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Size consistency of the Brillouin-Wigner perturbation theory is studied using the Lippmann-
Schwinger equation and an exponential ansatz for the wave function. Relation of this theory to the
coupled-cluster method is studied and a comparison through the efFective Hamiltonian method is
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I. INTRODUCTION (C piV]C p) = 0 .

In up-to-date quantum chemistry the many-body
methods, especially many-body Rayleigh-Schrodinger
perturbation theory (MB RSPT) and coupled-cluster
(CC) methods, play an important role [1—6]. An appeal-
ing feature of these methods is the fact that they scale
properly with the number of particles and that they obey
the linked-cluster theorem. This is possibly the reason
why less attention has been paid to the Brillouin-Wigner
perturbation theory (BWPT). Besides the size inconsis-
tency, the finite order BWPT has other seemingly inferior
features: the perturbation expressions depend on the ex-
act energy and the convergence of BWPT is believed to
be slow.

The purpose of this paper is to analyze BWPT through
the Lippmann-Schwinger equation and its connection
with the efFective Hamiltonian method as well as with
CC theory. On the basis of this analysis we formu-
late size-consistent BWPT with an exponential ansatz
for the wave function. We believe that making BWPT
size consistent can bring more attention to this method.
Some features of the size-consistent BWPT with respect
to RSPT and CC will also be illuminated.

Ho@, = Ei 4, . (4)

Let ~4;) be the configuration state functions constructed
from Hartree-Fock (HF) molecular orbitals. According
to the BWPT expansion [7] the exact wave function (1)
for the ground state is given by

~@o) = (1 + BV + BVBV + ) ~C'p)

and the exact energy for the ground state E'0 can be writ-

ten as

~o = (@el&oIC'o)

+(4'a~V + VBV + VBVBV + ' ' ' ~Cp) (6)

where B is the Brillouin-Wigner (BW) -type resolvent

(7)

Nevertheless, in some equations this term will be used in
order not to change the generally accepted structure of
these equations. Further, we assume that we know the
solution of the unperturbed eigenvalue problem,

II. THEORY

Let us have the Schrodinger equation

Let us introduce in formal analogy with scattering the-

ory the operator T~,

Tg ——V + VBV+ VBVBV+-

We assume that we are able to split the Hamiltonian H
into two parts, namely,

which we can write also in the form

T~ ——V + VBTg . (9)

H=Ho+V, (2)

where Ho is the unperturbed Hamiltonian and V is the
perturbation. In this paper we will work with the Moller-
Plesset (MP) partitioning, which implies

This equation is known in scattering theory as the
Lippmann-Schwinger equation [8].

It is interesting to note that this equation was used. in
many-body theory to generate the high orders of BWPT
but was not used for direct infinite order calculations.
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In a recent paper [9] we have demonstrated its practical
use in direct infinite order calculations and its connection
to truncated configuration interaction (CI) calculations.
The total ground state energy (6) is given using (9) by
the equation

4; =O(PC';), i =1,2, . . . d,

and which fulfills the so-called Bloch equation

[A, Hp]P = VOP —OPVAP (16)

~p = (@olIIol@p& + (4'ply l@o&

or in the equivalent form

Eo = (4olHol@o) + (C'olVI@o)

+
- (@'oIvlc")(4"I& I@o&

fp —E
i+0

The matrix elements of T~ operator are calculated from

Eq. (9) as follows:

H, yy
——PHpP + PVAP (17)

which implies that in case of one-dimensional (nondegen-
erate) model space the ground state energy is given as

that may be viewed as an equivalent to the Schrodinger
equation (1) for wave functions. If we split our Hamilto-
nian into the unperturbed part Hp and the perturbation
V, the efFective Hamiltonian (14) can be expressed in the
form

(e Ir Ie & (e Ivle & ) - (

j+0 0

(12)

fp = (@plJIpl@p& + (e'plvAI@p).

The Bloch equation (16) for the degenerate case may
be rewritten in the form [7]

It was demonstrated [9] that when using singly (S) and
doubly (D) excited configurations in the resolvent (7) we

get the CISD energy. Or generally, the level of truncation
in the BW-type resolvent (7) determines the truncated CI
energy. The main drawback of the truncated CI method
and therefore of the truncated BWPT method is that
they do not scale properly with the number of particles.
It is therefore very topical to develop the size-consistent
BWPT method and to study the size consistency of the
truncated CI method. Nowadays in many papers the
attention is paid to the development of size-consistent
CI methods. Just to mention some recent works, see,
e.g. , Pople et al. [10], Povill et al. [11], and Szalay and
Bartlett [12]. In doing size-consistent BWPT we show
the connection of BWPT with the efFective Hamiltonian
method as well as CC methods.

