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Topological quenching of the tunnel splitting for a particle
in a double-well potential on a planar loop
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The motion of a particle along a one-dimensional closed curve in a plane is considered. The only
restriction on the shape of the loop is that it must be invariant under a twofold rotation about an
axis perpendicular to the plane of motion. Along the curve a symmetric double-well potential is
present leading to a twofold degeneracy of the classical ground state. In quantum mechanics, this
degeneracy is lifted: the energies of the ground state and the first excited state are separated from
each other by a slight difFerence AE, the tunnel splitting. Although a magnetic field perpendicular
to the plane of the loop does not influence the classical motion of the charged particle, the quantum-
mechanical separation of levels turns out to be a function of its strength B. The dependence of AE
on the field B is oscillatory: for specific discrete values B„the splitting drops to zero, indicating a
twofold degeneracy of the ground state. This result is obtained within the path-integral formulation
of quantum mechanics; in particular, the semiclassical instanton method is used. The origin of the
quenched splitting is intuitively obvious: it is due to the fact that the configuration space of the
system is not simply connected, thus allowing for destructive interference of quantum-mechanical
amplitudes. Prom an abstract point of view this phenomenon can be traced back to the existence of
a topological term in the Lagrangian and a nonsimply connected configuration space. In principle,
it should be possible to observe the splitting in appropriately fabricated mesoscopic rings consisting
of normally conducting metal.

PACS number(s): 03.65.Sq, 73.20.Dx, 03.65.Db

I. INTRODUCTION

The nonlocal character of quantum mechanics mani-
fests itself in the phenomenon of tunneling. A quantum-
mechanical particle prepared in one of the minima of a
symmetric double-well potential on the real line is inHu-
enced by the existence of the second minimum, in spite
of the fact that &om a classical point of view its en-
ergy might not be sufBcient to negotiate the intervening
potential barrier. The instanton method [1], based on
specific classicaI paths in the inverted potential, is used
successfully to evaluate path integrals [2]: one obtains
the quantum-mechanical splitting AE of the lowest-lying
energy levels in the semiclassical limit.

In this work the instanton method is applied to a sys-
tem which, although similar to the particle in a double
well, is difI'erent &om a topological point of view. Imag-
ine a particle moving on a one-dimensional loop [3,4] in
the xy plane, under the influence of a symmetric double-
well potential V(y). The total system is assumed to be
invariant under twofold rotations about the z axis. Since
two inequivalent classical paths exist which connect the
minima, one expects modifications of the tunneling phe-
nomenon compared to the double well on the line (cf. [5]).
In addition, a constant magnetic Geld B pointing along
the z axis will be included. This Geld does not have
any infIuence on the motion of the classical particle since
the resulting Lorentz force is always perpendicular to the
loop. It will be shown that, nevertheless, the splitting of

the ground-state energies of the quantum-mechanical sys-
tem depends on the strength of the field B; for specific
values of B the splitting even drops to zero.

From a general point of view the model studied in this
paper is interesting for the following reasons. First of all,
the system provides a natural realization of a quantum-
mechanical particle moving on a Riemannian manifold
which is defined by the loop. Second, it represents an
example of a quantum system defined on a configura-
tion space which is multiply connected [6]. Third, such
a configuration space allows for "topological terms" in
the action being irrelevant in a classical description, but
leading to observable eKects in the corresponding quan-
tum theory. In the context of topological field theory
such efI'ects are known to be caused by Chem-Simons or
Mess-Zumino terms [7].

In Sec. II the model is defined and the determination of
the splitting AE via the instanton method is sketched.
Section III contains the semiclassical evaluation of the
relevant propagators for the particle on a circle without
magnetic field in a first step and with nonzero field in a
second one. Then, in Sec. IV the modifications necessary
for the treatment of arbitrary loops are presented. Sec-
tion V provides a brief summary; the structural similarity
of results obtained for quenched tunnel splitting in spin
systems is pointed out and related work on transmission
properties of mesoscopic rings is discussed. Finally, the
topological aspects of the model are briefIy restated in
general terms.
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II. MODEL

The Lagrangian

L (q, q) = —mq —V(q) + —A(q) . q,A ~ ~ . 2 e
2 C

q=(~ y)

Vp-

describes a charged particle under the inHuence of a po-
tential V(q) moving in the xy plane in the presence of
a uniform magnetic field B pointing along the z axis:
B(q) = Be, = V x A(q). The vector potential A(q)
has constant magnitude on circles about the z axis and
is tangent to them, A(q) = a(r)e~, with r and y being
polar coordinates in the xy plane. For simplicity, the par-
ticle is &om now on constrained to move on a circle about
the origin, defined by BI': G(z, y) = z + y2 —R2 = 0;
general loops will be studied in Sec. IV. The Lagrangian
L+(q, q) becomes

