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A purely dynamical explanation for the quantum Zeno eHect is proposed. It is argued that a
quantum system undergoes a quantum-Zeno-type dynamics as a consequence of a particular type of
evolution involving a series of frequent spectral decompositions. The role of quantum measurements
and of the "collapse of the wave function" is investigated and it is clarified that, provided a final
observation is performed, the dynamical quantum Zeno e8ect can be obtained without making use of
vou Neumann's projection postulate. The meaning of infinitely frequent measurements is critically
discussed and it is argued that it should be regarded as a mathematical idealization, impossible to
realize from a physical point of view.
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I. INTRODUCTION

It is widely known that a quantum system, initially
prepared in one of the eigenstates of the unperturbed
Hamiltonian, undergoes a temporal evolution composed
of three steps: a Gaussian-type decay for an early period,
a Breit-Wigner exponential decay for intermediate times,
and finally a power decay for longer times [1]. Khalfin [2]
and Misra and Sudarshan [3] discovered that, if the short-
time behavior is Gaussian and not exponential, it is possi-
ble to inhibit the decay of unstable quantum-mechanical
systems by performing frequent "observations" in rapid
succession. This phenomenon was named the quantum
Zeno paradox, or quantum Zeno effect (QZE), after the
Greek philosopher Zeno whose arrows, although darted,
did not move. However, the experiment was very difficult
to perform.

Recently, Cook [4] proposed an experimental test that
makes use of a two-level atom whose transition is not of
the exponential type but of the cosine type (i.e. , Gaus-
sian for a short period). It should be noted, however,
that the proposed test did not involve observation of a
naturally unstable quantum system, as in the original
idea by Misra and Sudarshan. Following Cook's proposal,
Itano et al. [5] carried out this experiment and claimed,
by obtaining the same result as theoretically predicted
by Cook, that the QZE had been proven experimentally.
This conclusion has provoked an interesting debate [6—11]
on whether this effect is really rooted in &equent obser-
vations, each of which is described by the naive wave-
function collapse (i.e. , von Neumann's projection rule),
or rather in a purely dynamical process. In particular,
Petrosky, Tasaki, and Prigogine [6] strongly claimed the
latter point of view.

In this context, it is important to notice that in fact
Itano et al. observed only one photon at the final step,
but not at every step. Therefore, strictly speaking, they
performed a diferent experiment &om the original pro-
posal put forward by Cook [4]. Thus we are led to an
interesting question: Why did their experiment (in which

one photon was observed only at the final step) yield the
same result as the one theoretically derived under the as-
sumption that the naive wave-function collapse (i.e. , the
simple projection) takes place many times'? The main
objective of the present paper is to answer this question.

In previous papers, first one [10] and then both of
the present authors [12] proposed to use neutron spin-
flip processes, instead of atomic transitions, in order to
simplify and clarify the discussion. We drew conclusions
essentially similar to those of Petrosky et al.

As the whole class of phenomena hinging upon the
controversial issue of wave-function collapse [13, 14], the
QZE is very interesting from the point of view of quan-
tum measurements. In particular, it seems worth clari-
fying that the notion of "collapse, " as given by von Neu-
mann's projection rule, is not a fundamental prerequisite
for the occurrence of a QZE. Therefore, in our opinion,
the widespread belief that the QZE is clear-cut evidence
in support of the wave function collapse, as given by von
Neumann's projection rule, is a misunderstanding: In-
deed, we shall endeavor to show that the quantum. Xeno
phenomenon is a pure dynamical process, always gov-
erned by strictly unitary evolutions.

II. THE FORMULATION
OF MISRA AND SUDARSHAN

Po = EPOE~ Tr[ppE] = 1. (2.1)

We shall first formulate the quantum Xeno effect by
following the seminal procedure by Misra and Sudarshan

[3], which is entirely based on von Neumann's projection
rule. Let Q be an unstable quantum system whose states
are vectors in the Hilbert space Q and whose evolution
is described by the unitary operator U(t) = exp( —iHt),
where H is a semibounded Hamiltonian. The initial den-

sity matrix of system Q is assumed to be an undecayed
state po and E is the projection operator over the sub-

space of the undecayed states. By definition,

1050-2947/94/50(6)/4582(11)/$06. 00 50 4582 1994 The American Physical Society



50 DYNAMICAL QUANTUM ZENO EFFECT 4583

Ass»me that we perforxn a measurement at tixne t, de-
noted by the projection operator E, in order to check
whether Q is still undecayed. The measurement is ide-
alized to be instantaneous. Accordingly, the state of Q
changes into

pp m p(t) = EU(t)ppUt(t)E, (2.2)

so that the probability of finding the systexn undecayed
is given by

(t) = T [U(t) oU'(t)E]. (2.3)

and the probability to find the system undecayed is given
by

P (T) = Tr VN(T)ppVN(T) (2.5)

Equations (2.4) and (2.5) display what will be referred to
as the "quantuxn Zeno effect": Repeated observations in
succession modify the dynamics of the quantum system,
by slowing down the decay process, as we shall see in a
particular example in Sec. III.

In the N -+ oo limit (continuous observation), one
defines

V(T) =— lim VN(T), (2.8)

provided that the above limit exists in the strong sense.
The final state is then

We shall refer to the process (2.2) as "naive wave-

function collapse. " We are now ready to review briefly
Misra and Sudarshan's original formulation of what they
named the "quantum Zeno paradox. " We prepare Q in
the initial state pp at time 0 (this is formally accom-
plished by performing an initial "preparatory" measure-
ment of E) and perform a series of observations at times
T/N, 2T/N, . . . , (N —1)T/N, T. The state p~+l(T) of Q
after the preparation and the above-mentioned N mea-
surements reads

p'"'(T) = V~(T)ppV+(T)

Vrr(T)
—= [EU(T/N)E)~

If the particle is continuously observed (to check whether
it decays or not), it is "&ozen" in its initial state and
will never be found to decay. This is the essence of the
quantum Zeno paradox.