The most general approach to the calculation of corre-
lation energy is the method based on the efFective Hamil-
tonian and the Bloch equation [7,13]. The basic idea lies
in the introduction of the efFective Hamiltonian H, ff,
which acts within the d-dimensional model space and
has the property that when diagonalized in this space
it gives the part of the spectrum of our exact Hamilto-
nian. If we separate the complete configurational space
into two disjoint subspaces, namely, the model space P
and its orthogonal complement Q, the projection opera-
tors associated with these subspaces will have the form

P= ):I@ )(c'-I
ayP

q = 1—P = ) I@'~&(c'~l .
Pc@

(Ep —Hp)AP = QVAP —yPVAP, (i9)

where y is defined as

(20)

and for the nondegenerate (one-dimensional) case we
have

A Ioo) = I@'o) + ) - I@'&(@'IVOloo&

0 0

&IC'o&(@olVOIC'o&

Ep —Hp
(21)

The realization of the wave operator A can be done in
various ways, e.g. , using the expansion

O=) A&&

i=p
(22)

) - Io*&(@'I
E —Hi+0

A great simplification in Eq. (21) is achieved by the real-
ization of the linked-cluster theorem [7], which says that
in Eq. (21) we calculate only linked connected (LC) dia-
grams, and therefore, Eq. (21) reads

and we can obtain the perturbation theory form of the
Bloch equation and the perturbation theory formulation
for the efFective Hamiltonian method. Note that in the
Bloch equation (21) we have the Rayleigh-Schrodinger
(RS) resolvent

According to Lindgren [7) the construction of II,yy is
possible through the wave operator 0, olc' ) = Io ) )- I@'&(@*IVAl~o&

0 0
(24)

H, yy ——PHOP,

which is de6ned through the equation

(14)
IC

Now, let us introduce the RSPT expansion for the ex-
act energy. Using the linked-cluster theorem we have
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Ep —&CplHpI@p) + (CplV+ VRV + VRVRV
+VRVRVRV + . I@o)rc .

and

(25)
~o = (~'olHol@'o) + (4'olVIC'o& + &@olVBVe IC'p) . (39)S

If we use the Lippmann-Schwinger equation (9) with the
resolvent of RS type (23) we can introduce the operator
TR)

If we substitute for resolvents B and R from (7) and (23)
we get

TR = V + VR TR
I ic,

and the exact energy can be expressed in the form

~p = &4p IHolC'p) + (@'plTrrl@o&r c,

(26)

(27)
and

fp ——(CplHpl@p& + (CplVICo&

+
- &@plvl@*&(c'*I«'l@p)

Ep —E
i+0 LC

(40)

where by lr, c we mean that when calculating matrix el-

ements we consider only contributions &om connected
diagrams. Comparing Eqs. (10), (18), and (27) we have
three diH'erent equations for the same energy f0,

(4'. IHoIC. & i (eolvle. )

+ (CplVIC;)(O';IVe IO )

fp —E,i+0
(41)

tp = (@plHplc'p) + &@plvolcp&

~o = (4'olHolC'o) + (@oITRI~'o&rc,
E'p = &4'plHplC'p& + &4

(28)

(29)

(30)

Both Eqs. (40) and (41) can be solved iteratively but in
both cases we have to know equations for matrix elements

(C, IVe IC ). These can be obtained from Eqs. (36) and

(37), which can be simplified as

Another possible way to realize the wave operator in
Eq. (28) is to use the exponential ansatz [1]

0 =e

e Ir.c = 1+RVe

e = 1+BVe

(42)

(43)

and up to unitary transformation we have

(@olTRI~'o)r.c = (4'olve l@o&r,c (32)

or in matrix elements

,slo &I I~ &+ )- IC"&& 'I e'IC'&

0 i
(44)

or

(@olT~I@o& = (4"I«'l@p)
'14.