L (y, j) = —mR p —V(p) + A(R) j, (2)

with the constant A(R) = eRo.(R)/c. The value of the
action functional S+[y(t)] depends on the path connect-
ing y(ti) and y(t2)

tQS"
[v (t)] = L"(«)«.

tI

It is important to note that the third term of (2), as a
total derivative

tQ

o[&p(t)]—: A(R)j dt = A(R)f(p(tg) —(p(ti) j) (4)
ty

does not contribute to the classical equations of motion.
This property is easily understood in physical terms by
observing that the Lorentz force due to the magnetic field
B is always perpendicular to the ring and therefore does
not inHuence the classical motion. Nevertheless, due to
the multiply connected configuration space, the presence
of the gauge term A(R)&p will lead to observable conse-
quences in a quantum-mechanical setting.

The potential V(p) on the ring is assumed to be in-
variant under a rotation by vr about the z axis, i.e. ,

V(V +or) = V(p) V( 'p) = V(V') (5)

as shown in Fig. 1. Qualitatively, the results will be seen
to depend only on the symmetry (5) of the potential,
not on its actual shape. The classical ground states of
the system are given by the particle resting at one of
the minima y+ or y, as follows immediately kom the
equations of motion

FIG. 1. The symmetric double well on a loop. The instan-
tons a and P, respectively, belong to two inequivalent paths
connecting the maxima yy of the inverted potential —V(rp).

turn system. To this end appropriate propagators will
be evaluated semiclassically within the path-integral for-
mulation of quantum mechanics. In order to establish
notation, the basic ingredients of the so-called instanton
method are now reviewed brieHy. For simplicity, the La-
grangian (2) with vanishing magnetic field is considered
first.

The quantum-mechanical amplitude for a particle to
reach the position eigenstate

I &pb)—:
I y(tb)) after the

time interval T = tb —t when starting from
I pb) at

time t is governed by the propagator

(&Pb I I
()()a) = (V'b) b )')('a) a')

Vs (i
17&p exp

I

—S[&p(t)) I,(5 )

where H is the Hamiltonian operator of the system and
the right-hand side denotes a formal sum over all paths
in configuration space connecting the points y and yg
in time T. The weight of each path &p(t) depends on its
action S[y(t)]. It is convenient to analytically continue
the propagator to complex times v. = it. In the resulting
Euclidean propagator (cf. [8])

Ka ((P(1b), Tb j (P ( a)r, ra )

= ):C(V )4-(~-) exp( E 1'/~) (8)
m=0

all but the contributions from the lowest states will be
suppressed exponentially for large T. The functions
P„(y) are the quantum-mechanical eigenstates of the
Hamiltonian with eigenvalues E„.

Under the substitution t m —ir the path integral in
Eq. (7) takes on its Euclidean form

rp(~g) (
K, ((pb, rb,'Ip, r ) = 'D&p exp

I
S [y(&)] I i (9)

v (~o) li

2 d2p dV
dt2 dp

S,[p(r)] standing for the Euclidean action
(6)

The energy E = mR jr /2+ V(&p) is non-negative if one
requires V(p~) = 0.

The goal of this investigation is to calculate the sep-
aration AE of the two lowest energy levels of the quan-

(10)

therefore, the action S, is naturally associated with
a particle moving in the inverted potential W(y)
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—V(&p). The associated Euclidean energy E,
—mB (dry/dr) /2 —W(&p) no longer has a definite sign,
but it is still a conserved quantity as follows from the
Euclidean equation of motion

2d y dR' dV
(11)

An exact calculation of the Euclidean propagator K
usually is not possible; its semiclassical approximation,
however, is obtained by taking into account only those
contributions to the path integral (9) which come Rom
the stationary points of the action functional S,[p(t)]
and their neighborhoods, i.e. , paths which solve Eq. (11)
and paths fluctuating about these solutions. Choosing
the minima py of the potential V(y) as initial and fi-
nal points p and yp, respectively, one finds that E, is
dominated by zero-energy solutions of (11) given by

d7-
= 6 /2V(p) /mB2 . (12)

In the limit of T m oo such a path (connecting p with
&ps) is known as an instanton; if the ficticious particle
travels in the opposite sense the solution is called an anti-
instanton. As mentioned earlier one is interested in the
propagator K, for large T, cf. Eq. (8). The temporal
width of one single instanton is finite [8]; in other words,
the particle is located most of the time in the neighbor-
hoods near the maxima yy. It turns out that in order
to obtain an asymptotically correct expression for the
propagator, not only single instantons but strings of ar-
bitrarily many instantons and anti-instantons have to be
taken into account: in classical terms this situation corre-
sponds to the particle going back and forth any number of
times between the maxima of the potential W(y). Apart
f'rom an error which is exponentially small in time T [9],
such strings are approximate solutions of the equations
of motion. Furthermore, it is assumed that the centers
of the instantons on the ~ axis, w„, are widely separated:
contributions of overlapping instantons (w„w„+i) can
be neglected consistently (cf. [8]); this assumption is also
known as the dilute-gas approximation.