It is worth stressing the profound difFerence between
Eqs. (2.5) and (2.8): To perform an experiment with
N finite is only a practical problexn, &om the physical
point of view. On the other hand, the N ~ oo case is

physically unattainable and is rather to be regarded as
a mathematical limit (although a very interesting one).
In this sense, we shall say that the quantum Zeno egect,
with N finite, becomes a quantum Zeno paradox when
N + oo.

Finally, we notice that if the Q system is allowed to
follow its "free" evolution under the action of the Hamil-
tonian H, its final state at time T reads

p(T) = U(T) poU'(T) (2.11)

and the probability that the system is still undecayed at
time T is

P(T) = Tr[U(T)ppU (T)E] (2.12)

We shall now endeavor to show that the consequences
of the above theorem are liable to a pure dynamical ex-
planation that does riot make use of projection openx

tors. In this sense, we believe that the quantum Zeno
effect is just a consequence (although a peculiar one) of
the Schrodinger equation. In the following we shall show
t'hat one needs only a particular dynamics in order to
"&eeze" the Q system in its initial state.

It is necessary to stress again that the observations
(measurements) schematized via the operator E are in
stantaneous. This is a rather general characteristic of von
Neumann —like descriptions of a measurement process:
The Q system instcntaueousty makes the transition (2.2)
by measurement (naive wave-function collapse). Even
though such a picture is often accepted among physi-
cists, it is misleading. Indeed a measurement process, as
a physical process, takes place during a very long time
on a microscopic scale, although we can regard it as if it
happened instantaneously on a macroscopic scale.

p(T) = V(T)p.V'(T) (2.7)
XXX. QUANTUM XENO EFFECT

WITH NEUTRON SPIN

and the probability of finding the system undecayed is

P(T) = liin Pl l(T) = Tr V(T)p V (T) . (2.8)

Misra and Sudarshan assuxned, on physical grounds, the
continuity of V(t),

lim V(t) = E, (2.9)

'P(T) = Tr[ppE] = 1. (2.10)

strongly and proved that under general conditions the
operators V(T) (exist for all real T and) form a semigroup
labeled by the time parameter T. Moreover, Vt(T) =
V(—T), so that Vt(T)V(T) = E. This implies by virtue
of Eq. (2.1) that

We set now the basis for a general analysis by dis-
cussing a particular solvable example [12, 15] which, in
spite of its simplicity, yields rich physical insight and
turns out to be very useful for the general analysis of
Sec. IV. We shall show how the same "Zeno-type" evo-
lution can be obtained both by making use of the tech-
nique of the preceding section and by means of a purely
dynamical process. The following analysis is diferent
&om the one presented in Ref. [12], in an attempt to em-
phasize some points which are particularly important in
the present context, and gives a guideline for the general
treatment of Sec. IV.

The example we want to consider is a neutron spin in
a magnetic field [12]. (A situation analogous to the one
described in this section was outlined by Peres [16] with
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photons. ) We shall consider two different experiments:
Refer to Figs. 1(a) and 1(b). In the case schematized in
Fig. 1(a), the neutron interacts with several identical re-
gions in which there is a static magnetic field B, oriented
along the x direction. We neglect any losses and assuIne
that the interaction is given by the Hamiltonian

E
B

0 D~

B

M

Do

0 = PBo.l, (3.1)

p being the (modulus of the) neutron magnetic moment
and o, (i = 1, 2, 3) the Pauli matrices. We denote the
spin states of the neutron along the z axis by

l g) and
$): These can be identified with the undecayed and

decayed states of Sec. II, respectively.
Let the initial neutron state be po

——pg~ =
l

f')(g l.
The interaction with the first region simply provokes a
rotation of the initial state around the x direction:

p ~ p (t ) e i H i/ ri
p ei H i / rL

= COS —Ptt + S1Il —
Pgg2 2

—'c cos —slIl —pgg + H.c.,
2 2

(3.2)

where u = 2pB/5, t = I/v (I. is the length of the region
where B is present and v the neutron speed) and the
other notation is obvious. (In this section we do not set
h = 1.) We repeat the process N times, as shown in
Fig. 1(a). The final density matrix at time T = Nt is

(Tq iHT/a —iHT/a
poe

2 4)T ~ 2 (dT= COS Pgg + S1Il Pgg
2 2
4JT . MT—x cos slIl pgg + H.c.

2 2
(3.3)

p(T) = p~i T= 2m+1 —,meN

(3.4)

so that the probability that the neutron spin is down at
time T is

We call this a "free" evolution, during which the system
evolves under the sole inBuence of H. Note the presence
of the oK-diagonal terms with respect to the spin states.
If T is chosen so as to satisfy the "matching" condition
coswT/2 = 0 (notice that this can also be viewed as a
fine-tuning requirement, similar to the one experimen-
tally realized by Itano et aL [5]), we obtain

E
--' M — M

B 8 (b)
D.