&
= l~"&+)- I@'&&@'Ive

0 i
(4s)

TR = « lrc,
Tg =Ve

Using Eqs. (9), (26), (34), and (35) we have

Ves Ir,c = V+ VR«s Ir.c

and

(34)

(3s)

(36)

Equation (44) is identical to the Bloch equation (24) and
Eq. (45) is the analog of the Bloch equation (24) with the
the BW type of denominator. The Lippmann-Schwinger
equation (45) also gives us a new expression, namely, the
Bloch equation in BW form. Equations (40), (41) and

(44), (45) can be used for practical calculations.
Let us further adopt a simple approximation in the

exponential ansatz (31), such that

Ve = V+ VBVe (37) S=S2 (46)
Note that when substituting Eq. (31) into Eq. (28) we

can develop the coupled-cluster method. Instead of doing
so we utilize the exponential ansatz (31) to develop the
Lippmann-Schwinger equation. Substituting Eqs. (36)
and (37) into (29) and (30), we get

~o = (@'olHol@o) + (4'pIVIC'o) + (OolVRVe I@p&«

(38)

and simultaneously

e ' = 1+ S2 + 2 S2 . (47)

This expansion is complete since the higher order terms
do not contribute (as will be seen below). Substituting
Eq. (47) into Eqs. (40) and (44), we get

~ = (c IH le &+&4 lvlC &+ )
i+0 LC

+ ) - (@pl IC"&&@*IV~2lop& - (@olVIO')&@'IVS'IC'o&
g0 E.

i+0 r,c LC

(48)
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and

(1+S.+ 1l2S')I~o) I« = I~o)+ ). 4")&e'Ivleo)
p i

+ ) - I@*)&@'IVSzl@o) + 1 )- I@')&@'IVSz l@o)

Ep —E. E —E-
i+p i+p LC

Substituting Eq. (47) into Eqs. (41) and (45), we get

(@ IH I@ ) + (@ IVI@ ) + ) - &@oIVI@')(@'IVI@o)

$p p i

. (Col I4;)&C;IV 2I@o), . &@olVIC;)(;I S2I@o)
Eo —E; 8'o —E;i+p i+0

and

(49)

(50)

1/2S')I@) = IC' ) )
0 i

) - IC")&@'IVS21@o) 1 - Io*)(c"IVS21@o)
fo —E 2 Zo —E

i+p i+p

The equations for cluster amplitudes can be obtained
by projection of Eqs. (49) and (51) onto the correspond-
ing unperturbed state functions.

Detailed analysis of Eqs. (48) and (49) shows that these
are coupled clusters with doubles (CCD) equations. The
analysis of Eqs. (50) and (51) shows that even these equa-
tions are equivalent to CCD equations but they are in the
BW form. To distinguish the BW form of CC equations
Rom standard CC equations we will call Eqs. (50) and
(51) BWCCD equations. Similarly, when adopting ap-
proximation

S= Sg+S2 (52)

I@o) = e'IC'o) . (54)

Then, in accordance with the Baker-Campbell-HausdorfF
formula and the linked-cluster theorem we could develop
the standard CC theory; for more details see, e.g. , [5].
The expression for the ground state correlation energy
AE'p,

AE'p ——fp —Ep,
can be written as

(55)

we will speak about BWCCSD equations. The results for
both sets of Eqs. (48), (49) and (50), (51) are equivalent
and therefore Eqs. (50) and (51) are size consistent.

The equivalence of both approaches mentioned above
can also be shown in another way. For practical reasons,
below we will use operators in their normal product form
(denoted by subscript N), e.g. ,

H~ = H —&eolHleo)

Let us employ the exponential ansatz for the wave oper-
ator (31) in the case of the nondegenerate ground state
IC'o)

+~0 = (@OISIN e I@'0)Lc (56)

and the equations for cluster amplitudes can be derived
&om the condition

so

(@'IH~ e'ICo)L, c = 0, (57)

(c"Ie'Io )« =
E E &4'*l&~ "I@)«(»)

0 i
where I4;) represent excited unperturbed wave functions.
From Eqs. (1), (2) and (54) we also have

(Ho~+ V~) e'IC'o) = &~oe'l@o) .