Due to the difference in topology of the double-well
potential on the ring and on the real line, the sets of paths
connecting y+ and y are different; the tunnel splitting
AE is expected to be sensitive to this difference. In the
following section, the four propagators

K, (py, T/2; rp~, —T/2), K, ((p~, T/2; (p~, T/2) (13)—
with external magnetic field 8 will be calculated in the
limit of large T, the knowledge of which is sufEcient for a
determination of the separation AE by comparison with
Eq. (8). The calculations actually will closely parallel
work done by Felsager [8], and for various technical de-
tails the reader is urged to consult this reference.

III. CALCULATION OF THE TUNNEL
SPLITTINC

The calculation of the tunnel splitting AE as a func-
tion of the magnetic field B is divided into two parts.
First, the field B is assumed to be zero, the focus be-
ing on the enumeration of all possible paths connecting
the minima at y~. In contrast to the double-well po-
tential on the line, the number of paths with prescribed
length increases exponentially, not linearly. In a second
step, the field term (4) is taken into account, leading to a
dependence of the splitting on the field: AE = AE(B).

A. Vanishing magnetic field

—T/2&vi &w2« ry &T/2, (14)

with an odd integer N, which will be referred to as the
length of the string.

In Fig. 2 a graphic scheme is given to enumerate all
possible paths of a given length ¹ There are two paths
(cr; P) with N = 1 connecting p with y+, corresponding
to instantons taking the upper or the lower branch of the
ring when traveling to the other minimum. For N = 3
there are eight possible paths: symbolically all strings
are given by

O,'0!A; 0!0! O.' O."0,' 0,'0! O.' ' Cl

and similarly for larger values of ¹ For a given N, there

Imagine the quantum-mechanical particle to be located
at the maximum y of the potential W(p) at time T/2. —
The (Euclidean) amplitude to find the particle at posi-
tion p+ after time T is given by K, (y+, T/2; y, T/2). —
Approximate evaluation of the path integral in Eq. (9)
proceeds as follows. The main contribution comes &om
the two single instantons denoted by a and P (cf. Fig. 1):
the first one visits the minimum at p = 0 of the potential
W(p) before reaching p+ and the second one travels in
the opposite direction passing through the point &p = —~
before reaching the maximum at p+. Since an instanton
effectively needs some finite time only to travel &om a
point near y to a point near y+, for long times T other
contributions arising &om more complicated paths have
to be included, as mentioned before: the fictitious par-
ticle may "oscillate" any number of times between the
maxima, the only proviso being that it starts at p and
finally comes to rest at p+. Anti-instantons traveling
froin p+ to y are denoted by 6 and P, respectively.
Therefore each path consists of an alternating sequence
of instantons and anti-instantons with the positions of
their centers on the 7 axis given by

FIG. 2. Graphical enumeration of instan-
ton strings of length N. Each sequence of
symbols n (or P) and n (or P) corresponds
to a possible string.
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are 2~ paths: whenever the particle is at one of the
maxima yy of the potential W(p) there are tu)o ways
to reach the other maximum. A multi-instanton path
of length N with centers at r—:(vq, r2, . . . , 7~) will be
denoted by &p~(r). For the approximate evaluation of
K, (rp+, T/2; p, T/—2) one has to know the behavior of
the paths y(r) in the neighborhood of the quasistation-
ary paths P+(~) following from the expansion

~(~) =P."-(~) + ~(~) (16)

with r1(v) vanishing at the end points r = kT/2. Ex-
panding the potential about the quasistationary paths
one obtains

W[(p(r)] W((p- ) + —
2 (P- ))7 (r),

where the dependence of pN on w has been suppressed.
The contribution of a path &pN and its neighborhood is
given by

q(T/2)=O
exp (—S,(j; ) /}22lp exp ( S(el(r))/—2),,

~(-T/2) =o

all possible locations ~ of instanton centers one finds

K, ((p+, T/2; p, —T/2)

T/2 T3 TQ
N$0/ge /

ff

d7N ' 872d7]
odd N —T/2 —T/2 —T/2

x K}v(0,T/2; 0, T/2—), (21)

with K}v(0,T/2; 0, —T/2) denoting the path integral over
the fluctuations rt(r) in Eq. (18). Introduce the quantity

K~ (0, T/2; 0, T/2—)
K.(0, T/2; 0, —T/2)

(22)

as the ratio of the ¹instanton propagator K~ to the
Euclidean propagator K of a harmonic oscillator with
&equency cu starting and ending at zero:

K (O, T/2;0, T/2) =— . e
2xh sl.nh uT vrh

(T ~ oo), (23)

with

S,((p- ) NS, , (2o)

S, being the action of a single instanton or anti-
instanton; since the Lagrangian L(y, y) is invariant un-
der the transformation p -+ —y, instantons and anti-
instantons have the same action. Summing all contribu-
tions of the quasistationary paths and integrating over

I

representing the action of the deviations &om the multi-
instanton path.

