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This paper is a generalization of previous work on the use of classical canonical transformations

to evaluate Hamiltonian path integrals for quantum-mechanical systems. Relevant aspects of the
Hamiltonian path integral and its measure are discussed, and used to show that the quantum-

mechanical version of the classical transformation does not leave the measure of the path-integral

invariant, instead inducing an anomaly. The relation to operator techniques and ordering problems

is discussed, and special attention is paid to incorporation of the initial and 6nal states of the

transition element into the boundary conditions of the problem. Classical canonical transformations

are developed to render an arbitrary power potential cyclic. The resulting Hamiltonian is analyzed

as a quantum system to show its relation to known quantum-mechanical results. A perturbative

argument is used to suppress ordering-related terms in the transformed Hamiltonian in the event that
the classical canonical transformation leads to a nonquadratic cyclic Hamiltonian. The associated

anomalies are analyzed to yield general methods to evaluate the path integral's prefactor for such

systems. The methods are applied to several systems, including linear and quadratic potentials, the

velocity-dependent potential, and the time-dependent harmonic oscillator.

PACS number(s): 03.65.Ca

I. INTRODUCTION

The relationship between classical mechanics and its
quantum counterpart is nowhere more evident than in the
path-integral formulation of transition amplitudes [1—3],
where the classical action evaluated along a possible tra-
jectory appears as a weighting phase factor for the tra-
jectory. In the Hamiltonian form for the path integral
the classical action appears, at least formally, written
in terms of the canonically conjugate variables q and p.
In classical mechanics it is precisely this form of the ac-
tion that is used to define canonical transformations [4]
to new canonical variables, i.e., those that preserve the
Poisson bracket structure. With an appropriate choice
of canonical transformation the classical action can be
transformed to cyclic coordinates or, in the case of the
Hamilton- Jacobi equation, the Hamiltonian can be trans-
formed identically to zero. At the classical level the so-
lution of Hamilton's equations becomes trivial for such a
Hamiltonian.

For certain transition elements the measure of the cor-
responding Hamiltonian path-integral is symmetric in its
integrations over intermediate p and q values and is there-
fore invariant under a transformation that has a Jacobian
of unity. Since the Poisson bracket of a canonical trans-
formation is identical to the inverse Jacobian of the trans-
formation, a canonical transformation apparently intro-
duces no factors into the measure. At 6rst glance it would
then seem that the classical canonical transformation to
cyclic variables could be applied to the Hamiltonian path
integral to render it exactly integrable, thus providing
a Inethod for nonperturbative analysis of transition el-

ements. Further analysis reveals that the transformed
path integral yields results difFering &om those of the

original untransformed path integral, and indeed those
of other methods such as wave mechanics. In particular,
the time-dependent prefactor or, loosely speaking, the
van Vleck determinant [5] is incorrectly calculated using
this method. The loss of such information is catastrophic
to understanding the therinal behavior, the stability, and
tunneling rates of the system. Perhaps more disturbing,
the invariance of the Hamiltonian path-integral measure
under canonical transformations is a central assumption
in the path-integral method for implementing first and
second class constraints [6,7], a method whose general-
ization to gauge theories was seminal to their quanti-
zation. Recently developed equivariant localization tech-
niques [8] also rely on the ability to transform the Hamil-
tonian path integral to new coordinates while introducing
no unexpected terms in the measure.

The problem, as discussed by numerous authors [9—14],
lies in the action appearing in the path integral. The time
derivatives appearing in the path-integral action are for
mal identifications only, behaving like the derivative fa-
miliar &om calculus only for certain systems. As a result,
the classical canonical transformation does not have the
same result when it is applied to the path-integral action,
and in fact it induces additional terms into the action.
An alternative approach to canonical transformations for
the path integral is to define a quantum-mechanical ver-
sion of the canonical transformation that is consistent
with the formal time derivatives of the path integral
[15,16]. Such an approach will be followed in this paper.
However, this quantum canonical transformation neither
leaves the measure invariant, instead inducing nontrivial
Jacobians, nor necessarily reproduces the classical result
for the transformed Hamiltonian. In a previous paper
that concentrated on the measure [16] it was shown that
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the induced Jacobians could be absorbed into the action
of the path integral where they appear as O(h) terms.
Alternatively, the Jacobian was shown to be equivalent
to a time-dependent prefactor that reproduced the van
Vleck determinant of the original path integral, at least
for the case of the sixnple harmonic oscillator. This paper
will consider both aspects of quant»m canonical transfor-
mations and generalize the previous results, Heshing out
derivations along the way. In addition, results regarding
the application of canonical transformations to the path
integral as well as relevant properties of the path integral
will be presented and demonstrated for various systems.