(61)Ho~ I@') = (E' —Eo) IC'*)

we obtain the final equation for amplitudes,

s &@'l&~ e'l@o) &@'l&~ e'IC")
EE'o + Eo —E; Zo —E;

Analogously, if we project Eq. (59) onto the ground state
wave function leo) with the use of Eq. (61), we obtain
the expression for the ground state energy in the form

bs~ ——&4olv I4o) . (63)

Using the resolution of unity we can write

V~l~o) + ) .(~ol&~IC')(~.-l"l~o) . (64)
i+p

If we realize that the 6rst term is zero and if we substitute
for &4;Ie I@o) from Eq. (62), we finally get

Projecting the previous equation onto the unperturbed
state functions IC;) we have

VN e IC'o) = (C'I(+~o —How) e Ioo) (60)

and when we exploit Eq. (4) with Ho in its normal prod-
uct form,



4562 IUAN HUBAC AND PAVEL NEOGRADY 50

(65)

It is obvious that Eqs. (56) and (58) are equivalent to
Eqs. (48) and (49) and Eqs. (65) and (62) are equivalent
to Eqs. (50) and (51) (of course, in appropriate normal
product form) when projecting Eqs. (49) and (51) onto
the corresponding unperturbed wave functions. Since
Eqs. (58) and (56) and Eqs. (62) and (65) represent
two diHerent ways of solving the same problem without
the use of any approximation, their results have to be
equivalent.

III. IMPLEMENTATION

In this part we want to show that the computational
effort required for one iteration in BWCCSD theory is
practically the same as that for the standard CCSD
method. We do not want to deal with extra details since
the implementation of new parts in the BWCCSD ap-
proach is not complex, at all.

Let us first deal with the equations for amplitudes (51)
or (62). In order to obtain the Si and S2 amplitudes we
can employ the equation

(66)

which can be simplified to

(67)

where the subscript DC stands for disconnected diagrams
(in the case of monoexcitations this term does not con-
tribute and in the case of double excitations it is equal

2 (@''ISiSilC'p)). As we can see, there are some basic
differences between BWCCSD and CCSD in obtaining
amplitudes, namely, (i) in the CCSD method the denom-
inators contain only diH'erences of corresponding orbital
energies (i.e., diagonal Hartree-Fock matrix elements),
while in BWCCSD the denominators contain also the
correlation energy, i.e.,

o —E' = aSo+Eo —E (68)
and (ii) there are some disconnected contributions in
BWCCSD, while in CCSD we work only with connected
contributions.

The most complex and time-consuming part represents
connected contributions of the first term on the right
hand side of Eq. (67) and they can be calculated in the
same way as is done in the standard CCSD method. For
practical calculations we use the spin-orbital formulation
of Stanton et at. [14] and the computer code for CCSD
method [25].

Disconnected contributions of the first term on the
right hand side of Eq. (67) can be diagrammatically rep-
resented as follows.

For single excitations

xq.
For double excitations

X g

where q is defined as

and where the intermediate p(i, a) is defined as
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In previous graphs we used the symbols ~ for one-particle
perturbation, ~ for two-particle perturbation, and o for
cluster amplitudes.

We can see that the structure of the intermediate
p(i, a) is the same as that for connected contributions
to fy amplitudes in the CCSD method. Therefore we can
get the p(i, a) intermediate without any additional work.
Considering these expressions for unlinked contributions
of the first term on the left hand side of Eq. (67) it is
obvious that the consumption of computational time of
all these processes in comparison to the CCSD method is
proportional at most to N with respect to the number of
basis functions. For the second term on the left hand side
of Eq. (67), which can be diagrammatically represented
(for double excitations) as

(—1) x

the situation is analogous; it is proportional to N4.
Let us briefiy mention the calculation of correlation

energy. When we use Eqs. (50), (65), and (68) the ex-
pression for the correlation energy Afo can be written
as

(69)

As the matrix elements

are already calculated, see the first term on the left hand
side of eq. (67); we get the expression for correlation en-

ergy in the form

(70)

Because the index i rnus over single and double excita-
tions the calculation of the correlation energy (70) con-
tains at most N processes.

Since the most time-consuming processes in one itera-
tion step of the CCSD method depends on the Dumber
of basis function as N, it is evident that the additional
consumption of computational time required for the re-
alization of the one-iteration BWCCSD method is obvi-
ously negligible. From the given scheme we can also see
that for higher versions of the CC method (which is not
the subject of this work, e.g. , CCSDT) the situation is
analogous.

IV. NUMERICAL RESULTS

In this section we give some numerical results to il-
lustrate the methods introduced in this work. We cal-
culate BWCCD and BWCCSD energies for three small
closed shell systems, namely, Be, H20, and F; and we
also present some single-reference open-shell BWCCSD
results for two doublet states (Na and CN) and one triplet
state (02). The corresponding results are listed in Ta-
ble I. As a reference wave function we have used the re-
stricted HF (RHF) solution for closed-shell systems and
restricted open shell HF (ROHF) solution according to
Roothaan [15] for open-shell systems. It is worth noting
that the BWCCD method for open-shell systems is not
very suitable due to the much more important role of
single excitations.