FIG. 1. (a) "Free" evolution of the neutron spin under
the action of a magnetic field. An emitter E sends a spin-up
neutron through several regions where a magnetic field B is
present. The detector DD detects a spin-down neutron: No
Zeno effect occurs. (b) The neutron spin is "monitored" at
every step by selecting and detecting the spin-down compo-
nent. Do detects a spin-up neutron: The Zeno effect takes
place.

one component [say the down ($) one] of the neutron
spin. This can be accomplished by a magnetic mirror M
and a detector D. The former acts as a "decomposer"
by splitting a neutron wave with indefinite spin (a super-
posed state of up and down spin) into two branch waves

each of which is in a definite spin state (up or down)
along the z axis. The down state is then forwarded to a
detector, as shown in Fig. 1(b).

The magnetic mirror yields a spectral decomposition
[17, 14] with respect to the spin states and can be com-

pared to the inhomogeneous magnetic field in a typical
Stern-Gerlach experiment. It is very important, in con-
nection with the QZE, to bear in mind that the magnetic
mirror does not destroy the coherence between the two
branch waves: Indeed, the two branch waves correspond-
ing to diferent spin states can be split coherently and
brought back to interfere [18].

We choose the saine initial state for Q as in the pre-
vious experiment [Fig. 1(a)]. The interaction with B in
the first region still provokes the evolution (3.2). The
spectral decomposition and the detection of a spin-down
neutron, provoked by M and D, respectively, are (for-
mally) globally represented by the operator E—:p~t [re-
member that we follow the evolution along the horizontal
direction in Fig. 1(b), which corresponds to spin up], so
that Eq. (2.2) yields

po m p(t) = EU'(t) po U (t)Z =
l

cos —
l pt 7,

/, (utl

2)
Pg(T) = 1 T= 2m+1 —,mph

(3 5)

(3.6)

where U = exp( —iHt/5). If the process is repeated N
times, as in Fig. 1(b), we obtain

The above two equations correspond to Eqs. (2.11) and
(2.12), for a specially chosen T: In our example, H is
such that if the system is initially prepared in the up
state, it will evolve to the down state after time T. Notice
that, within our approximations, the experimental setup
described in Fig. 1(a) is equivalent to a single region of
length L = NZ with magnetic field B.

Let us now modify the experiment just described by
inserting at every step a device able to select and detect

p'"'(T) = &~(T)po&w(T)

/', ~tl z vr
pit (37)2) 2N

where the "matching" condition for T = ¹ [see
Eq. (3.4)] has been required again. The probability that
the neutron spin is up at time T, if N observations have
been made at time intervals t (Nt = T), is
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Pi (T) = (coo ) (3.8)

This discloses the occurrence of a QZE: Indeed,

Pt (T) & P.. (T) for N & 2, so that the evolu-

tion is "slowec down" as N increases. Moreover, in the
limit of infinitely many observations

)o'"'(T): ) (T) = ~tt (3.9)

V, (T) = hm P'"'(T) =i.
N-woo

(3.10)

Frequent observations &eeze the neutron spin in its ini-
tial state by inhibiting (N & 2) and eventually hindering

(N -+ oo) transitions to other states. Notice the dif-
ference with Eqs. (3.4) and (3.5): The situation is com-
pletely reversed.

The above result, peculiar as it may seem, is a straight-
forward consequence of the quantum formalism. It is
worth stressing that [by setting for simplicity m = 0 in
Eq. (3.4)] the condition uT = urNt = m, which is to be
met at every step in Fig. 1(b), means that

following final state:

N

=-~" =
l,
c»'"

2N, I (4 ~~t) ~g'
j=i

+sio ) '
(coo i" i

) ((o Spii)
I)"=1

D~

jgk
(3.13)

ISIS ~ ~

s2c2N —4

where (g = lPq)(Pql, Pq being the neutron wave packet
traveling towards the kth detector, and og' is the final
density matrix of detector Ds (displaying neutron detec-
tion). Observe that in the above expression the total
density matrix =~/' has no ofF-diagonal components as
a consequence of the wave-function collapse by measure-
ment.

In conclusion, in the channel representation, we obtain
the density matrix

(c
s2c2N —2

BE = = O(N 1),
2pN

(3.ii)

N
D)O'I

j=1
(3.i2)

where (0 ——lgo)(4)ol, itio being the neutron wave packet
traveling along the horizontal direction in Fig. 1(b), and

OI is the initial density matrix of detector Ds (display-
ing no result). A trivial, if lengthy, calculation yields the

where 8 and v were defined after Eq. (3.2). This implies
that, as N increases in the above equations, the prac-
tical realization of the experiment becomes increasingly
difficult.

Notice that the final results Eqs. (3.9) and (3.10) are
automaticcLLy properly normalized: The probability of de-
tecting a spin-down neutron vanishes in the N ~ oo
limit. This is the essence and the peculiarity of the Xeno
argument. We stress that in the above analysis we have
neglected any losses and re8ections at the mirrors.

We contend now that the same result can be obtained
without making use of projection operators by simply
performing a difFerent analysis involving only unitary
processes. Observe first that, so far, only the Q states
have been taken into account. If the state of the total
(neutron plus detectors) system is taken into account,
we can write the initial state as

i,j = 0, 1, . . . , N (3.14)

&I" = I&o) I &) (3.i5)

and a calculation analogous to the one sketched above
yields the following final state:

&»" = c"I4'o) I t)
+ —isC N —iSC

—"—isl+~) I I &).)

The correspondent density matrix is

(3.16)

where c = cos(z/2N) and s = sin(vr/2N). This cor-
responds to the case of &equent observations, in which
we confirmed, at every step, the neutron route among the
various possibilities 0, 1, . . . , N. Notice that the i =j = 0
component corresponds to detection by Do, while the
i = j = n (n = 1, . . . , N) component corresponds to
detection in channel N —n+ 1.