The outline of this paper is as follows. In Sec. II the
quantum-mechanical transition elexnent to be analyzed
will be expressed as a Hamiltonian path integral. Cer-
tain properties of expectation values necessary to the re-
mainder of the paper will be derived Rom this path in-
tegral for general cases of the Hamiltonian. The relation
of the initial and final states to the boundary values of
Hamilton's equations is discussed, since this will be of
importance to the quantum canonical transformation. It
is shown that there exist classically suppressed poten-
tials, i.e., ones that would not contribute to the classical
variation of the action, that contribute O(h) terms to the
quantum-mechanical action. Poisson resummation tech-
niques are applied to path integrals with periodic bound-
ary conditions, such as the square well system, to trans-
form the measure to continuous variables. The relation
of continuum techniques to the boundary conditions is
discussed for the Hamiltonian path integral. In Sec. III
the classical canonical transformation will be reviewed
with special attention to the relation of the surface or
end point terms generated by the canonical transforma-
tion to the boundary conditions of the transition element.
The operator ordering ambiguities associated with the
quantum-mechanical version of these transformations are
brie8y discussed and the specific problexn of Cartesian
versus polar coordinates is used to demonstrate them. A
classical canonical transformation to cyclic coordinates is
derived for the case of an arbitrary power potential. The
resulting classical Hamiltonian is analyzed as a quantum-
mechanical problem, thereby ignoring the ordering am-
biguities present in the transformation. The results are
shown to correspond to the correct energy spectrum for
the cases that the parent Hamiltonian constituted a solv-
able problem. Section IV begins by examining the ram-
ifications for the path integral of assuming the existence
of new canonically conjugate variables. A consistency
condition for this change of variables is derived &om the
demand for a unit projection operator. The quantum
canonical transformation is introduced in terms of a gen-
erating function and the forms of the new variables are
derived. The consistency condition is found to be re-
lated to the problem of initial and Bnal conditions for the
new variables, and some of the limitations of the quan-
tum canonical transformation are revealed. From the
form of the new variables the explicit forxn for the Jaco-
bian or anomaly of the transformation is calculated, and
its incorporation into the action of the path integral is
shown. For a general form of the generating function the
anomaly itself is shown to be a surface term, contribut-

ing to the overall prefactor or van Vleck determinant.
The form of the transformed Hamiltonian is discussed,
and a perturbative proof of the suppression of ordering
terms for a cyclic Hamiltonian is given. In Sec. V vari-
ous systems, some known exactly by other methods, are
evaluated. These include the velocity-dependent trans-
formation of the Bee particle, the linear potential, the
transition &om Cartesian to polar coordinates, and the
harmonic oscillator. Finally, the results are extended to
give an approximate solution to the important case of the
time-dependent harmonic oscillator.

II. THE HAMILTONIAN PATH INTEGRAL

In this section several aspects of Hamiltonian path in-
tegrals that are relevant to developments later in this
paper will be discussed. While these aspects may appear
at first blush to be uurelated, they will be important
later in this paper to understanding the consequences of
canonically transforming the variables of integration in
the path integral.

A. De8ning the Path Integral

The transition element to be analyzed in the remainder
of this paper is given in its one-dimensional form by

Wy; = (py ) exp( —iHT/5) ) q; ) .

The final state
~ py ) is assumed to be an eigenstate of the

momentum p, while the initial state
~ q; ) is an eigenstate

of the position q. The two operators satisfy the usual
algebra [q, pj = iL The Hamiltonian H is assumed to be
a function of some ordering of q and p, and its eigenstates,
as well as those of q and p, are determined consistent with
any boundary conditions, such as periodicity in q.

Wy; is trivial to evaluate if H is cyclic, i.e., a function
solely of p. For such a case it reduces to

WX' = (pX I q') exp I-iH(ps) T/5 .

The allowed values of the variables py and q; appearing
in the inner product in (2) are determined by the bound-
ary conditions of the original problem, although in one
dimension the inner product for continuous systems takes
the general form

1
( py ~ q; ) = exp (—ipyq;/h) .

2n. h

The propagator of the quantum-mechanical problem can
be derived from result (1). Assuming that the momentum
state spectrum is continuous, the propagator is obtained
by a Fourier transform,

( qS I exp( —'HT/&) I q' )

' e'"'"'"(pf
I
exp( —iHT/&)I q*) . (4)

&2vrh
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dq, , I q, , )
'"+' '~"(p, I.Qp

(5)

There is an important subtlety in (5). As it is written
it assumes that the spectra of the states are continuous;
however, this will not be the case in the event that the
configuration space of the system is compact or periodic.
Putting aside such a possibility for the moment, the re-
sult of time slicing T into N intervals of duration e, where
e = T/N, gives

( p~ I
exp(-ieH/~)

I q~ )

Obviously, a discrete spectrum of momentum eigenstates
leads to a Fourier series. Once the propagator (4) is
known, results such as the ground state energy can be
derived.

The Hamiltonian path-integral representation of (1)
may be derived by using the completeness of the position
and momentum eigenstates to perform a time-slicing ar-
gument. This technique is well documented [3], and its
application here is accomplished by using the unit pro-
jection operator given by

values, the so-called Wick rotation. Otherwise the oscil-
latory integrands result in distributions rather than func-
tions. The Wick rotation will be used and assumed to
yield a sensible measure for all path integrals considered
in the remainder of this paper.

