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Simultaneous sharp measurability of position and momentum
in infinite quantum systems
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Joint position-momentum observables are defined to be covariant POV measures on the group

1R x R of space translations and boosts. For elementary or finite quantum systems, it is shown

that there is no covariant PV measure on R x R3 into the von Neumann algebra generated by
average position and momentum. So these cannot be measured sharply at the same time. For an

infinite quantum system, we construct a covariant PV measure on 1R x 1RS into the von Neumann
algebra generated by average position and momentum. Therefore average position and momentum
of an infinite quantum system can be measured sharply at the same time.

PACS number(s): 03.65.Ca, 03.65.Sq

I. INTRODUCTION

[P",Q"] = —1. (2)

In the limit of an infinite quantum system it is clear that
the right hand side of (2) tends to zero. But it is not
immediately clear how to interpret the left hand side be-
cause the norm limits of the operators P",Q" do not
exist.

A solution to this problem is provided in algebraic
quantum mechanics. The limits of the averages P",Q"
exist in the strong operator topology and are global ob-
servables. As such they commute with all other observ-
ables and are classical. (It was proven in [1] that under
certain circumstances infinite quantum systems admit a
classical momentum operator which is not necessarily an
averaged observable. )

In this paper we treat the problem of joint measur-
ability of position and momentum in the framework of
covariant positive-operator-valued measures [2—4], POV
measures for short. POV measures are more general ob-
servables than projection-valued measures (for short, PV
measures) or, equivalently, self-adjoint operators (defini-
tions of POV measures and PV measures can be found
in the Appendix). It is necessary to use this more Sexi-
ble framework because in the traditional (i.e., von Neu-
mann's) formalism noncommuting observables do not
have joint probability distributions. So in von Neumann's
formalism it is not even possible to talk about joint mea-
surability of position and momentum. In the framework
of covariant POV measures, noncommuting observables
can have unsharp joint probability measures [5,6]. In this
framework it is possible to describe joint measurements of
noncommuting observables, as long as the measurement

Position and momentum of an elementary quant»m
system obey (on a dense domain of common self-

adjointness) the commutation relations

[P, Q] = i'll.

Therefore the accuracy of joint position and momentum
measurements is bound from below by b,pEq & h/2. Av-
erage position and momentum Q",P" of an n-particle
quantum system obey the commutation relations

is sufficiently unsharp.
In Sec. II a joint position-momentum observable is

defined to be a covariant POV measure on the additive
group Rs x Rs. Then it is shown that there is no co-

variant PV measure on R x Rs into the von Neumann
algebra generated by average position and momentum of
elementary (Sec. III) and finite (Sec. IV) quantum sys-
tems. So these cannot be measured sharply at the same
time. In Sec. V we construct the strong operator limits of
the average position and momentum observables. Also,
we construct a covariant PV measure on IR x IR into the
von Neumann algebra generated by the average position
and momentnm of infinite quantum systems. This means
that the average position and momentum of an infinite
quantum system can be measured sharply at the same
time and are classical observables.

For the reader unfamiliar with the formalism of covari-
ant POV measures the basic definitions and concepts are
gathered in the Appendix.

II. JOINT POSITION-MOMENTUM
OBSERVABLES

Let us start with an example.
Examp/e 1. Let (U, Vs . a, b C R ) be an irre-

ducible 0-weakly measurable unitary representation of
the Weyl relations U Vs = exp (iab)VsU on the Hilbert
space L (R ) (ab denotes the scalar product of the vec-
tors a, b 6 R ).

On B(L (R )) the additive group R x Rs is repre-
sented by an automorphic action o.,

al g)(z):= U VsxV&'U' =:nl qI(x), x E B(L2(Rs)).

[The characters b on Rs and the elements b E Rs are in a
one-to-one relation by b(s) = exp(ibs) for s g R . So one
can say that o.