As we can see from Table I, the results for the BWCCD
and BWCCSD methods are actually identical to those for
the CCD and CCSD methods in all cases, so one can con-
clude that the numerical equivalence of CC and BWCC
has been confirmed. In order to prove the size consistency
of the BWCCD and BWCCSD methods we have chosen
a simple example with two Be atoms in quasi-infinite dis-
tance (1000 a.u.). In this sense it is not surprising that
the BWCCD and BWCCSD energies for the 2 Be super-

TABLE I. Self-consistent field (SCF) and various correlation energies for some small closed-shell
and open-shell systems (in E/EH)—
System
Be
2Be~ b

H, P~ ~

F—R

CN ('Z+)"'s
(2S)g,h

O (3g —)e,g, s

SCF
14.572 984

29.145 969

76.064 564

99.459 102

92.208 831

161.846 414

149.650 063

CCD
0.051 871

0.103743

0.245 442

0.306 461

CCSD
0.052 486

0.104 972

0.247 283

0.308 943

0.321720

0.083 908

0.403 366

BWCCD
0.051 871

0.103743

0.245 442

0.306 461

BWCCSD
0.052 486

0.104 972

0.247 283

0.308 943

0.321 720

0.083 908

0.403 366

ANO (5.4.3.2) spherical basis set [20].
r =1000.0 a.u. (quasi-infinite distance).

'ANO (5.3.2;3.2) spherical basis set [20].
r=1.790 a.u. , /=105.5 [21].

'POL (5.3.2) Cartesian basis set [22].
r=2 2144 a.u. [23.].

~Corresponding SCF and CCSD values were taken Rom Ref. [25].
"POL (7.5.2) Cartesian basis set [24].
'r=2. 207 a.u. [21].
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system are exactly two times larger than those for the
single Be atom (see Table I) even though it is clear that
this feature directly follows &om the equivalence with
corresponding CC results.

V. DISCUSSION

The exact energy dependence of individual orders of
the BWPT expansion and the size inconsistency of the
method were the reasons why this method was not fur-

ther studied and used for practical calculations. The
many-body formulation of BWPT was done by Brandow
[13,16,17]. He used BWPT to develop quasidegenerate
RSPT introducing the concept of folded diagrams [13].
However, the size inconsistency of BWPT was not stud-
ied in detail. In this article, analyzing the connection
of BWPT and the Lippmann-Schwinger equation with
the size-consistent effective Hamiltonian method and CC
theory and using the exponential ansatz for the exact
nondegenerate wave function, we developed BWCC the-
ory.

The connection of RSPT with CC theory is well known;
see, e.g. , [18]. We can see that the fully analogous rela-
tion is also between BWPT and BWCC theory. While
in the RSPT case the individual orders of perturbation
expansion as well as the individual iterations of the CC
procedure are size consistent, in the BWPT and BWCC
cases they are not. However, as was shown in this work,
converged BWCC results are not only size consistent but
also identical to corresponding CC results. It can be said
that the cluster expansion forms of both different pertur-
bational approaches are identical. It is therefore interest-

ing to note that the complete expansion in both BWPT
and RSPT methods is not the only common result of
both approaches, but as presented in this paper, also the
limited versions like BWCCD and (BWCCSD) are com-

mon. It is worth noting that the BWCCD (BWCCSD)
theory contains disconnected diagrams. The practical
implementation and the numerical complexity is approx-
imately the same as that for CCD (CCSD) theory.

One could ask, what is the reason for developing the
size-consistent BWPT theory? We note that such a the-
ory may play an important role in the development of
size-consistent CI theories. Another problem is that the
present stage of developing multireference (MR) RSPT
and MR CC theories is still far &om being satisfactory.
One of the crucial problems in existing MR RSPT and
MR CC methods is the presence of so-called intruder
states. Intruder states may cause the divergence prob-
lem, which is due to the vanishing denominators in the
RS-type propagators. The formulation of MR BWPT or
MR BWCC theories is much simpler than that of MR
RSPT and MR CC theories. Moreover, the presence of
the BW-type propagators can avoid the intruder state
problem. In this article we give only the proof of the
equivalence of BWCC and CC approaches. The detail
analysis of the cancellation of size-inconsistent contribu-
tions in BWCC theory will be the subject of a future
paper [19].
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