To demonstrate the formal nature of the identification

q~ (pz+q —pi) = dt q~. pi as well as derive results that will
be important later in this paper, it will be of use to dis-
cuss the leading behavior in e of the expectation value of
the element Aq~ = q~+1 —q~. For it to be possible to treat
Aqi as q dt its expectation value (Aq~)y; must be shown
to be O(e). The behavior of (6') is of course a function
of the specific form of the Hamiltonian. However, if the
Hamiltonian is cyclic, then it is always true that (b,qi) y,
is O(e). This is easy to demonstrate within the operator
context, where the operator form for Hamilton's equation
gives

Aq(t) = q(t+ e) —q(t) = e —[H(p), q(t)] = e
i - „„BH(p)

(8)

Inserting (8) into (1) and using (2) immediately yields

1 2 2
exp —— qip, +eH(p, , qi) + O(e )

&2~@ (&q(t))~* = (p~ I q') exp[-iH(pf) T/~] '
BH(py)

Bpy

where the O(e2) terms arise from commutators occurring
in the ordering of the Hamiltonian power series. This
immediately yields the Hamiltonian path-integral recipe
for calculating the transition amplitude:

Demonstrating the path-integral equivalent of result

(9) requires adding a source term KiAqi to the action.
In order to avoid difEculties with the boundary condi-
tions on q~, the boundary conditions KN ——Ko ——0 are
imposed on the source function. The expectation value
is then given by

~a* = (pele
*" '"Iq*) i BWy;[K]

r aK K=O
(10)

N N
1 ---

dpi' 2
dq~ exp —) [ qi(pi+, ——

p~)2=-1"" j=1

«(u, e, )1
—

&a—~»I,
where pN+1 ——pf and the limits N —+ oo and e ~ 0 are
understood.

B. The leading behavior of Lq

The next step is to perform the path-integral version of
integrating by parts by using the boundary condition on
K to rearrange the sum over j:

N N N

) K~ hq~ = ) K~ (q~+q
—

q~) = —. ) q~ (K~ —K~ q). .

N

:——) qibK~ .

It is standard practice to assume a continuous form
for the path integral by identifying e ~ dt and q~(pi+z-
pz) = dt qz pz. The latter identification is purely formal,
since p~+1 and p~ are independent variables of integration
unrelated by any time evolution. Even with this formal
identification the action density in the path integral (7)
can take the (semi)standard form, qp H, only if—p; =—0
or q; = 0. For these cases the 6nal term can be written
—iq;(pq —p;). This will be discussed in greater detail in
Sec. IV. Another technicality arises since the argument of
the path integral does not satisfy the criteria of a proba-
bility measure unless the time is continued to imaginary

Since 0 depends only on p all q integrations can now be
performed. Assuming that the range of the q integrals
is Woo, each of the N integrations over q yields a Dirac
delta,

2

dq~ exp ——
q~ p~+1 —

p~ + AK~

= 2vrhb(p, +g —p, + AK, ) . (12)

The p variables are now trivial to integrate, giving the
result for the transition element
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1
W~;[K] = exp —— pyq;

2xn
N

+) e H(py —K~ g)

Using (13) in (10), along with the result that

N

llm ) e=T,
Nmoo

terpart, since terms of the form Ha would be suppressed
[13].If H, ~ is cyclic it can be shown that the terms Hn do
not contribute to the path integral in the limit N ~ oo.
The argument is similar to the one used to demonstrate
(15). The contribution of the terms Ha is written as a
perturbation series using H, ~ as the basis Hamiltonian.
This is accomplished by adding the source terms eKjAqj
and eJjqj to the action without H~ to give the function
Wy;[K, J]. The perturbation series representation of the
original transition element is then defined as

reproduces the operator result (9):

fh B 5 Bi
exp &

——) &Ha
J

—. , —.
[

& Wy;[K, J]h. g BK, ' BJpj=l K,J=O

( )
e BH(py)

N~~ /27I'5 Bpf
2

xexp ——pyq +H pf T . 15

Result (15) does not necessarily follow for noncyclic
Hamiltonians. The argument used to derive (15) can be
applied to the harmonic oscillator action to show that
((b,q~) )y, is O(e) This is. easily seen from the Gaussian
nature of the Wick-rotated integrations. The q integra-
tion results in

dq~ exp —e —q + q~(bK~+ bp~)f 1

2m (Ap, + AK,.)'j j
E

The AKj dependence may be removed &om this tenn by
translating the p~ variables according to p~ ~ pz + K~.
Doing so changes the p2 term in the exponential of the
path integral according to

12 12 1—E —p w —6 —p —Ep K. —6—K.2j 22 2 2 2 2 (17)

It is then clear that the second derivative of the resulting
function with respect to K~ will result in a term O(e).
In an identical manner it is possible to show that the
expectation value of Lpj = pj+q —pj vanishes if the
Hamiltonian is cyclic. This is the quantum-mechanical
equivalent of the classical Hamilton equation