An exponentially small error only is made if one ap-
proximates the action SE of a multi-instanton path in
(18) by

the &equency a being determined by the quadratic ap-
proximation of the potential V(y) at the minima y~. It
is known that in the limit of large T the quantity b, de-

pends neither on T nor on the position of the center of
the instanton; also, the quantity 6 can be evaluated ex-
plicitly, giving the relevant contribution to the so-called
prefactor of the final expression for the splitting AE. Up
to this point the calculation is essentially equivalent to
that of a double-well potential on the line [8]. The ex-

pression for K~(O, T/2;0, T/2), howe—ver, depends on
the topological properties of the ring-shaped configura-
tion space. Using (N —1) times the general property of
composition for propagators

K(2/', r";p, r) = f dp'K(2/', r ;p', r')K("p', r', p, r)

(24)

one can write

Krr(02'/2;0, —T/2) , = ) . f f dpx edpx ed—pe—
2~ paths

xK(O, T/2, rp~ »T~, )K(y~ »T~ »p~ »T~ 2) . .K((p»T»0, T/2). —(25)

The propagator K~ is made up of 2 contributions &om
the difFerent paths consisting of N instantons and anti-
instantons. In Eq. (25) each of these paths is decomposed
into a product of N single (anti-)instanton contributions
K. Using Eq. (22) in the form

K((l(222 2 Trx j prx 12 Trx 1) d-"—2 K~ (V—'22 2 Trx 2 &Prx 12 Trx —1)—
(26)

and recombining the oscillator propagators according to

I

Eq. (24), one can write

K~ (0, T/2; 0, T/2)—
) 12), K (0, T/2; 0, T/2)—

2& paths

12), K (0, T/2; 0, T/2) ) 1—
2~ paths

(2g) N lelT/2—
vrh

'
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Consequently, the existence of 2 paths for given N im-
plies that the propagator K/v is proportional to (2b, )
to be compared with a single path (leading to 6 ) in
the case of the double well on the line. Finally, the full
propagator is obtained from Eq. (21) as

K, ((p+, T/2; (p, T/—2)

e / ) d7"(2b, ) exp (—NS, /h)~h
odd N

e sinh (2b,T exp (
—S, /5) ),~h

(28)

where the intermediate steps are identical to those in
Ref. [8] after replacing the quantity b, by 2b, . Similarly,
one obtains the propagator for the particle starting and
ending at the point (p+ by summing over N even

K, (p„T/2; p+, T/2)—

e / cosh(2b, Texp( —S, /h)) . (29)

The remaining two propagators follow &om the invari-
ance under yy —+ tp+. Using the ground-state wave func-
tions of a harmonic oscillator centered at the minima &p~

for the functions Pp((p) in Eq. (8) and comparing with
the explixit expressions for the propagators for large val-
ues of T, Eqs. (28) and (29), allows one to deduce the
following result for the energy splitting:

where the action S+[g(w)] in the exponent has been re-
placed by S,[)7(w)] since one has

T/2 ~(T/2)
dT o[q(r)] = d& A(R)

n( —T/2)

= A(R) {)7(T/2) —rI(—T/2)) = 0 (34)

for all paths with r/(+T/2) = 0, which are the only
ones considered here. Consequently, the path-integral
part of Eq. (33) is identical to the one calculated pre-
viously; it can be written as 4 K (O, T/2;0, T/2)—

gm~/2xhexp( uT/—2) The . first factor in Eq. (33),
however, now depends on the topology of the path under
consideration.

As before, the real part of the Euclidean action of an
N-instanton string is given approximately by N times
the corresponding single-instanton action 8, ,

S."(p- ) = S.(&- ) —io(p- ) = NS. —iop()(p- ), (35)

where op ——f A(R)d(p is the contribution of an indi-

vidual instanton traveling directly from &p to (p+, aris-
ing from the field term. The quantity b((pN) takes on
integer values depending on the topological properties of
the individual multi-instanton path. It is important that
the field term leads to contributions from c(- and p-type
instantons with equal magnitude but opposite sign

b E = Ei —E() = 2(26)T exp (—S, /5) (30)

m'/2

dpA B = dpA B

for a particle in a symmetric double-well potential on a
ring.