~ ~i is an automorphic representation of
R x R and that a( &)

is an automorphic representation

of Iks x Rs.]
Since the representation (U, Vg) is 0-weakly mea-

surable, the action o. is pointwise cr-weakly continu-

ous. Therefore (B(L2(R )),Rs x Rs, a) fulfills the re-
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quirements of a W' system (see Appendix). The action
a is ergodic (see Appendix) on 8(L (IR )) since, due to
the irreducibility of the representation {U,Vb}, the only
z c 8(L (Rs)) which fulfill aI &I(z) = x for all (a, b) are
multiples of the identity.

Denote by P the self-adjoint generator of the unitary
group U and by Q the self-adjoint generator of the uni-

tary group Vg. Each character y of R x IR can be writ-
ten as y(a, b) = exp(iat+isb) for some s, t 6 IR . Now
observe that for each character y there is a unitary op-
erator ux p 8(L (R )), namely ux ——UqV„such that u„
transforms under o, according to y:

n( i I (ux) = &(a, b)ux

According to [7], since (8(L2(Rs)), Rs x lks, n) is er-
godic, it follows from (4) that the automorphic represen-
tation a is integrable in the sense of Connes and Takesaki
(see Appendix). By ([8], Theorem II.7) this in turn im-

plies that there is a POV measure a on R x IR with
values in 8(Lz(IR )) which fulfills the covariance condi-
tion

~~.,&I(a(&)) = a(&+ (a b))

for any Borel subset b, of Rs x Rs and for any (a, b) E

R x IR . The POV measure a was derived kom the uni-
tary groups U, Vs whose generators are the position and
momentum operators Q, P This mo. tivates the following
central delnition.

Definition. Let (JH, IR x Rs, a) be a W' systemof the

additive group IR x R . A POV measure a on IR x IR

with values in M fulfilling the covariance condition (5)
is called a joint position-momentum observable. A co-

variant PV measure on IR x IR is called a sharp joint
position-momentum observable.

Remarks (1) We u. se the additive group Rs x Rs in-
stead of the additive group IR = R x IR because we do
not want to consider a six-dimensional position observ-

able as a joint position-momentum observable. IR x IR

describes the group of space translations and boosts.
(2) As illustrated by Example 1, the justification of

calling a covariant POV measure on IR x R~ a joint
position-momentum observable stems &om the fact that
the operators in its image have the transformation prop-
erties of position and momentum. This idea of defin-

ing observables through their transformation properties
is due to Weyl.

III. ELEMENTARY SYSTEMS

We say that a physical system is elementary if it is
described by an ergodic R" system.

This definition (see also [8]) generalizes the quantum
mechanical notion of elementarity: In traditional quan-
tum mechanics an elementary system is described by an
irreducible ray representation U of the symmetry group
G. Its algebra of observables M = {U(g):g E G}"is a
type I factor. In this case the two notions of elementar-
ity coincide: Every automorphism o.g is inner; it can be

written as a~ = U~ U* for some Ug ~ M. According to
([9], theorem 67.2) a type I factor system (M, G, a) is er-
godic if and only if the corresponding ray representation
U(G) is irreducible.

Theorem 1. Let (M, G, o, ) be a W* system with
respect to a locally compact separable group G. If
(M, G, a) is ergodic and M is not Abelian, then there
exists no covariant PV measure on G with values in M.

Proof (see f8), Theortem IV.1). A covariant PV mea-
sure on G with values in M can be extended to a covari-
ant ' morphism n: L (G) ~ M. According to ([10],
Sec. II.2.2) the existence of such a covariant ' morphism
is equivalent to the existence of a W' algebra JV and
of a coaction b on JV such that {JH,cL} = {JVs G, b}.
Therefore M = Af. But since (M, G, n) is ergodic,

= {A1}. Therefore M = {Al}Ss G = L (G),
which contradicts the assumption that M is not Abelian.
Q.E.D.