Assume now that Dq, . . . , D~ are removed in Fig. 1(b):
In other words, we make no observation of the neutron
route, except the final one performed by Do We start.
from the initial state

C2N isc2N 1 i8C2N 2

—isc sc sc
—isc sc sc

isc~
. s'cN-'

~ ~ - s2cN —2
i, j =0, 1, . . . ,¹ (3.i7)

—iscN 8'cN-' 8'cN-' -. 8'
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Equations (3.14) and (3.17) clearly show that we have

the same probability P&
——[cos2(vr/2N)]~ of detecting

a spin-up neutron at Dp both if the detectors D~, . . . , DN
are present or absent in Fig. 1(b). It appears therefore
that no projection rule is necessary in this context.

Physically, the situation just described corresponds to
performing a coincidence experiment between the emitter
E and Do, as was explicitly shown in Ref. [12]. One can
also consider this result as a consequence of a negative-
result measurement [19] of the neutron spin. This shows
that the final observation by Dp plays a special role in
the present analysis, introducing the stochastic element
that is typical of quantum measurements. See Ref. [12].

Notice that the diagonal elements of the two density
matrices (3.14) and (3.17) are the same. Moreover, in
both cases, in the N ~ oo limit, only the c ~ (i = j =
0) element survives: All other terms disappear because
they contain at least an s factor. Remember that the
% ~ oo limit is only mathematical and is impossible to
realize physically because the elapse of time T/X, even
though it can be considered very short on a macroscopic
scale, is in fact the time spent by the neutron in each 8
region. We have to keep in mind this remark throughout
this paper. In fact, the uncertainty principle imposes
a limit on the maximum value that N can attain in a
given experimental situation. This is at present under
investigation [15].

The main objective of this paper is to generalize this
conclusion. We shall also see that the experiment per-
formed by Itano et aL [5], in which a photon was observed
only at the final step, will appear as a particular case of
our analysis. Indeed, if one identifies the effect of the
mirrors in Fig. 1(b) with the efFect provoked by the laser
pulses in Ref. [5], the above discussion inequivocally im-

plies that the same result would be obtained whether or
not Itano et al. observed the intermediate photons. Their
experiment is just equivalent to a series of spectral de-
compositions performed by the laser pulses. This point
will be discussed in detail in Sec. V.

(as will be shown in Sec. V), some detectors surrounding
Q, or any atmosphere in which Q exists. Two points are
worth noticing. First, it is essential that the universe be
treated quantum mechanically: If a "classical" behavior
were postulated, we would conceptually go back to von
Neumann's projection rule and to Misra and Sudarshan's
seminal idea. Second, the only purpose for introducing
the universe is to "follow" the quantum correlations en-
gendered by Q, namely, to monitor their "spreading" to-
wards other degrees of freedom of the total wave func-
tion ("leakage" and "environment" would maybe be bet-
ter words than "spreading" and "universe, " respectively,
but we prefer the former expressions because, as we shall
see, the quantum coherence can eventually be recovered).

We start &om the initial state

N 2"

1@1)= I+&I0I"'& = I+&10&~
n=p j=1

(4.1)

A. "Free" evolution

where ~+) denotes any state of the two-level system Q,
0 's are occupation numbers, and ~0)~ is the ground
state of the universe. The state + (

—) plays the same
role as the state g ($) in Sec. III, and the undecayed
(decayed) state in Sec. II. The structure of 'R~ can be
understood by looking at Fig. 2: The universe consists
of many channels (labeled j,n), which can be in either

f th t o po 'bl t t 0~("l,1I"~. Th t t 0,.
denotes the absence (presence) of an excitation in the
corresponding channel. The index n labels the "step"
(horizontal direction in Fig. 2), while the index j labels
the "branch" (vertical direction) at step n. After n steps
there are 2" branches.

For the sake of simplicity, the following analysis is per-
formed in terms of wave functions instead of density ma-
trices.

IV. QUANTUM ZENO EFFECT
AS A PURELY DYNAMICAL PROCESS

Our purpose is to give a general formulation of the
QZE as a dynamical process, without making use of von
Neumann's projection postulate. We shall see that when
a system evolves under particular conditions and under-
goes a "generalized spectral decomposition" (the precise
meaning of which will be explained in a while), its ini-
tial state becomes &ozen, in the sense explained in the
preceding sections.

The evolution we are going to consider is peculiar, in
that it involves the creation of several quantum corre-
lations in rapid succession. We start (without loss of
generality and in line with the formalism of the preced-
ing sections) from a two-level quantum system Q, living
in a Hilbert space 'Rg, and embed the latter in the larger
space 'H = Rg QU, where the subscript U stands for
Universe. Our "universe" can be anything: the spatial
component of the total wave function of Q (as in Sec.
III), a quantized electromagnetic field interacting with Q

We assume that the system undergoes two different
types of evolutions at every step in Fig. 2. The first
evolution is governed by the Hamiltonian Ho and takes
place in the rectangular regions. The second evolution is
governed by the Hamiltonian H' and takes place in the
circular regions.

The effect of the two evolutions is profoundly different.
The evolution engendered by Hp is identical at every step
and will be written as

(4 2)

.+(t) = O(t), q~(t) = 1 —O(t'). (4.3)

where the dots denote any state of the universe. Notice
that this leaves the universe unaltered. We shall be in-
terested in the behavior for small t, which is, in general,
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+——--1
+

——2j

FIG. 2. The quantum correlation "tree."
After N steps there are 2 branches. The
value of n (n = 1, . . . , N) is indicated below.