B. Nonzero magnetic Beld

—3n /2
= A(R)vr = — d(p A(R)

—n/2

d(pA B (36)

In the presence of a uniform magnetic 6eld B pointing
along the z axis the Euclidean action S,[p(r)] is modified
by the Euclidean version of the field term (4)

S."[p(r)] = S,[&(r)] —io[p(r)]
Td

= S.[(p(r)] —i A(R)(pd~.
TQ

(31)

Vd

K, ((pb, rb, (p~, r~) = 17y exp ( S, [(p( )]/rI—)i(32)
Pa

and the calculation of Sec. III A goes through up to the
expansion about the various instanton strings. Now a
path (p(7) of length N contributes

g(T/2)=o
exp(S."(ti - (e))/li) Dq exp (—S.(ei(e))/li)

~(—T/2) =O

The path-integral expression for the Euclidean propaga-
tor now reads

In other words, the factor b is +1 for a single o'-type
instanton and equals —1 for the p type.

More explicitly, the contribution of paths with length
N has the following structure. Each path comes with fac-

tors exp( —NSP/5) and b,~K depending on the length
N only, whereas the factor exp( —ioph((p~)) depends on
the nature of the path taken. One can write, for the
contribution of these paths,

K4(v+, T/» v , —T/2)—
/( N m~ ~T/2 Ns /s ) —eaoi')(e/e )/b — (37)-

vrh 2~ paths

Without magnetic field (op ——0) one recovers the result
for K, given in Eq. (27). The sum in Eq. (37) can
be evaluated in the following way. First, divide the set
of all paths kom &p to (p+ into two parts: those paths
starting with an o. instanton and those starting with a P
instanton
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2~ paths

e
—icrpb/A

2~ —~ paths

e
—icrpb/h +

= 2 cos(o.o/h) )
2~ 1 paths

e
—iapb/h

e
—icrp8/h

(38)

the winding number m of the loop under consideration.
For N = 3, there are four loops of length 2, two of which

have m = 0 and two having m = +I, respectively. If
N = 5, one has eight paths with winding numbers

varying between k2. The multiplicities of paths with
different m are given by binominal coefficients (&), k =
0, 1,2, 3, . . . . For arbitrary N, one finds that

~ loops

In the last step the contribution of the first part of the
multi-instanton path has been factored out and the re-
maining sum in Eq. (38) is over all closed loops of length

(N —1), starting and ending at (/2+. Taking property
Eq. (36) into account, one can see that b((p ) equals

I

)N —1) id—ppS(c/l ) -ixro/S ~ —iepp/S
~)

2 — loop

leading finally to the Euclidean propagator

K, (pe, T/2;p, T/2) / — e l ) J de [26coe(eo/li)] exp ( NS /2)—
odd N

e / sinh(26T cos(oo/5) exp( —S,/5) ).
xh

(40)

This result is again obtained by following the calculation
in [8], now replacing b by 2b, cos(pro/5). Consequenlty,
the expression for the tunnel splitting has to be modified
accordingly and one obtains

/~C lE—:Eg —Ep ——2(2b, ) cos
~

—
~
exp( —S /5), (41)(2 @p)

with the magnetic Hux 4 = B+R2 through the ring and
4o ——hc/2e being the elementary (two-electron) Hux

quantum. Therefore, the splitting AE between the low-

est energy eigenvalues is "quenched" whenever the Hux

4 through the ring is an odd integer multiple of the Qux
quantum

81': G(x, y) = 0. (43)

~ = g(~) (44)

Expressed in the new coordinates one finds, for the La-
grangian,

The twofold rotational symmetry implies that if the point

(zo, yo) is located on curve then —(zo, yo) also is on the
curve: G(—xo, —yo) = 0.

Replace the coordinates z = z+ iy by a new pair m =
u+ iv by means of an analytic function

4'(B, R) = (2k+ 1)Cpo, keK. (42)

Since the Hux 4' is a function of two independent param-
eters, the tunnel splitting can be made to vanish in two
ways: by a variation of either the magnitude B of the
field or the radius R of the circle.

j. :Q=UO

v —0

IV. TUNNEL SPLITTING
FOR GENERAL LOOPS

The quenching of the tunnel splitting will now be
shown to persist for particles moving on a large class
of planar loops BF instead of a circle. The shape of the
loops is an arbitrary smooth curve (Fig. 3) required to
be invariant under rotation through an angle vr about an
axis perpendicular to the plane. Such loops will be called
C2 loops. As before a double-well potential V is assumed
to exist along the line, being compatible with the sym-
metry of the loop, as expressed in Eq. (5). Altogether,
the classical system now is described by the Lagrangian
I+(q, q) of Eq. (1) along with the constraint

FIG. 3. A general C2 loop, deSned by BI': G(x, y) = 0.
The coordinates v and u represent an orthogonal system; Bl
coincides with the coordinate line u = uo.
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L"(u), u)) = — (u + v )
1 dg

2 dQJ

eB1 f. '0 . (9 ')
v ——u —

i i g(u)) i' —V(u, v) .
2c2 q Bu Bv)