Corollary 1. Let {U,Vs .' a, b C R }be an irreducible
0 weak-ly measurable unitary ray representation of the
Weyl relations on the Hilbert space L (IR ). There ex-

ists no covariant PV measure on IR x IR with values in
8(L2(lks)). There exists a covariant POV measure on

IR x IR with values in 8(L (IR )).
Proof The. nonexistence of a covariant PV mea-

sure follows Rom Theorem 1 and the fact that
(8(L2(lks)), Rs x Rs, U Vs V&'U') is an ergodic non-
Abelian W* system. The existence of a covariant POV
measure was proved in Example 1.

Remarks (1) Fo.r elementary systems there exists a
sharp joint position-momentum observable if and only if
M is Abelian, i.e., if and only if the system is classical.

(2) One should be cautious not to infer prema-
turely &om the existence of an unsharp joint position-
momentum observable that position and momentum can
be measured at the same time. Caution is necessary be-
cause for two observables the notion of being measurable
at the same time carries the connotation of being transi-
tive, whereas the existence of a joint unsharp observable
is not transitive.

(3) Taking as G the phase space, Theorem 1 generalizes
to arbitrary von Neumann algebra results [11] that for
(elementary) quantum systems there exist no covariant
projection valued measures on the phase space. There ex-
ist, however, covariant PV measures on the configuration
space of an elementary particle. These are the systems of
imprimitivity as introduced by Mackey. Also, there exist
covariant POV measures on the phase space IR x R if
and only if (M, IR x Rs, n) is integrable ([12] or [8], The-
orem II.7). These are unsharp joint position-momentum
observables.

(4) Note that the problem is not to find covariant PV
measure on G with values in some W' system of the
group G. It is always possible to take the TV* system
(8(L (G)), G, U. U') where U is the representation of G
on L (G) defined by Us @(g):=Q(g —g'), and to take
as PV measure E on G simply E(b,)g(g):= ga(g)g(g),
where y~ is the characteristic function of the subset 4
of G. (Note that this W' system is not ergodic )The.
problem is to find a covariant POV measure with values
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in a given S" system.
Theorem 1 suggests that there are two scenarios

in which it is possible to have sharp joint position-
momentum observables: Either the von Neumann alge-
bra M should be Abelian, or the action o. should not be
ergodic.

IV. FINITE SYSTEMS

The assumption of ergodicity is essential in Theorem
1. This is illustrated by the following example.

Ezamp/e 5 As in Example 1, let (U, Vg . a, 5 6 Ik )
be an irreducible representation of the Weyl relations
U Vs = exp(iab)VqU on Ls(E ). It describes the one-
particle Weyl system. Consider the two-particle Weyl
system whose algebra of observables is 8(L2(lks))
8(L (Es)) 8(L (Es)). Define a representation a of
IRs x Es by extension to linear combinations of

a( q) (zg zs):= U~VszgVq U 8 U~VgzsVq U .

This W' system is not ergodic since 1/2(1 + W), where

W(gq8$2):= Qq8@q is the unitary operator implement-

ing a permutation of the two particles, is a projection
invariant under all o.

~

The condition of ergodicity being violated, we can
construct a PV measure on E x Es which is covari-
ant with respect to a. Let Q be the self-adjoint gen-
erator of the unitary group V& and let Eq be its spec-
tral measure: Q = fR, AE~(dA) Since a. m U is a
strongly continuous unitary representation of the addi-
tive group E, a corollary of Stone's theorem (see, e.g. ,

[13], Theorem VIII.12) implies that there exists a PV
measure E+ on IRs with values in 8(L (Es)) such that

(p, U Q) = fg A(a)(p, Ep(dA)g) for all p, f C Ls(Es).
Then

(b,g, Es) m E~(b, g) 8 E (b,2)

can be extended to a PV measure on Ik x Es with values
in 8(L (E )) 8 8(L (E )). It is covariant since

U VbE~(Eg)Vq'U' 8 U VsE (62)Vs'U'

= E~(a, + a) 8 E (b,& + &).

sharp joint position-momentum observable de-
scribes the position of one particle and the momentum
of the other particle.