+ N——2 -1

——2N

N

The Hamiltonian Ho plays the same role as H in
Eq. (3.1). In some sense, we can consider the above
evolution as "free," where "free" simply means that the
behavior of the Q system is not "monitored" and Q is
allowed to follow a natural smooth evolution under the
action of Ho.

B. The generalised spectral decomposition

II'(t) —= g(t) [I+&(+I~p + I

—&(-l~ l ~
T

= g(t)II', g(t)dt = t e R
0

(4.4)

where the interaction is switched on during the time in-

FIG. 3. The generalized spectral decomposition.

The second interaction, governed by H', is a sort of
spectral decomposition: Different states of the Q system
become entangled with diff'erent states of the universe.
One can think, for example, of a sort of Stern-Gerlach
decomposition of an initial spin state (so that every com-
ponent of the spin becomes associated with a different
wave packet, as in Sec. III) or of an entanglement of a
two-level atomic system with a photonic state (see the
analysis of the experiment by Itano et a/. in Sec. V and
the lucid discussion of Petrosky et al. on this point) or,
more generally, of an entanglement of each state of Q
with different degrees of freedom of the universe. In this
sense, we shall speak of generulized 8pectrul decompoaiti on
(GSD) of the Q states.

In order to describe this situation, refer to Fig. 3 and
assume the following Hamiltonian:

terval [O, r], g is a real function, |rt = o„(the index

p = cr, P, p labels the channel), and the efFect of 0„is
defined by

~„IO„)= I1„&, n„l1„&= lo„&, (4.5)

so that if there is a "particle" in channel y, the operator
o„destroys it, while if there is no particle, a„creates
one. The efFect of 0„(Vp)is therefore identical to that
of the first Pauli matrix. (We are implicitly assuming
that there cannot be more than one particle in channel

p.) We set

[0'~, 0'~] = 0 (4 6)

The action of the Hamiltonian H' is

~'(+I+&+ -I-))II- 0~ o )

= (c+I+) 10, lp, 0 ) +c
I

—) 8 IO, Op, 1 )). (4.7)

H' acts therefore by sending the + (—) state of the Q
particle in the upper (lower) channel in Fig. 3, performing
in this way a GSD.

In general, the only effect of a GSD is to set up a corre-
lation between the two states of Q and difFerent states of
the universe. Obviously, for the purpose of our analysis,
we are interested in obtaining a perfect GSD (namely, a
univocal and unambiguous correspondence between dif-
ferent states of Q and of the universe) of the type de-
scribed in Eq. (4.7). As will be shown in Appendix A,
this can be easily accomplished by setting b = s/2 in
Eq. (4.4): This is a sort of fine tuning and corresponds
to the so-called m-pulse condition, widely used for elec-
tromagnetic cavities [20]. This condition was experimen-
tally realized in Ref. [5]. As explained in Appendix A,
b = m/2 can also be viewed as the requirement that the
GSD be "reBectionless. " Notice also that all losses are
neglected.

The evolution engendered by I' is explicitly calculated
in Appendix A. The result is
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U'(t) (c+I+) + c
I

—)) (3 ll, op, o&&:—exp
I

i H'(t')dt'
I
(c+I+&+ c-I-)) (311- 0~, 0,))o

(c+I+) g lo. , 1~, o,)+c
I

—) g lo. , 0~, 1,)) (t & &) (4.8)

~-+ 0+,

C. Evolution at the nth step

We can now tackle the general case. Refer to Fig. 2
and assume the following Hamiltonian at the nth step:

H(„)(t)—:g(t)H(„)
2n —1

—= a(t) ):([I+)(+l~.'", ' + 1-)(-l~.'", 'j~,'" ')
j=1

2n —1

=g(t) ) H( ), f g(t)dt =„bcR,
i=1 (4.10)

and yields a genuine GSD.
Our idea is to get a Zeno-type dynamics without mak-

ing use of nonunitary evolutions (projection operators).
In Sec. II, the operator E represented a measurement
that was assumed to be instantaneous. As already em-
phasized, this is clearly an idealized situation that cannot
correspond to a real physical process, taking place at a
microscopic level. The problem is therefore to under-
stand how we can simulate such an instantaneous and
unphysical process in our analysis, which makes use only
of unitary evolutions.

We observe that, in general, a GSD must take place in
a very short time. Obviously, the term "very short time"
must be understood at a macroscopic level of description
because microscopically the time required to efBcaciously
perform a GSD is very long. Therefore, if we restrict
our analysis to a macroscopic level of description, we can
describe an (almost) instantaneous GSD by means of the
so-called impulse approximation

T

g(t)dt = vr/2, (4 9)
0

which roughly amounts to setting g(t) ~ (x/2)b(t) as
r m 0, where b is the Dirac function fz b(t) = 1. This
is our alternative description of a von Neumann —like in-

stantaneous projection.

I

where the interaction is switched on during the time in-

terval [0, 7] and the action of o,.
"

is defined by

~(")lo,'."') = Is,'"'), ~(")11,'"') = Io,'"') (4.11)

so that if there is a particle in the ith channel at the nth

step, the operator cr,
" destroys it, while if there is no

particle, o,. creates one. We set~ (~)

(TL) (TA) 0 Vi, k, n, m. (4.12)

The action of the Hamiltonian H~„~ . is given by

H(.),, (c+I+)+c-I-)) I,1,'" ", )

C+ + )12'—1&
' +C—— (3 ''', 12

(4.13)

where the dots will henceforth signify that all other occu-
pation numbers are 0: H' . acts therefore on the + (

—). (")j .
state of the Q particle in the jth channel at the (n —1)th
step, by sending it into the (2j —1)th (2jth) channel at
step n, performing in this way a GSD.