BHp—
Oq

As a result of (15) it is possible to use a perturba-
tive argument to show that certain types of terms in the
Hamiltonian of the path integral are suppressed in the
limit N —+ oo. The Hamiltonian under consideration has
the form

H = H, )(p, q) + H~(Eq, q),

where all terms in H~ have at least one positive power of
Lq and H, ~ is the Hamiltonian inherited from the clas-
sical system. Such a Hamiltonian has no classical coun-

The function Wy;[K, J] is readily evaluated to give

Wy;[K] =

N

+) eH py —eK~

2

—) eJ)
l=x

While the P eJ term results in an integral in the limit
e ~ 0, it is clear that the term eK is suppressed relative
to the other terms by a factor of T/N. The derivatives
with respect to K are suppressed by this factor as well,
showing that terms of the form Hr„do not contribute
to the perturbation series. For the case that the basis
Hamiltonian is cyclic such terms can therefore be dis-
carded. In eKect, this perturbative argument substanti-
ates the general intuition that, for a cyclic Hamiltonian,
Dq can be replaced by eq, where q is finite. Any result-
ing terms with factors of O(e2) or greater can then be
suppressed.

Since perturbative arguments are &aught with pitfalls
and loopholes, it is worth checking this result for exactly
integrable cases. For example, the path integral whose
Hamiltonian is given by

12H = —p +AqAq
2

(22)

H = -p'+ —&qf(q)&' = -[1+f(q)&q]p'.
2 2 2

(23)

The p integrations in the Wick-rotated path integral are

can be shown to reduce to the standard cyclic result (2)
with all terms proportional to A suppressed by an addi-
tional factor of e2. Terms of the form qAp or pAp can
be integrated exactly to find the standard cyclic result in
the limit e ~ 0. However, there is at least one important
set of cases not covered by this perturbative argument
involving terms with quadratic powers of p. For exam-
ple, if the term f (q)b, q p2 occurs in the Hamiltonian, its
contribution cannot be discarded. It is not dificult to see
the mechanism for this by examining the Hamiltonian
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Gaussian, and take the general form

dp~
[ + f (qi )+$]pj

1 Aq~

(&q~)'
2vrhe[1+ f(q~)Aq~] 2he[1+ f(q~)bq~]

(&q')'
2~&[1+f(q, )Aq, ] 25m[1+ f(q, )bq, ]

(24)

1

/1+ f(q )&q

1= exp ——in[1 + f (q~) Aqz]
2

1= exp f(q,—)A—q, (25)

If Aq remains proportional to some positive power or root
of e, then the Aq term in the denominator of the expo-
nential can be discarded due to the factor of e present
in the denominator. However, the terms in the prefactor
may contribute to the path integral. This follows &om
the fact that the prefactor terms can be written

1 1.2 1

2' he h 2 2
exp — —q' + —waif(q)q ), (26)

where the standard path-integral notation Dq = ~q has
been used. Result (26) is consistent with the idea that the
classical Hamiltonian (23) would receive no contribution
&om such a potential. If it is to give a nontrivial contribu-
tion to the quantum-mechanical theory, it must be equiv-
alent to a term in the action of O(h) or higher. Clearly,
similar results can be obtained for other Gaussian-like
terms for specific choices of the cyclic Hamiltonian. A
discussion of possible terms that may contribute is given
by Prokhorov [13].

It is worth noting for later reference that, if the Hamil-
tonian is cyclic, the path integral (7) can be evaluated
exactly by translating the variables of integration by
the classical solutions to Hamilton s equations consis-
tent with the boundary conditions q(t = 0) = q, and
p(t = T) = py, given by

Even if Aq~ —e, the infinite sum in which (25) becomes
embedded can result in a nontrivial contribution since
Ne ~ T. The upshot of result (25) is to transmute
the original interaction term f(q)Aq p2 into an effective
velocity-dependent potential in the path integral when all
momenta have been integrated. This velocity-dependent
potential appears proportional to h, since (24) can be
written

p (t) =pi q (t) =q'+ OH(py)

t9py
(27)

This is possible because the difference between adjacent
time slices does reduce to the derivative for a classical
function, i.e. , q, (t~+i) = q, (t~ + e) ~ q, (t~) + cq, (t~).
Performing an integration by parts similar to (11) reduces
the translated path integral (7) to

1 i dp
' 1 & H(p (& )) ) 28)exp [piq; + H—(p—&) T] de exp &

—) . qz(p, +i —p—, ) —
&2pj 2

&2~r

where the ellipsis refers to higher-order terms present in
the expansion of H(p, (tz) + pz) around p~ and, because
of the translation of variables, p~+z ——0. It is precisely
the latter result that reduces the translated path inte-

gral appearing in (28) to unity when all integrations are
performed, a fact that is apparent when result (12) is ex-

amined for the case K = 0. Therefore the only surviving
factor in (28) is the exponential of the classical action
evaluated along the classical trajectory (27).