We should exclude such trivial joint sharp measure-
ments of position and momentum for nonelementary sys-
tems. But it seems difficult to find a noncommutative
algebra of observables such that translations and boost
act ergodically for finite systems but not for infinite sys-
tems. So we wiH abandon the Grst scenario and focus on
the second one: We try to find an algebra of observables
which is non-Abelian for finite systems but Abelian for
infinite systems. This will be done by considering aver-
age position and momentum. To this purpose we extend
the framework of [14] from spin systems to systems on
infinite-dimensional Hilbert spaces.

Let A be the set of finite subsets of an infinte in-

dex set II, and for A g A let ~A~ be the cardinality of
A. I.et (U, Vs . a, b E E ) be an irreducible represen-
tation of the Weyl relations U Vs = exp(iab)VsU on
Ls(Es). Denote by u: L2(Es) ~ R unitary map-
pings from L2(Es) onto copies 'R of L2(Es). Define
vr„(z):= u„zu„ for z 6 8(L (Ik )). Now let

A:= (3m„(8(L2(Es)))
n&A

be the W' tensor product of ~A~ copies of 8(L (E )). A
is the algebra of observables of a system consisting of ~A~

nonrelativistic particles.
As before, a pointwise cr-weakly continuous representa-

tion of the additive group Es x Es on 8(Ls(E )) is given
by a& &I(z):= U V~zVpU'. On A, define an action K

of R x R by extension to linear combinations of

a( s)((sn„(z„)):=(Sn„(a(~s)(z„)). (6)
n&A nqA

a describes translations and boosts of the system as a
whole.

We will now define the position and momentum op-
erators of the one-particle system. Usually these are
taken to be the self-adjoint generators P of U and Q
of Vs. Since P, Q are unbounded, they do not belong to
8(L (Ik )). Rather they are affiliated to it. To make
this mathematically precise, write P = P+ —P and

Q = Q~ —Q as difFerences of positive unbounded self-
adjoint operators P+, Qy, also affiliated with 8(L (Ik )).
So (see, e.g. , [15]) there exist mappings (which I will also
denote by Py, Q~) from 8(L (Es)), into the positive
reals which are linear and semicontinuous from below.
For every e ) 0, (1+eP~) Py, (1+eQ~) Q~ are in
8(Ls(Es)) (see, e.g. , [16], paragraph 5.3.10). For every
normal state p in 8(Ls(Es))~ we have

P~(p)™p[(1+ &PE) Py],

Q~(p) = lim p[(1+ eQ~) 'Q~].

P and Q transform under o. covariantly according to

a( q)(P) = P —b1, o.
( q)(Q) = Q —al. (7)

They describe position and momentum of the one-
particle system.
Next construct the average position and momentum op-
erators for the system of ~A~ particles. For z g 8(Ls(Es))
define the aueruged element z C A by

) 18.. . 818m„(z) 818 81. (8)
ra&A

[(1+&Py) P~]»d [(1+eQy) Q~] are in A for all
e ) 0. Therefore we can define positive unbounded self-
adjoint operators P++, Qf aKliated with A+ by taking

P (p):= hmp([(1+eP+) P ] j

Q"+(p):= hm p([(1+~Q+) 'Q+]')

for any normal state p 6 (A+)~. Define PA:= P++ —P+
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and Q+:= Q++ —Q+. Formally (i.e. , ignoring the fact
that vr„ is only defined on bounded operators) one can
write

Q = ) 18. 818m„(Q) 818 . 1,
iAi

Readers less worried about technical details can take
these last equations to define Q, P . Q, P describe
the average position and momentum of the Weyl system
with ~Ai particles.