The evolution engendered by H(„)(t)is explicitly cal-

culated in Appendix B. If the condition b = vr/2 is used

again, one obtains

U( )(t) (c+I+) + c-I—)) I

' ' ' 8/=1 1, ' ' ')

T

=exp
I

-i HI.)(t')«'
l
(c+I+) + c-I—)) I" , '=i 1,'" ' " )

)
= (—*)* (~+I+) &

I
, I)=i 4",' i, ) + ~-(I —) &

I
, &)=»'",' )&

(4.14)

Summarizing, at every step of the process described in
Fig. 2, the system evolves according to

N

lim U, ~ (T) = lim U(„)(Tg/N, T2/N) UI,
)N tot

=1

U(„)(r,t) = U(„)(~)Uo(t), (4.15) (4.16)

where Uo was defined in Eq. (4.2).
Our interest will be focused on the evolution engen-

dered by the limiting operator

where T = T1 + T2 and the operator UI is introduced
here in order to set up the initial incoming Q state at
t = 0. This is formally accomplished by setting
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Hr-=-~(t)[l+)(+I+I-)(-l] ''
2

= —h(t) 1 g ~I ',
2

(4.i7)

D. The N -+ oo limit

Let us study the action of the operator Ut„(T)on any[N]

initial state of the Q system. [The universe is initially
taken to be in the ground state. See Eq. (4.1).] If, for in-
stance, the initial Q state is I+), the final state is readily
computed f'rom Eqs. (4.2), (4.3), and (4.14)—(4.16) as

U'. '(T)I+) lo)~

( i) [7+(T2/N)] I+) 3 I
' ' ' Ii ' ' ')

+O(l/N). (4.is)

On the other hand, if the initial state is
I
—), the final

state reads

Ua."~ (T)I—) lo)~

=(-')' h-(T./N))" I-)
I

. 1.'"-')

+O(1/N). (4.19)

This clearly displays a QZE for N finite and a quantum
Zeno paradox in the N -+ oo limit. Indeed, observe that

lim [p~(T2/N)] = lim 1 —O(1/N ) = 1,
(4.20)

where we made use of Eq. (4.3). In other words, in
the limit of infinitely many GSD's, both states of Q are
&ozen, while the universe evolves into the uppermost or
lowermost state in Fig. 2, according to whether the ini-

Ur(t):—exp
I

i Hr(t )dt
I

= il —o, , t & r,(o)

)o

where b is the Dirac function [jz h(t) = 1] and we as-
sumed for simplicity that the incoming state is set up at
t = 0. Notice that T = Ti + T2, the total duration of the
"experiment, " is kept finite in taking the above limit.

tial Q state is + or —,respectively. Moreover, the final
result does not depend on Tq, the total time needed to
perform GSD's. In particular, in the impulse approxi-
mation (4.9), we can get Ti ——0 and the total duration
of the experiment is just T = T~. This is interesting
and reBects, in our opinion, the essence of the "dynami-
cal QZE": The final state does not depend on the GSD
time, which can be made arbitrarily small in order to
mimic the eKect of an instantaneous projection E as in
Sec. II. Notice, however, that it is not necessary to take
the Tz ~ 0 limit, because we would obtain a dynamical
QZE even if Ti ——Nr would be kept finite. On the other
hand, if the total duration of the experiment T = Ti + T2
(with Ti ——Nr) is kept finite, the N ~ oo limit can be
taken only in the impulse approximation v ~ 0.

We stress again that the r ~ 0 limit is unphysical
and impossible to realize, in practice. Indeed, as already
emphasized in Sec. III, even though v can be considered
very short in a macroscopic sense, it is in fact a very long
time on a microscopic scale. In the case considered in
Sec. III, for instance, 7 is the time elapsed during the
interaction between the neutron and a magnetic mirror
M, which is of the order of 10 —10 s.

But there is more to this: Experimentally, even the re-
quirement that the total time spent in &ee evolutions Tq
be finite appears prohibitive. Indeed, such a total time
should be divided into many small time intervals whose
duration T2/N vanishes as N ~ oo. This additional
problem is manifest when one looks at the examples of
Figs. 1(a) and 1(b): There is no conceptual problem re-
lated to the experiment in Fig. 1(a) because, within our
approximation, the experimental arrangement is equiva-
lent to a magnetic field B in a region of length I = NI.
[see definitions after Eq. (3.2)]. On the other hand, in
the experiment sketched in Fig. 1(b), each single region
containing B must have a length / = L/N, which van-
ishes in the N ~ oo limit. Consequently, also the time
T2/N spent by the neutron in each single region should
vanish. This is clearly impossible to realize, in practice.

Observe that the final state, at time T, is fully coher-
ent: The evolution is obviously unitary and no "coLlapse"
of the ivave function has taken place. Needless to say,
this result holds true for any possible state of Q: Indeed,
application of the superposition principle yields

Ua."t'(T) (c+I+&+ c-I—)) 10&pr = c+(—i)' 4+(T2/N)]" I+) I" ii' ' " )

+. (-')'" [~ (T./N)]" I+& e I,i,'".'&+ O(i/N), (4.2i)

which is still a pure state. At last, the underlying quan-
tum coherence can be simply brought to light by "recom-
bining the two beams" (the uppermost and lowermost
states in Fig. 2), by means of the formal operator

H~=—-h(t) I+&&+I ', '+ l-&(-l,'"-'
2

(4.22)
T

Up. = exp
I

i Hp (t') dt' I—
)o

=-' I+&&+I
' '+I-&&-l,'-'

Uaot (T) —= Up&~.~ (T)

we obtain

(4.23)

U, , (T) (c+I+) +c
I

—)) IO)pr

= (—')' +'(c+ h+(T2/N))" I+)
+c—[p—(T2/N)) I )) '3 I0)~ + o(1/N). (4 24)

where again I b'(t) = 1 [notice that, for the sake of
simplicity, we are identifying the final and initial states
(channels) of the universe). By defiiiing
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In conclusion, by denoting Io) the ground state of the
universe in the N M oc) limit, we get

V. THE EXPERIMENT BY ITANO et al.

The recent experiment performed by Itano et aL [5]
has provoked a renewed interest and a lively debate on
the meaning of the QZE. The above-mentioned authors
claimed to have observed experimentally the quantum
Zeno effect by making use of atomic transitions, on the
basis of Cook's proposal [4].