I (v, v) = —m(v)v +a(v)v —V(v), (46)

where

Due to the Riemann mapping theorem [10] there exists a
function g(u)) such that the curve )9I' coincides with one
of the coordinate lines in the m plane, with u = uo, say.
Since g(u)) defines a conformal transformation, u and v

represent orthogonal coordinates and the motion on BI'
is described by the Lagrangian

—m/2

=00=— dva(v) = —f dva(v), (51)

in analogy to Eq. (36).
The third modification is due to the change in the

quantity A. It will be shown now that the methods to
evaluate it explicitly are still working in spite of the more
complicated mass term m(v). The Euclidean path inte-

gral reads

v(~g)

K, (vs, vs, v, w ) = 17v exp (—S,[v(w)]/5), (52)
v(~ )

instantons to have equal modulus and opposite sign. Ex-
plicitly, the Beld term now defines oo according to

vr/2

dv a(v) = dv a(v)
—m/2

dg &0, a(v) = eB 8
4c Bu

—
I g(~) I'

8,=6p

where S,[v(t)] is defined as

(47)

Consequently, for each C2 loop the Lagrangian is identi-
cal to that of a particle moving on a circle with a pos-
itive position-dependent mass m(v) and a modified vec-
tor potential a(v). The analytic function g(u)) = expu)
mediates between Cartesian and polar coordinates: for
uo ——lnB one recovers the Lagrangian of the particle
(with mass m = 1) on the circle, Eq. (2). The symmetry
of the system implies [cf. Eq. (5)]

m(v + vr) = m(v), a(v + x) = a(v) . (48)

The effect of the magnetic Beld on the particle is still
described by a total derivative dA(v)/dv, where

V

A(v) = dv' a(v'),
Vp

having again no inQuence on the classical motion. The
Lagrangian (46) is a simple example of a particle moving
on a Riemannian manifold, m(v) being the metric tensor.
A general discussion of this situation can be found in Ref.
[6], for example (cf. also the end of this section).

As a result of these modifications, the calculations per-
formed in the previous sections have to be changed in
three places; &om now on overlined quantities denote
quantities referring to general C2 loops. First of all, the
actions of the extremal paths (i.e., the classical solutions)
will be different since the instanton now is defined as a
solution of

—= + /2V(v)/m(v)
dv

(50)
d~

instead of Eq. (11). Due to m(v) & 0 and the period-
icity of m(v), Eq. (48), one can proceed in analogy to
the previous calculation after replacing 2V(v)/mR2
2V(v)/m(v) [11].

Second, the phase shift (7o/h is modified because the
efi'ective vector potential a(v) is no longer constant along
the loop Ol'. Nevertheless, the symmetry properties of
the system still guarantee the shifts for a- and P-type

m(v) f dv (

S, (v(t)) = dv
I

—
I

+ V(v)I .

K, (vs, 7-s, v, ~ ).
g(Vf, )=0

~(~.)=0
17)7 exP (—S,[v(~) + )7(~)]/h)

~(~&)=0
=exp —S, v v. h BgZ0777 Zy'g 7

q(~. )=0

(55)

where

Zo[ri(v)] = exp —— d7 m(v) ——+ V'(v))7
dr d~

m'(v) f dv )
v)7

i
=1,

2 (d~j
(56)

as follows from partially integrating the Brst term, using

)7 = )7s = 0, and the Euclidean equation of motion (54).
Furthermore, since

dg 1 ' d m(v)
d~ m'(v)vq = —— d7-

d'T 2 ~ d'T
(57)

with v—:dv/dr, one can write the remaining integrand
of (55) in the form

The Euclidean equation of motion is given by

d2v 1, t'dv )
m(v) + —m'(v)

~

—
~

—V'(v) = 0 (54)
d7 2 )( dr)

and the prime denotes the derivative with respect to v.
Let v(t) be one of the solutions for E, = 0 of this equation
connecting the maxima of the inverted potential —V(v)
[i.e. , v(t) satisfies Eq. (50)] and expand the paths enter-

ing in K, about it according to v(w) = v(7) + rI(7 ). One
obtains
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'
m(q rd&i'

Zy[q(~)] = exp I

—— d7
~

—
~

+ U(v)g
h 2 ) d7&

(58)

order 5 [16]. In the present context a semiclassical eval-

uation of the path integrals is attempted, being correct
to order 5 only, so that terms of order 52 can be safely
neglected.

where
V. TOPOLOGICAL ASPECTS AND DISCUSSION

1 «d2m(v) 1 «) dv'l
U(q~ = — V"

(q~
— + m"-(~q

~

—
~2 d7.2 2 (,d~ )

