fully ab initio coupled-equations calcu-
lations of the n=3 triplet gerade manifold. Their results,
however, were in disagreement with experiment by
several hundreds of wave-number units.

By performing a least-squares adjustment of the 16
coefficients multiplying the Hermite polynomials used to
describe the vibrational matrix element functions, Schins
et al. obtained much better results. They tested the phy-
sicality of their fitted model by using the same parameters
to calculate the equivalent energy levels of HD and D,.
The agreement with experiment for all three isotopes is of
the order of one wave number, indicating the quality of
their fitted model (see Appendix A for more discussion of

0. 20 1.6 1.8 2.0 2.2 2.4 2.8 oo
T T
— RJ-1 |
L - - fittedj
0.15 {4 “— 0.15
0.10 0.10
0.0s 0.0s
Re
0.00 + 0.00
- T ==
~ < Tz (sd)
~
A (dd) -
-0.05 . = -0.05
1.4 1.6 1.8 2.0 2.2 2.4 2.6
R (a.u.)

FIG. 7. Comparison of the fitted (dashed lines) triplet
quantum-defect functions with the ab initio ones (solid curves).



this point).

Because of the different data sets used, it is not possible
to make a direct comparison of the fitted MQDT results
with those of the coupled-equations techniques. The rms
error of the results obtained by Schins et al. for the v=0
levels they included in their fitting is 0.8 cm™'. This is
not as good as the 0.14-cm ™! rms error obtained with the
MQDT approach. Their fitting, however, also included
v=1, 2, and 3 states, and relied upon the data of Alika-
cem and Larzilliere [19], which may be somewhat prob-
lematic, as discussed in the Appendix.

A striking feature of the ab initio MQDT and the
coupled-equations calculations is that they both indicate
that the 42 and & 3 levels identified by Dieke [14] and Ali-
kacem and Larzilliere [19] are most likely incorrect. The
various determinations of the A2 and A3 levels are com-
pared in Table VIL. It is clear that neither the present
MQDT nor the fitted coupled-equations results are in
agreement with the experimental energies. What is clear,
however, is that the MQDT and coupled-equations re-
sults are in good agreement with each other. This despite
the fact that the coupled-equations calculations are actu-
ally based on a fitting to the data of Ref. [19]. That the
two very different theoretical models should agree with
each other so well indicates that the experimental values
for h2 and h3 are very likely incorrect, and that the true
levels must lie relatively close to the theoretical ones.

Finally, it is worth pointing out that a distinct advan-
tage of using the MQDT approach in a least-squares
fitting is that the quantities being fitted are the quantum-
defect functions which are smooth functions of R, rather
than the very sharply peaked vibrational matrix element
functions of the coupled-equations approach.

IV. CONCLUSION

In these three papers we have shown that MQDT pro-
vides a unified and quantitative description of all the
gerade electronically excited singlet and triplet levels of
H, up to within 0.2 eV of the n =2 dissociation limit.
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Except for the illustrative example in Sec. III C, these
rovibronic calculations involved no adjustment of the pa-
rameters and thus represent a pure ab initio calculation of
the gerade energy level spectrum of H, which completely
avoids the detailed state-by-state evaluation of the rovib-
ronic coupling. The success of the calculations not only
confirms the quantum-defect theory approach used here,
but also reconfirms the quality of the clamped-nuclei ab
initio calculations from which the quantum defects were
abstracted, in particular those of Wolniewicz and
Dressler [3].

This work shows the feasibility of nonperturbative ro-
vibronic MQDT, allowing for electronic excitation of the
core. Owing to the —1/R form of the EF potential-
energy function in the region where it corresponds to the
H* + H™ ionic state, the vibrational level density in-
creases in an analogous way to the increase in electronic
state density in a Rydberg series. In the present calcula-
tion this manifests itself by the need for an extensive
basis. This clearly points to the necessity for a channel
treatment of the vibrational coordinate as well. This next
phase of the work is in progress, and we anticipate that it
will allow us to calculate all levels up to the n =2 dissoci-
ation limit and beyond, and thus to calculate resonances
in the H(1s)+H(n =2) vibrational continuum.
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TABLE VII. Comparison of experiment and theory for 42 and h 3 levels.

N Observed® MQDT® CE° Obs-MQDT* Obs-CE° CE-MQDT'
h2 0 116 284.06 116 326.95 116 331.11 —42.89 —47.05 4.16
1 116 338.98 116 382.04 116 387.34 —43.06 —48.36 5.30
2 116 448.39 116 491.68 116498.97 —43.29 —50.58 7.19
3 116 612.06 116 654.74 116 664.26 —42.68 —52.20 9.52
4 116 827.15 116 869.50 —42.35
5 117 093.62 117 133.93 —40.13
h3 0 118271.10 118 363.13 118 359.57 —92.03 —88.47 —3.56
1 118 323.81 118414.82 118411.34 —91.01 —87.52 —3.48
2 118428.79 118517.75 118514.37 —88.96 —85.58 —3.38
3 118 585.19 118 671.04 118 667.64 —85.85 —82.45 —3.40

2Observed term energies (cm~!) from Ref. [19].

® Ab initio calculated MQDT energies (cm ') from present work.
°Fitted coupled-equation energies (cm~!) from Ref. [5].

dObserved minus MQDT (cm ™).
*Observed minus coupled equations (cm™!).
fCoupled equations minus MQDT (cm™!).
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MQDT (‘“calc”) term values for f levels of triplet i and j states.
Reference [19] at top, and Dieke [14] at bottom. The difference
between the fitted terms of Schins et al. [5] and the MQDT
terms are also shown in the upper part, shifted down by 5 cm ™',
with dashed lines indicating the corresponding zero line.

APPENDIX

The manifold of triplet states has been recently reex-
amined by Alikacem and Larzilliere [19]. However, it
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turns out that for the same levels the term values that
they determined show greater scatter around our MQDT
predicted values than do the much earlier term values of
Dieke [14]. This is particularly evident in the f states to
which A=0 does not contribute, so that electronic mix-
ing is absent, as described in Sec. II. Thus only rotational
channel interactions (/ uncoupling) play a significant role.
This simplicity leads to the MQDT calculations being
especially accurate for these states. The differences be-
tween the observed and calculated term values are illus-
trated in Fig. 8. In this figure Dieke’s term values are
seen to be in excellent agreement with the current
theoretical values, with the observed minus calculated
differences exhibiting a very smooth variation with N.
Alikacem and Larzilliere’s values, however, not only
scatter more erratically, but also deviate from our
MQDT predictions with a greater rms deviation: 3.0
cm™ ! compared to the 1.0-cm ™! rms deviation of Dieke’s
data.

As discussed above, Schins et al. [5] fitted Alikacem
and Larzilliere’s term values with a physically con-
strained model. The differences between their calculated
term values and ours are also shown in Fig. 8 (shifted
down by 5 cm™! to avoid congestion). It is striking that
these differences exhibit a much smoother variation with
N than do the experimental data upon which their fitting
was based. Indeed, their fitted term values are in better
agreement with the current MQDT predictions (rms de-
viation 1.1 cm™!) than are the experimental terms of Ref.
[19] themselves (rms deviation of 1.9 cm ™! for the same
levels). We have therefore not included data from Ref.
[19] in our tables (except Table VII) and figures.
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FIG. 1. Symbolized display of the electronic structure of the
rovibronic K matrix [Eq. (4) of RJ-II]. See text for description.