Lemma 1. The P+, Q+ defined above transform under
the action n defined in (6) covariantly according to

a( &)(P ) = P —bl, n( &)(Q ) = Q —al . (11)

P = ) 1 81 7r„(P) 818. 81.
meA

(1O) To check this use the proper de6nition of P to verify
the following formal calculation:

n( s)(P )
' ) 1 8 18vr[n( s)(P)] 1 81

nEA

) 18".818~„(P—bl) 818 "81
(8,10) PA g1A

Similarly for Q+.
Lemma 8. exp (iaP+), exp (ibQ~) fulfill the commuta-

tion relations

exp (iaP ) exp (ibQ ) = e' ~~ exp (ibQ ) exp (iaP ).

This follows by straight calculation &om the Weyl re-
lations

exp (ia~A~ P) exp (ib~A~ Q)

tains exactly the averaged observables: JH = (z': z C

B(L (Rs))). For ~A~ finite, M is a factor of type I
Lemma 8. For every finite index set A, the action a de-

fined in (6) acts ergodically on the von Neumann algebra
Af+ defined by (12).

Proof Assume t.hat

a s ) 1 8m„(z)8 . 81

= e' ~ ~ exp (ib(A) Q) exp (ia)A( P).
Define M to be the von Neumann subalgebra of A+
generated by exp (iaP~) and exp (ibQ ):

:= (exp(iaP ) exp(ibQ ):a, b C R )" C A

(12)

Loosely speaking (i.e. , neglecting the fact that P+, Q+
are unbounded and therefore not contained in MA) one
can say that M is the von Neumann algebra generated
by average position and momentum Q, PA. M con-

[

= ) 1 8vr (z) 81 (13)

for all (a, b) 6 IR x IRs. We will prove that g„&&1
vr„(z) 1 is a multiple of the identity.

First of all note that if Mi, M2 are von Neumann
algebras, then for any A 6 M2, B E Mi, li 8A = B812
implies that A = c12,B = clq for some complex number

Denoting by no the first element of the index set A,
(13) implies

[vr„, (z) —vr, (n( s)(z))] 8 1 8 1 = 1 8 ) 1 8 . 8 [m„(a( s)(x)) —m„(z)] 8 1

This in turn implies that

m„(x) —7r„(a( ~)(z)) = cl, (14)

From (14) we infer that

x —a( g)(z) = cl, (16)

) 18.. 8 [~„(n(,-)(z)) —~„(z)]8 81
ra&A

n +rap

= cl . . 8 1. (15)

which implies that m (x) —m (a( &)(z)) = cl for all

n F A. So (15) can be written as

cits-. -(31 = c18 -. (31.
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This implies that —~A~c1 . . 1 = 0, which can only
be the case if c = 0. Thus (16) reads z = o.

~ &I (x) for all

(a, b) E lks x lks, which by ergodicity of a on 8(L2(R ))
implies that x is a multiple of the identity. The same is
true for P„&&1 . . z„(z) . . l. Q.E.D.

From Lemmata 1 and 3 and Theorem 1 we obtain the
following theorem.

Theorem 2. For ~A~ finite, there is no covariant PV
measure on Ik x Iks with values in JH which is covariant
with respect to the action K defined by (6). This shows
that average position and momentum of a finite quantum
system cannot be measured sharply at the same tiine.

V. INFINITE SYSTEMS

The first idea of how to treat the case of infinitely
many particles would be to take the norm limit of the av-
erage position and momentum operators Q~, P . From
Lemma 2 one would expect that their commutator tends
to zero, and that therefore one can measure them sharply
at the same time. But we will see that there is a problem:
the norm limits of the average position and momentum
operators do not exist.

Let A be the C'-inductive limit of the net (A+)pc~. A
is simple and has a quasilocal structure. One can embed
each A~ into A by i, : z m z11 . The action
u on A+ defined by (6) can be extended continuously to
an action on A, and further to one on A". Let us denote
this action also by a.