C. Discrete spectrum path integrals

Another relevant point regards the case where the al-

lowed values of the moxnentum or energy constitute a
denumerably infinite set rather than a continuous vari-

able. Such a result is common in quantum-mechanical
systems, occurring in bound state spectra and in sys-
tems where the configuration space is compact or peri-
odic boundary conditions are enforced. In wave mechan-

dq q q, Il= n n,
—Q YL:—OO

(29)

ics the discrete spectrum can arise from demanding ei-

ther that the bound state wave function is normalizable

or that the wave function or its derivative vanishes on

some boundaries. It is natural to expect that the mea-

sure of the path integral for such a system would differ

from its "free" counterpart (7). However, it is often the
case that the path-integral representation of the transi-

tion amplitude (1) for such a system is identical to the

continuous result (7). This outcome is well known within

the context of specific systems [17]. Since this aspect of
path integrals is relevant to canonical transformations,
the general derivation of the range of integrations will be
sketched for the specific case of a free particle constrained
to be in a one-dimensional infinite square well.

The position eigenstates range from —a to a, while the
momentum eigenstates [ n) are discrete and indexed by

an integer n. Unit projection operators are given by
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while the inner product is given by

1 fimnq )(
(q/n) = exp

(2a(a)
Of course, the physical energy eigenstates are linear com-
binations of

~
n) and

~

n—) consistent with the boundary
conditions. The time-slicing argument that was used to
construct (7) can be revisited using (29) and (30) to ob-
tain

W,, =(n, ]e ~~~"~q, )
f

A N

= (2a) + ) dqi dqiv exp &
——) (q. —q. i) —eH(n. )

fL& y ~ ~ ~ iAN g=1

2AyXqN

a (31)

where qo
——q;.

Result (31) can be rewritten using the Poisson resummation technique, which begins by using the identity

OO OO

f(n) = ) / dnf(n) e""'".
A= —OO k= —OO

Using (32) and making the obvious definition pz ——n~mh/a allows (31) to be written as

Wy' = dqi "dqN ).1 dpi dpiv

2a ~ 2x 27l
1 i ~ ~ ~ i N

exp &
——) [pi (q~ + 2akz —

q~ i) —eH(pz)] — p fq+-
j=1

(33)

Because the Hamiltonian is independent of q and the
sums over the k~ are infinite, the sums may be absorbed
by extending the range of the qi integrations. However,
this is contingent on the fact that

2
exp ——py qN + kN2a = exp ——pyqN, 34

which holds as long as py = nyvrh/a and ny is an integer.
Because the wave-mechanical solution to the problem was
used to derive the path-integral form, it is clear that con-
dition (34) holds. The final form of the path integral is
given by

dpi dpiv
Wy; = . dqi dq~

2a 2s h 2s.h,

N

$ ).i'(pi+i pi) eH(pi)]h.
2-"")

where the limits on the q~ integrations are now koo.
Apart from the overall factor of (2a) i)'2, result (35),
with its ambiguous symbol pN~i ——py, is formally iden-
tical in its measure and action to the free case (7). In that
sense information about the system has been lost in the
transition from (31) to (35) since the form (35) does not
specify a discrete spectru~ for py. A priori knowledge
of the moment»~ spectr»m is required in order that the
discrete form of the Fourier transform, rather than the
continuous form, is employed to obtain the propagator

D. Fourier methods for eva1uating path integrals

A final aspect of importance regarding the Hamiltonian
path integral is the method that does allow the action in

the path integ al to be mampulated as if the formal time
derivative was a true derivative. The q, and p, variables
are first translated by a classical solution to Hamilton's
equations of motion consistent with the boundary con-
ditions. This means using classical solutions for both p
and q that satisfy the conditions

J.(t = 7 ) = pS q (t = 0) = q'. (36)

( (2n+ 1)s.t, )
qj =

)

). ((2n+ 1)s 'l ((2n+ 1)gati l
2T )

The expansions of (37) satisfy the proper translated
quantuin boundary conditions p(t = T) = 0 and q(t =
0) = 0, but are arbitrary at the remaining end points in
order to accommodate the quantum nature of the coordi-
nates. This is an outgrowth of the uncertainty principle
for canonical variables, since the uncertainty principle

Because there is no initial condition for p or final condi-
tion for q in the original form of the transition element,
the translated p and q variables do not necessarily vamsh
at both t = 0 and t = T. Consistent with these bound-

ary conditions, the 2N fluctuation variables qz and pi
are written as Fourier expansions in terms of 2N new
variables q„and p„,
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forces qf to be undefined if pf is exactly known, with a
similar relation between q; and p;. However, the formal
derivatives in the path integral new become true deriva-
tives, since to O(e)

(2n+ 1)~ ((2n+ 1)~t, )
q~+i —

q~ M t' q~ 2T ( 2T )
cos (»)

The measure is rewritten in terms of integrations over
the coeKcients of the Fourier expansions. This change of
variables is accompanied by a Jacobian that is nontrivial,
but one that can be inferred by forcing the new path in-

tegral to yield the same results as the con6guration space
measure version discussed in the preceding part of this
section. In addition to the usual Wick rotation T ~ —iT,
the Hamiltonian path integral also requires p„—+ —ip„.
The case of an arbitrary cyclic Hamiltonian is partic-
ularly easy since the integrations over the q„variables
yield a factor of the form

to define restrictions on the validity of the canonically
transformed path integral.