This conclusion was challenged by, among others, Pet-
rosky, Tasaki, and Prigogine [6], who proved, via a de-
tailed theoretical calculation, that the experimental re-
sults in Ref. [5] are liable to a dynamical explanation and
therefore need not be ascribed to any collapse of the wave
function. Itano et al. replied to the above criticisms [9],
without anyway withdrawing their original conclusion.

Let us therefore brieBy review this experiment and dis-
cuss its meaning and implications &om the point of view
outlined in this paper. Itano et al. put Be+ ions in a
rf cavity. The ion energy level configuration was such
that Ei & E2 & E3 and the resonating rf-field &equency
u2 ——(E2 —Ei)/5 created a coherent superposition state
of the two lower levels. Upon measurement, the ion can
be found in level 1 or 2, but never in both levels at the
same time.

We denote the probability of finding the atom in level
1 (2) at time t by Pi(t) [P2(t)]. If the initial condition

Pi(0) = 1 is chosen, it is possible, by making use of a
"m pulse" [20], to find a time T such that Pr(T) = 0.
Notice that the vr-pulse condition is essentially similar to
that described in Sec. III [see, in particular, Eqs. (3.4)
and (3.5)] and can be viewed as a fine-tuning condition,
as explained in Sec. IVB.

In order to observe the state of the atom, Itano et
al. irradiated it with very short optical pulses of &e-

quency us ——(Es —Ei)/h and chose the level configu-
ration in such a way that the spontaneous decay 3 m 1
was strongly favored, while the decay 3 + 2 was forbid-
den. In this way, the atom is known to be in the first
level if a photon of frequency cu3 is observed while it is in
the second level if no photon is observed.

According to the quantum measurement theory, the
wave-function collapse takes place as a consequence of
observation and consequently the density matrix of the
atom loses its oK-diagonal components (with respect to
the first and second atomic states). If N observations are
performed during the time interval (0, T), the probability
of finding the atom in the first level is given by

2N
(5.1)

(c+I+) + c
I

—)) (-") lo), (4.25)

up to a phase factor. This result is stronger than the
one obtained in Ref. [3] and outlined in Sec. II: Indeed
we have shown that it is possible, by making use of a
dynamical process, to freeze any initial Q state and not
only a suitably chosen initial Q state.

This displays the quantum Zeno eKect, because

Pi (T) & Pi ) (T) for N & 2 and

limiv Pi (T) = l. Itano et al e.xperimentally con-(N)

firmed the above prediction [21] by sending N optical
pulses and then claimed to have observed the quantum
Zeno eHect. A dynamical explanation, involving no col-
lapse of the wave function, was suggested in Ref. [6] and
is, in our opinion, very convincing.

By making use of the techniques used in Sec. IV, we
propose the following purely dynamical explanation: Let
the Q system be the atom, while the universe is the Fock
space of the photons absorbed and then reemitted in the
1 m 3 transition. The initial state of the total system is

(5.2)

where Ig;) represents the atomic level i (i = 1, 2) and lo)
is the ground state of the Fock space.

The &ee evolution yields simply the Rabi oscillations
between the atomic levels 1 and 2 and is obviously in
agreement with the general behavior (4.3):

Ot . . Ot
I@'r) ~ l@(i)) =

I
cos —1&1.) +i sin l&2) I lo)

2 2

(5.3)

where 0 is the frequency of the Rabi oscillations between
levels 1 and 2. Notice that we are not mentioning the
atomic level 3.

The u3 pulse yields, in a very short time v, the evolu-
tion

Ot
I@( )) ~ I@( )) = cos

2 I& ) 11)

Ot
+i sin —Ipq) 3 lo),

2
(5.4)

where ll) denotes a one-photon state. Equation (5.4)
is a generalized spectral decomposition, in the sense ex-
plained in Sec. IV B (channels a and P coincide and cor-
respond to the vacuum, while channel p represents the
one-photon state). The analysis can now proceed along
the lines sketched in Sec. IV.

Observe also that, by repeating the reasoning outlined
in Sec. III, the same result is obtained independently of
whether a photon of &equency ~3 is observed only at the
final step, after the Nth optical pulse was irradiated (as
in Ref. [5]), or after every pulse irradiation. This was
discussed at length in Ref. [12].

VI. DISCUSSION

We have shown that the QZE is liable to a purely
dynamical explanation, which does not involve any
projection operator. We claim therefore, contrary to
widespread belief, that a quantum Xeno-type dynamics
is not an argument in support of the collapse of the wave

function, provided we observe the same state as the ini-

tial one at the final detector Do. The Schrodinger equa-

tion alone can yield a satisfactory explanation of the phe-
nomenon.