The following Lemma is taken from [14].
Lemma g. For any y c A, lim& II [y, iz ] II, if it exists, is

zero. Since A is simple, Lemma 4 implies that any norm
limit of z would be a multiple of the identity. This can
only be the case if x is a multiple of the identity (see
[14]). Therefore the norm limits of the average position
and momentum observables P+, Q~ do not exist.

But it can be shown [17]that the strong operator limits

s- lim z (z") c x (A)",
AqA

where vr denotes the GNS representation of A associated
to the state ur, exist for many states u on A, in particular
for the permutation invariant states. The existence of
this limit is equivalent to the existence of the limit with
u replaced by a state quasiequivalent to ~.

Lemma $. For any normal staten on A and for any z 6
B(L (lk )), the strong operator limits s-lim~&~z (x )
of the average elements x+, if they exist, are in the center
of z (A)".

Lemma 5. It follows directly &om Lemma 4 because
for all y E A we have

[z. (y), s-lim 7r (x )] = s-lim z. ([y, i.z ]) = 0.
AgA AgA

™
Now we will define the average position and momentum
observables Qn, Pn of the infinite quantuin system. De-
note by z the universal representation of A and by '8„
its Hilbert space. For any state u on A we identify z' (x)
with z (z)c(z ), where c(z ) is the central support of
the representation m . Define P~ as the largest central
projection C in A" for which the limits

Pg, := s-limz. „[(1+eP~) 'P~]C,

Q~, :=s-limz. „[(l+eQf) 'Q~]C

exist. Pr A" is the direct suin of all representations as-
sociated to states u for which the strong operator limits
of the averaged observables x exist. From Lemma 5 we
know that P+ „Qg, are in the center of Pr A". Then
we can define positive unbounded self-adjoint operators
Pg, QP afFiliated with the center of Pr A" by

p(P+"):= »m p(PZ„) p(C):= »m p(Q"+„)

for every p E (P~A")i. Now take Pn:= P+n —Pn and
Qn:= Qn+ —Qn. Qn and Pn can formally be written as

Q = s-lim m„(Q )Pr,
AqA

P = s-lim x„(P )P~.
AqA

(18)

Again, the reader less worried about technical details can
think of Pn, Qn as being defined by (17), (18). They are
the average position and momentum observables of the
infinite system. By Lemma 5 they are afFiliated to the
center of Pr.A" and therefore commute with each other.

Define Mn to be the von Neumann subalgebra of
Pr.A" generated by exp (iaPn) and exp (ibQ ):

:= (exp (iaP ) exp (ibQ ):a, b 6 R )"C P A'".

Loosely speaking (i.e., neglecting the fact that Pn, Qn
are unbounded and therefore not contained in M~) one
can say that M is the von Neumann algebra generated
by average position and momentum Qn, Pn. A4n con-
tains exactly the strong limits of the averaged observables

(8), and is contained in the center of Pr A".
So we arrive at Theorem 3.
Theorem 8. There exists a covariant PV measure E~

on Rs x Ra with values in the von Neumann algebra M
generated by the average position and momentum. E~
can be extended to a (covariant) isomorphism between

L (Rs x lR~) and Mn
Pmof. The only thing which we did not prove yet is

the existence of a covariant PV measure on R x R with
values in M+.

Due to the linear dependence of aP on a and of bQ
on b,

(b, a) ~ exp(ibQ ) exp(iaP )

is a strongly continuous unitary representation of the ad-
ditive group Ik x lk (the dual of Ra x Ra) in the Hilbert
space P~R„. According to a corollary of Stone's theo-
rem ([13],Theorem VIII.12) there is a unique projection
valued measure E~ on the dual group of R x R with
values in the central projectors of P~A'* such that
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(P, exp(ibQ ) exp(iaP )Q)

(s, t) (b, a) (P, E~ (ds, dt) g)
R3 xR3

for all (b, Ib 6 P~'R„. [Here we identified R x Rs with
the dual of R x R and wrote (s, t)(b, a) for the value

of the character (s, t) on the group element (b, a) c R x
R .] The support of E~ is equal to the spectra of its
self-adjoint generators P+, q+ [see, e.g. , [18],Proposition
3.2.40, (6)], and so is equal to the whole of Rs x R .