(59) If a particle is constrained to xnove in a symmetric
double-well potential on a C2 loop one finds the following
expression for the tunnel splitting:is a given function of (Euclidean) time 7 since it is com-

pletely determined by v(7).
Thus the problem of determining the parameter 6 has

been reduced to calculating the propagator for an oscil-
lator with time-dependent mass and frequency. This can
be done, for example, in analogy to the calculation pre-
sented by Felsager [8] after reintroducing real time t = i7.
and partially integrating

4E = 2(2b, ) cos
~

—
~
exp( —S,/5) .(m C ) —p

(2 4p)
(61)

It is interesting to compare this general expression for
the splitting b,E with the corresponding formula ob-
tained for a particle in a double well on the line, where
b E = 2b T exp( —SP/5). Three modifications arise.
Consider first a situation without magnetic field. Imag-
ine to have two copies of the part of the potential V(z) on
the line between the minima zy = +x/2 and use them to
construct the double well on the ring with radius R = 1.
The parameter relevant for the splitting is seen to ac-
quire a factor of 2 on the ring: 6 -+ 2A, which arises
since, intuitively speaking, on the ring there are tv)o dis-
tinct ways for the particle to tunnel from one minimum
to the other. This can also be seen immediately if one
imagines to cut open the ring at y = 0, for example,
eliminating in this way the paths containing P- and P-
type instantons: the resulting tunnel splitting would be
identical to that one on the line. If the external mag-
netic field is turned on, no interference can arise for the
potential on the line: for a given length N there is one
and only one path connecting the minima. On the cir-
cle, however, the splitting acquires an oscillatory factor
depending on the enclosed Qux representing the second
modification of Eq. (61). The third change is due to de-
forming the circle to an arbitrary loop with appropriate
symmetry, which require quantitative modifications only:
6 ~ 3, S, ~ S, , and@' ~ 4. The topologicalcharacter
of the quenching is clearly illustrated by the qualitative
insensitivity of the structure of Eq. (61) under smooth
deformations.

The quenching of the tunnel splitting due to an ex-
ternal magnetic field investigated here is analogous to
the quenching observed in spin systems. Suppose that a
crystal field provides two equivalent minima for a mag-
netic ion with spin J and that the location of the min-
ima depends on the external field [5,17]. In a Hamilto-
nian formulation the classical spin system is equivalent
to that one of a fictitious charged particle moving on
a sphere representing the phase space of the spin. It
is coupled to a fictitious magnetic monopole located at
the center of the spherical phase space. Again, the field
terxn is a total derivative thus being irrelevant on the
classical level. Quantum mechanically, however, it con-
tributes differently to the actions of the two types of in-
stantons present in the system. As a consequence, the
tunnel splitting EE also acquires a trigonoxnetric factor
cosP. The quantity 4) can be expressed in terms of the

(60)

The operator in curly brackets is of Sturm-Liouville
type [12]; in combination with the boundary conditions

g = gg ——0, it is known to have a complete set of eigen-
functions. After expanding an arbitrary path in terms of
these functions, the expression (60) turns into an infinite-
dimensional Gaussian integral which can be calculated in
the usual way. However, as the actual value of the pref-
actor b is not relevant for the quenching of the tunnel
splitting, it is not calculated explicitly here.

Finally, soxne remarks concerning the quantum me-
chanics of constrained systems are appropriate. It is
known that quantization of such systems leads to correc-
tions of the "natural" Hamiltonian in the form of an addi-
tional potential term of order h, related to the spatially
variable curvature of the constraining surface [13,14]. In
order to obtain well-defined results the constraint should
be modeled as the limit of a strong narrow gully as it
is discussed thoroughly in [15]. Here the freedom of
applying conformal transformations to the interior I' of
the curve BI' reHects different choices of the shape of
the gully: the function g(v)) in Eq. (44) is not defined
uniquely. Given the curve BI' in the complex plane one
can conformally map its interior I' onto itself by prescrib-
ing (i) the image of an arbitrary point and (ii) the angular
part of the derivative of g(v)) at this point v)ithout losing
the essential property that one of the coordinate lines co-
incides with the boundary OI'. The question of ordering
the noncomxnuting operators in the kinetic energy, show-
ing up in the quantized Haxniltonian associated with the
Lagrangian L(v, v), Eq. (45), would lead to ambiguities
of order h . Similarly, making a point transforxnation
in the path integral (52) in order to remove the spatial
dependence of the mass would lead to corrections of the

g(tg)=0
K(ve, te;v„t ) =exp( —S,[v(t)]/tt) Det'

g(t )=o

1 "
I d fd')

x exp —— dt(7(t) —
~

m(v) —
~

Ldt ~ dt's
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magnetic flux of the monopole through the phase-space
surface spanned by the two instanton paths, thus becom-
ing a function of the external magnetic Geld. It follows
that specific values of the field strength exist for which
the quantum-mechanical ground state of the spin system
is twofold degenerate.