Even though we do not question in the least the ef-

fectiveness and the practical validity of the projection
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postulate, we have critically discussed its physical mean-
ing on several occasions [14]: We believe that a projec-
tion does not correspond to any physical operation and
therefore should be regarded only as a convenient expe-
dient (a "working rule" ) in order to account for the loss
of quantum-mechanical coherence (the "collapse" of the
wave function). In this sense, von Neumann's projection
rule is to be considered as purely mathematical and no
physical meaning should be ascribed to it. In our opin-
ion, the projection technique is artificial and extraneous
to quantum mechanics as a physical theory

We stress, in this context, that an alternative explana-
tion for the loss of quantum coherence has been proposed
[14], in which the decoherence (collapse) is viewed as a
physical dephasing process, ascribable to the interaction
of the quantum system with a macroscopic object. No-
tice that, in this approach, the macroscopic system is
always treated quantum mechanically and the unitarity
of the evolutions is always kept: Dephasing is viewed as
a statistical efFect, even though it can be shown to take
place (and can be given a definite meaning) also for single
events.

It must be emphasized, however, that the description
of the quantum Zeno efFect given in this paper implic-
itly requires an observation at the final step [such as,
for instance, a detection by Do in Figs. 1(a) and 1(b)]
and this introduces a statistical (probabilistic) element
in our analysis. In this sense, the probabilistic aspect of
the quantum phenomenon is always present and retains
its fundamental ontological role.

It would be possible to prove other conditions (i.e., in
the strong vector topology) stronger than the limit (4.25),
but we preferred to limit our analysis to a particular
choice of the initial state of the universe because our only
purpose was to disclose the occurrence of the dynamical
QZE (4.25). It is worth stressing that our analysis has
been performed under the assumption of lossless and re-
fiectionless GSD's. In order to realize practically this
type of experiment, we have to estimate the efFects of
such losses and re8ections on the 6nal results. It would
also be interesting to understand whether these eKect
would yield additional phases in the transmitted states.
Indeed, in such a case, interesting links with "decoher-
ence" efFects [14] might come to light, due to (partial)
phase randomization.

the fine-tuning condition. We start from the Hamiltonian
(4.4),

H'(t) = g(t) [I+)(+l~~+ I

—)(—l~ ] &-

= g(t)H', (A1)

where 0„=o t acts on the space spanned by the vectors
~0„),~1„)like the first Pauli matrix [see Eq. (4.5)]. The
interaction is switched on during the time interval [0, r]
and we set

T

g(t)dt = b e R.
0

(A2)

Observe that

[H']' = H', [H'] = 1,

which makes the behavior of H' itself very similar to that
of a Pauli matrix.

The evolution operator is given by

U'(t) = exp
~

i H'(t')—dt'
~

= e '—'sa'
0 )

=cosb —iK'sinb (t ) 7.)

where we made use of Eqs. (A2) and (A3). This opera-
tor acts on an initial state of the type (c+~+) + c

~

—))
~1,Op, 0~) and it is easily evinced from the above expres-
sion and Eq. (4.7) that U'(t) engenders a genuine GSD if
and only if b = z'/2. If the above fine-tuning condition is
not met, there is a nonvanishing amplitude for the wave
function of the total system to undergo a sort of refiec-
tion, namely, there would be a nonvanishing amplitude
for the universe to still be in the ~1,0p, 0~) state.

As explained in Sec. IVB, the only efi'ect of a GSD
is to set up a correlation between the two states of Q
and diferent states of the universe. Obviously, we are
interested in obtaining a perfect GSD (namely, a univocal
and unambiguous correspondence between states of q
and the universe) of the type described in Eq. (4.7). Let
us therefore set b = z/2. This condition of fine tuning is
equivalent to the one experimentally realized in Ref. [5].
We get
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and by making use of Eq. (4.7) we obtain Eq. (4.8).
Incidentally, observe that the role of time 7 is com-

pletely absorbed in the condition (A2). Since, in general,
a GSD takes place in a very short time, we are natu-
rally led to the impulse approximation, which roughly
amounts to setting g(t) ~ (z'/2)b(t) as ~ + 0. See
Eq. (4.9).

APPENDIX A APPENDIX B

In this appendix we shall derive Eq. (4.8) and discuss in
some detail the role of the impulse approximation and of

In this appendix we shall derive Eq. (4.14). We start
from the Hamiltonian (4.10), which describes the inter-
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action at the nth step in Fig. 2,

2 rt —1

HI.)(~) = g(~) ):[ I+)(+l~,'", ', +
I

—)

2rs —1

T

UI )(t) = exp
~

i — HI )(t')dt'
~

o )
(

=exp ~ i—b ) HI„).

x(—~rri",. ~ ~,.
" I] =g(t) ) HI„),, (Bl) 2 ra —1

~ h ~

j=1

—ibH(„)

T

g(t)dt = b (B2)

Observe that
- 2

H' —H' H'
(n),j (n),j ~ (n),j (B3)

which makes the behavior of H(„). very similar to that
of a Pauli matrix. Moreover Eq. (4.12) implies

where o;" is the first Pauli matrix, the interaction is
switched on during the time interval [0, w], and

2rt —1

where we made use of Eqs. (B2) and (B4).
Once again, the above evolution engenders a genuine

GSD if and only if b = m/2. If the above fine-tuning
condition is not met, there is a nonvanishing amplitude
for the wave function of the total system to undergo a sort
of reHection and the universe will have a nonvanishing
amplitude of still being at the (n —l)th step. Therefore
we set b = z /2 and get

2 ra —1

H(„). , H(„), ——0 Vj, j' . (B4) U(.)() =(—) H(.), ( o ) (B6)

The evolution operator is given by which, by making use of Eq. (4.13), yields Eq. (4.14).
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