From the definition of P~ it is obvious that it is invari-
ant under n. Also, using the proper definition of P+, q+
one verifies the following formal calculation:

(PII) (ls)
(~») n( s)(s-lim x„(P )P~)

s-lim n.„(P —b1 )Po
AqA

P" —b s lim vr„-(l)P~
AqA

b&a

and similarly for q+:

(qII) qII 1II

(Here 1 denotes the identity in the von Neumann al-
gebra P~A".) This can be written as covariance of the
measure E~.
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APPENDIX: COVARIANT POV MEASURES

Davies and Lewis [3], as well as Ludwig [4], proposed
a generalized concept of observable which we use in the

for all Borel sets b, of Rs x R . Q.E.D.
Remarks. (1) The action n on the von Neumann al-

gebra M is ergodic. (This can be seen by taking the
strong limit of Lemma 3. The proof of Lemma 3 does
not depend on ]A].) Let us compare this with Theorem
1: The existence of a covariant representation in spite of
the ergodicity of the action is due to the fact that M+
is Abelian, whereas for ]A] finite, M is a factor.

(2) E~ is a joint position-momentum observable de-
rived from the limit of the average position and momen-
tum observables. It describes the average position and
momentum of the infinite quantum system. Since E~ is
a projection valued measure, it describes a sharp joint
position-momentum observable. Furthermore, since E~
takes values in. the center of P~A", average position and
momentum are classical observables.

specific context of von Neumann algebras. Let M be a
R" algebra with separable predual. So M is isomorphic
to a m-weakly closed subalgebra of the bounded operators
on some separable Hilbert space.

Definition. A POV measure on a Borel space
(X,Z(X)) is a mapping a from Z(X) into Af such that
(i) a(X) = 1, (ii) 0 & a(b, ) & 1 for all b E E(X), and
(iii) for each family (6;) of mutually disjoint subsets 6,
of X we have a(U,. I b;) = P,. I a(A, ), where the right
hand side converges in the 0-weak topology of M If.

we have a(A) = a(b, )s for all b. C Z(z), then a is a
projection-valued measure (PV measure).

Defitiition. A W' system (M, G, n) consists of a W*
algebra M, a locally compact, separable group G, and
a representation n: G -+ Aut(M) of G as a group of
automorphisms of M such that (i) ns, s, = ns, ns, and
(ii) for all operators z 6 M the function g m ns(z) is
o-weakly continuous.

ExampLe. The systems of traditional quantum mechan-
ics can be regarded as S" systems in the following way.
A quantum mechanical system is specified by a unitary
ray representation U of a kinematical group G, which
is, for example, the Poincare group or the Galilei group.
This unitary representation U fulfills

U(gi)U(gg) = c(gi, g2)U(gig2), g e G

where c is a complex number of modulus l. Associated to
U is a representation a of G as a group of automorphisms
of 8('R) defined by

ns(x):= UsxU', g e G, x e 8('R).

Then (8('R), G, n) is a type I factor W' system. The
choice of a type I factor for M is a consequence of von
Neumann's irreducibility postulate.

Conversely, every W' system, where M is a factor of
type I, can be brought into the form (8('R), G, U U*).
This is due to the fact that all automorphisms o, of a type
I factor are inner: they are induced by a unitary operator
U c M by n(z) = UxU'.