In the study of transport properties of mesoscopic sys-
tems [18—20] results have been obtained which are closely
related to those for the model presented here; the ba-
sic questions and the methods, however, are somewhat
different. An important example of a mesoscopic sys-
tem consists of a small ring with attached conducting
legs, the transmission properties of which are of partic-
ular interest. In a simple model, impurities in the ring
are modeled by two (typically di8'erent) scatterers, one in
each branch. The question of tunneling, however, is not
addressed directly. Nevertheless, it turns out that due
to the variation of a magnetic field enclosed by the ring,
oscillations of the transmission amplitude are observed.
Presumably, they represent remnants of the quenching of
the tunnel splitting addressed here, requiring the exact
symmetry of the potential well. Without this symmetry,
the actions associated with the paths n and P, respec-
tively, would be different, no longer allowing for complete
destructive interference.

In this context also some general remarks [19] have
been made pertaining to the energy spectrum of a per-
fectly conducting ring with an arbitrary 27t.-periodic po-
tential V(p). It has been observed that one can set up
an interesting and useful analogy between a quantum-
mechanical particle moving on a circle and in a one-
dimensional periodic lattice V(q), respectively. At first,
there seems to be an important difference in the peri-
odic properties of the wave functions in these systems.
On a circle, the wave function Qc(p) is required to
be transformed into itself under translation about 2m:

Qc(p + 2') = Qc(y), whereas a Bloch wave gl, (z) may
acquire a phase when shifted over one period zo of the
lattice: gl, (z + zo) = exp(ikzo)QL, (z), with k being the
wave vector of the eigenfunction under consideration. If,
however, a magnetic field is enclosed by the circle, under
a rotation about 2z the phase of the state @c(p) is shifted
by an amount which is proportional to the strength of
the Beld. Consequently, the familiar dispersion relation
E = E(k) for the particle in a one-dimensional crystal
can be interpreted to give the energy spectrum 8 = f (B)
of the circle enclosing magnetic lux. Choosing a unit
cell which contains two identical potential wells in order
to appropriately represent the double-well potential on
the ring, one finds that there are no energy gaps at the
boundaries of the Brillouin zone [21]. As a result there
are particular values of k, i.e., values of the field B, for
which two orthogonal states with the same energy do ex-
ist. Tunneling becomes impossible, thus confirming the
results obtained here &om the path-integral approach.
Also, analogies could be drawn to the phenomenon of
flux quantization in superconductivity [22,23].

As mentioned before, the coupling of the particle to
the magnetic Beld gives rise to a term in the Lagrangian

K(q, q';T) = ) a[p]K (q, q';T),
qqn1(D)

(62)

vri(D) being the first homotopy group (or fundamental
group) of configuration space D. The factors a[p] have
modulus one, but the superposition of paths p &om dif-
ferent sectors (i.e., paths with difFerent winding numbers)
leads to interference of the various partial propagators
K . In the present calculation it turned out to be more
convenient to arrange the contributions to the propaga-
tor according to the length X of the instanton string, not
according to their winding numbers. Consequently, the
sum over paths in Eq. (37) still contains contributions
from various sectors.

The addition of topological terms which do not affect
the classical motion but lead to consequences in the cor-
responding quantum-mechanical systems has attracted
interest in various fields. Anyons being candidates for
the explanation of the &actional quantum Hall effect are
conveniently defined by adding a total derivative to the
free particle Hamiltonian in two dimensions, in this way
effectively attaching a tube with magnetic lux to the
particles [24,7]. In a field theoretical context topological
terms in the Lagrangian are also known as Chem-Simons
or Wess-Zumino terms. In general, topological Beld the-
ories are interesting since qualitative properties of the
solutions follow &om topological arguments alone.

Experimentally, observing the properties of mesoscopic
systems is within reach [25]; even experiments with single
Au loops have been reported [26]. The presence of a per-
sistent current in a ring enclosing magnetic flux [18] has
been confirmed, although the quantitative agreement be-
tween experimental and theoretical data is still discussed

[27,28]. Due to the possibility to fabricate and to handle
single mesoscopic loops, an experimental realization of
the double-well potential might be possible by means of
the presently available technology.
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which is a total derivative. Therefore it represents a
gauge transformation of the Lagrangian and does not in-
fluence the classical equations of motion. In quantum
mechanics, however, nontrivial topological properties of
the configuration space D can lead to observable effects
stemming from such a term, because quantum mechanics
is sensitive to global features. This is seen particularly
well in the path-integral approach to quantum mechanics.
The propagator connecting two points q and q' consists
of a sum of contributions, each stemming &om a specific
homotopy sector. In other words, there exist paths kom
q to q' (characterized by different generalized winding
numbers) which cannot be transformed into each other
by continuous deformations. In general, one can write
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