III. CANONICAL TRANSFORMATIONS

BF(p, Q, t) BF(p, Q, t)
Bp

'
BQ

(46)

A classical canonical transformation is one from the
coordinates (q, p) to a new set of coordinates (Q, P) such
that the Poisson bracket structure, or equivalently the
volume of phase space, is preserved. For convenience and

consistency only canonical transformations of the third
kind [4] will be considered in the remainder of this pa-

per, and these are de6ned by a choice for the generating
function of the general form F(p, Q, t) At . the classi-
cal level the new variables are determined by solving the
system of equations given by

(2n + 1) b(p„),
(8T'i" .:.

from which the 3acobian is inferred to be

(40)
It is important to remember that Q and p are treated
as independent in the definitions of the new coordinates
given by (46). However, the proof that the Poisson
bracket structure is preserved depends on the identities
obtained by differentiating (46) and using the fact that

Q = Q(q, p). For example, it follows that

[(» —1)")'
(ST)

(41)

q, (t) = A sin(art+ 8), p, (t) = m~Acos(art+ b), (42)

where

A = q, cscb, cotb = pt sec (~T) —tan(cuT) .
muq,

(43)

Using (42) and (43) in the harmonic oscillator action
yields the result

1
dt C = q;pt sec (uT) ——murq, tan(sr T)

0 2

The validity of this procedure can be tested on the har-
monic oscillator transition element. There the classical
solutions consistent with the boundary conditions are

Bq B2F(p, Q, t) BQ(q, p, t)
Bq BQBp

(47)

It is assumed that the equations of (46) are well defined

and can be solved to yield Q(q, p, t) and P(q, p, t), or
inverted to obtain q(Q, P, t) and p(Q, P, t). The action is

transformed according to

dt [
—qp —H(p, q)]

~~

0

dF
dt PQ —H(P Q) +

dt
T

= F(pz, Qf, tf) —F(p, , Q, , t, ) + dt [PQ —H(P, Q)],
0

(48)

1 pf tan((uT) .
2 fA(d

(44) where

The remaining translated action reduces to Gaussians in
both p and q„. Performing the integrations, combining
the result with the 3acobian (41), and undoing the Wick
rotation yields the prefactor

( 4(u'T'
lim

/

1—
(2n+ l)2)n=0 icos wT

(45)

Combining results (44) and (45) yields the correct form

for the transition element (1) for the harmonic oscilla-

tor. In Sec. IV the rami6cations of the quantum nature
of the coordinate Buctuations for the boundary condi-

tions of the canonically transformed coordinates will be
discussed, and the results of this subsection will be used

H(P, Q) = H(p(Q, P, t), q(Q, P, t))+
(49)

At the classical level there is no difBculty in obtaining
initial and anal values for both variables q and p since
it is assumed that Hamilton's equations can be solved

to obtain classical solutions consistent with any possible

pair of boundary conditions over the arbitrary time in-

terval T. The two unspecified end point values of the
variables are simply those given by the classical solutions
at the respective end point times. However, if canonical
transformations are to be employed in a path-integral
setting in a manner similar to the classical result, it is

necessary to deal with the quantum-mechanical version
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of this problem, and there is no a priori reason to ex-
pect that the classical definition is consistent with the
quantum-mechanical transition amplitude (1). This will

be discussed in detail in Sec. IV.
It is apparent at the classical level that the values of

the generating function evaluated at the end points, i.e.,
the surface terms, correspond to a piece of the minimized
original classical action not determined by the minimized
transformed action. This is demonstrated by examining
the well-known canonical transformation to cyclic coor-
dinates for the harmonic oscillator. Using the generating
function

(54)

2a —1

q =
( ~).f'(Q),

p' f(, ~)(q) &f(q)
2n (mA) Bq

(55)

(56)

Substituting (55) into the original Hamiltonian gives

where a = (n+ 2)/2n and p = —2/n. Using this gener-
ating function gives

gives

p'
F(p, Q) = — tan Q

m4Pq P 1 2 2
2

Q = arctan, urP = + —mu q
p

' 2m 2

(50)

(51)

+
I

—
I

f'"(Q) .
2m nA pm'

Using (56) shows that (57) reduces to

H = (uP~,

(57)

(58)

F(pQ) = — tan(, —Q ~2m' ur' ) (52)

transforms the Hamiltonian to u'P. While the solution
for Q becomes Q = ur't + Q;, this has no efFect on the
solution for the original variable q because of the offset-
ting factors in the generating function. This is merely a
refiection of the fact that scaling Q can be ofFset by scal-
ing P and m or cu when the Hamiltonian is cyclic. The
generating function can also undergo arbitrary transla-
tions of the Q variable as well, which are ofFset simply by
choosing a difFerent value for Q; in the classical solution.