Example. Systems of classical mechanics can also be
regarded as R" systems. Such a system is described by a
symplectic manifold X and a representation ss: X m X
of G by canonical transformations. To each real-valued
function on X there corresponds an observable. The *-

algebraic operations on the observables are defined point-
wise. The Liouville measurable and essentially bounded
functions form a W' algebra L (X). We define

[ns(f)](z):= f (ss i (z)), g E G, x c X,f e L (X)
If s is measurable and X is separable, n is pointwise n-
weakly continuous and (I (X),G, n) is a W' system.
Statistical states correspond to normalized Lq functions
on X.

Definition. A W' system (fH, G, n) is ergodic if the
equation

ns(z) =x Vg EG

is satisfied only by multiples x = A1 of the identity op-
erator.

Definition. A W* system (M, G, n) is called integrable

if the set
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is cr-weakly dense in M. [Here f& as(x'x)dg ( oo means

that the set (fleas(z'z)dg: K C G, Kcompact} is

bounded in M. The integral f~ as(x'x)dg is taken in
the o-weak topology. ]

Remark Every W' system (M, G, a) of a compact
group G is integrable. Some results of the theory of in-
tegrable ergodic W' systems can be found in [19].

Definition. A POV measure a on a transitive G space
X with values in W, together with a pointwise o-weakly
continuous representation a: g ~ o.s 6 Aut(M) of G is
called a system of covariance (a, a) based on X if a acts
covariantly with respect to a,

as(a(4)) = a(gh),

where the Borel set gA is obtained from the Borel set b,
by pointwise action of G. If a is projection valued then
(a, a) is called a trunsitive system of imprinutivity [20].

Remarks. (1) Since G acts transitively on X, X is
homeomorphic to G/H for some closed subgroup H C G.

(2) Traditionally systems of imprimitivity as intro-
duced by Mackey [20] are covariant PV measures based
on a generalized configuration space on which a sym-
metry group acts transitively. The covariance condition
leads to canonical commutation relations between the
configuration observables and the generators of the repre-
sentation U(G). By admitting for systems of covariance
not only projection-valued measures it becomes possible
to study covariant measures on, for example, the phase
space, and not only on the configuration space.

(3) Traditionally (see, e.g. , the review of Ali [2]) sys-
tems of covariance are defined as POV measures which
act covariantly with respect to a unitary ray representa-
tion of G. But defining covariance with respect to unitary
ray representations of G is only possible in the special
case that M has separable predual and that all auto-

znorphisms az are inner. Then one can replace the auto-
morphic representation of G by a n-weakly measurable
unitary ray representation. In general automorphisms a
need not be representable by unitary ray representations
as a = U U', even if we allow for U g' M. Our more
general definition allows also for the description of clas-
sical systems and of systems with classical and quantum
properties.

(4) Every covariant POV measure a based on G/H
with values in a von Neumann algebra M can be ex-
tended a-weak continuously to a positive, linear, normal-
ized, covariant map P from L (G/H) into M. P and a
are related by a(b, ) = P(ya), where b, E Z(G/H) and
where y~ is the characteristic function of the Borel set
b, . P is a covariant representation of L (G/H) in M if
and only if a is a PV measure.

(5) The map P has been called a covariant embedding

[8] and is closely related to generalized coherent states
[21,2]. g maps functions on phase space G/H (classical
observables) into operators on a Hilbert space (quantum
observables). It can be regarded as a quantization map
(see [22]).

(6) The map P induces a dual map P'
L (G/H)' defined by P': p ~ p o P. The covariant
embedding P is called normal if it satisfies P'(Af, ) C
Lg (G/H).

(7) If G/H is a phase space, a normal covariant ern-

bedding P induces a phase space representation P' (see,
e.g., [2]). 4P associates to every density matrix p C M, a
positive normalized Lq function P'(p) on G/H such that

tr[p4(f)] = [4"(p)](sH) f ( H) d~(sH)
G/H

for all f C L (G/H). In particular, if the system is in a
state p the probability of getting a measurement result
in the Borel set b, C G/H is given by

[4'(p)](gH) d(gH) = tr[p&(X(&))].
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