The classical harmonic oscillator solution can be gen-
eralized to power potentials of the form

= p'
H = + —mA"q",

2m n

so that the transformed Hamiltonian is H = ~P. It
follows that the transformed action vanishes when eval-
uated along the classical trajectory Q, = rdt + Q; and
P, = Py ——P;. Therefore the value of the original action
along the classical trajectories q, and p, is contained en-
tirely in the end point contributions of the generating
function. An explicit calculation using the classical solu-
tions (42) in (50) with Q, = b and Qy = urT + h verifies
that the generating function end point values reproduce
result (44). Because the value of the action along the
classical trajectory is the phase of the quantum transition
amplitude (1) in the WKB approximation, the value of
knowing the form of the generating function for a canon-
ical transformation to cyclic coordinates becomes appar-
ent. Such a classical generating function already gives
considerable information regarding the quantum transi-
tion amplitude.

However, it is important to note that the choice of ~
appearing in the transformed Hamiltonian H is arbitrary.
Using the generating function

While a particular value for the rd in (58) can be chosen,
such a choice is arbitrary in the same way that the ~'
in (52) is arbitrary. This arbitrariness in scale is simi-
lar to that which appears in equivariant cohomology ap-
proaches to the same problem [18]. The sign for ~ is de-
termined from the range of the original Hamiltonian, and
can be either positive or negative if the original Hamilto-
nian was such that n ( 0. Choosing a negative sign for
ur will affect the final form of expression (59). However,
it is important to note that if n is odd, the range of the
original Hamiltonian is —oo to oo. This will introduce
diKculties in maintaining the range of the Hamiltonian
in some cases. This will be demonstrated for the specific
case of a linear potential in Sec. V B.

Equation (59) can be formally solved by integration,
so that

where

2a /A) df
(Q Q.) [f2 (2]~

nA (m&
(61)

The right-hand side of (60) is, up to the factor on the
left-hand side, the functional inverse of f, written g, so
that g(f(Q)) = Q. Therefore, inverting (60), where pos-
sible, yields the function f (Q) appearing in the canonical
transformation. However, even if the expression gener-
ated by (60) cannot be exactly inverted, it can still be
used to determined the classical form for Q(q, p) in the
following way. Form (55) shows that

where P = 2n/(n+ 2) = 1/n, if f(Q) is chosen to satisfy
the first-order difFerential equation

n- a
f(q) ="I il f (q)+'-I '

I

. (59)
E2~) nA qm)

where A is a constant with the natural units of inverse
length. Hamiltonians of the form (53) are rendered cyclic
by using the generating function

& m-)-q -&

p
(62)
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so that the result of the integral (60), written as a func-
tion of f, must coincide with result (62). Therefore sub-
stituting

1

f =
I

(m A q)»
~ p2n 1— (63)

I' = —p rcos8 —p„rsin8, (64)

and this yields the standard result x = r cos8, y = r sin8,
P„=p cos 8+p„sin 8, and Pg ———p r sin 8+p„r cos 8. In
order to invert these equations it is necessary to choose an
ordering convention for the operators. The most reliable
of these is %eyl ordering, which symmetrizes all non-

commuting operators. The result is

sin 8 sin 8
Pg —Pg

cos 8 cos 8
py ——sin8P„+ Pg + Pg

2r 2T

p = cos8P„— (65)

(66)

Using the commutators for the spherical coordinates
yields

p+p =P+ —P+ —P„—9 T2 r " 4r2 ' {67)

showing that this transformation takes a cyclic Hamilto-

into the result of the integration in (60) gives Q
Q(q, p). It is easy to show that the choices n = 2,
u = A, and Q, = m/2 reproduce the harmonic oscilla-
tor generating function (52). However, the cyclic form

(58) for the transformed Hamiltonian is not unique since
a second transformation using the generating function
F = f(P—)Q' results in a Hamiltonian that is an arbi-
trary function of P' = f(P) alone. Nevertheless, in any
cyclic Hamiltonian the remaining variable is some func-
tion of the original Hamiltonian, i.e., P = P(H(p, q)).

Any attempts to use these results within the quantum-
mechanical context are immediately beset with ordering
problems. While the classical Poisson bracket of Q and
P remains unity, the original algebra of q and p, coupled
with the transcendental nature of the transformation, re-
sults in the commutator of Q and P being poorly defined.
To lowest order in h it is true that [Q, P] = i h, but addi-
tional powers appear that are dependent on the ordering
convention chosen for the expansion of the transcenden-
tal functions. In order to preserve the commutation rela-
tions it is necessary to institute a unitary transformation
of the original operator variables, rather than a canonical
transformation. Anderson [19] has discussed enlarging
the Hilbert space of the original theory to accommodate
nonunitary transformations that alter the commutation
relations. Although some of the results obtained in such
an approach are similar to those of canonical transfor-
mations, this is a fundamentally different approach to
solving the equations of motion. As a result, it will not
be discussed here.

These ordering ambiguities can be demonstrated by ex-
amining the canonical transformation from Cartesian to
spherical coordinates in two dimensions. The generating
function for this transformation is given by

nian into a noncyclic Hamiltonian. It is not diKcult to
see that the O(h) terxn is essential to maintaining self-

adjointness of the Hamiltonian when written in terms of
spherical coordinates. This can be seen from an integra-
tion by parts for the expectation value of the Hamilto-
nian in spherical coordinates [16]. Of course, such a term
is not generated by the classical transformation, giving
further evidence that classical canonical transformations
and their quantum counterparts may differ by terms that
are functions of h. The numerical factor appearing before
the O(fis) term in (67) is a function of the Weyl ordering
chosen for the original operator expressions.

Nevertheless, because [Q, P] = ih, it is interesting to
treat the new variables as if they were canonically con-

jugate quantum variables and pursue the solution of the
transformed system (58). Alternatively, one could start
with the Hamiltonian (58), enforce the exact commuta-
tor [Q, P] = ih, and solve for the energy levels of the
system. While it is clear that the previously mentioned
ordering problems prevent this solution &om being that
of the original system that led to the cyclic Hamiltonian,
such a solution can serve as an approximation to O(h ) of
the original Hamiltonian. It should be noted that there
are many values for n such that the corresponding quan-
tum theory is not well defined. For example, odd val-

ues of n correspond to unstable theories if the range of

q is [
—oo, oo]. Negative values of n are associated with

pathologies; for example, the exponent P appearing in

(58) diverges at n = —2. It will be assumed that the
formal solution to be discussed is restricted to a theory
that is well defined.

This solution can be found in a formal manner by as-

suming a discrete spectrum, i.e., bounded &om below,
and defining the creation and annihilation operators

(68)

Using the commutator [Q, P] = ih gives [a, at] = 1 re-

gardless of the value of b. Since h ata = P —(1+b)h,
the Haxniltonian. (58) becoxnes H = fuu{ata + 1 + b)~.
Defining a ground state

~
0) by the relation a~ 0) = 0, it

follows that the excitations of the system are obtained by

applying suitably normalized factors of a~ to the ground
state, leading to an energy spectrum E„=fuu(n+ 1+8)~.

The arbitrariness of b can be used to offset the ordering
ambiguities in the canonical transformation generated by
the original algebra of q and p. The simple harmonic os-

cillator solution demonstrates this aspect. Using (51) and

ignoring commutators of q and p shows that the annihi-
lation operator of (68) contains the factor

m(u /' ip )
e = —z q+2P ( mid j (69)

The term in parentheses in {69) is, up to a factor, the

standard annihilation operator associated with the har-

monic oscillator. It is also true that ignoring the order-

ing ambiguities has resulted in an expression that does

not satisfy e '~e'& = 1 at the quantum level, exposing

the formal nature of the manipulations that led to (69).
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Choosing h = —1/2 reproduces the correct harmonic os-
cillator energy spectr»m.

It is important to determine if the general form for the
bound state spectrum of the Hamiltonian is in any way
valid for other systems, since the harmonic oscillator is
a notoriously pliable system. Choosing n = —1 in (53)
and restricting to A, q ) 0 produces the one-dimensional
Coulomb potential, whose associated Schrodinger equa-
tion can be readily solved by standard methods. The
eigenvalue equation

f(Q) =
m=1,3,5,...

1 (va —1)/2
Sln A7l (74)

&~f(Q)& 4

l( qQ )I =Az (75)

The Fourier series (74) is the sawtooth wave with unit
period and maxima and minima of +A . The derivative
of (74) gives the square wave with values +2A, so that

A2 d2 m)
(70)

As a result, the &ee Hamiltonian is mapped into another
&ee Hamiltonian under the action of the canonical trans-
formation,

possesses the bound state energies E„= —ms/
(252A2n2). The canonically transformed Hamiltonian
(53) gives P = —2 for this case, so that the choice

—ms/(2hsA2) and 8 = 0 reproduces the bound
state energy spectrum of the Schrodinger equation since
H = fi(to](at—a+ 1) . In addition, it is possible to eval-
uate the integral (60) for this case. Following the pre-
scription outlined in (62) and (63) and using the value tu

determined &om the differential equation gives the result

1

( A2 & m p2~"'(Q-Q;) =-
i (2ms) Aq 2m

Aqp2—2 arcsin
2m2

' (71)

The associated annihilation operator (68) possesses the
factor

( . . Aqp2)
exp( —iQh ~ ) oc exp 2i arcsin

2m

$2q2p2
+2i — H(p, q) .

2m3

Setting the Hamiltonian equal to its ground state eigen-
value, Eq ———ms/(2A2h2), reduces (72) to

m' i m 8
a oc q —1+ —qp -+ 2q

—1+q—

and this differential operator annihilates the ground state
wave function determined &orn. the Schrodinger equation,
$0 ——Cq exp( —m2q/h'A).

As another example, letting n ~ oo in (53) produces
a potential that is zero for ]q~ ( 1/A and infinite for

~q] ) 1/A. This limit therefore corresponds to a particle
in an infinite well of width 2/A. In this limit P -+ 2, so
that choosing ~ = ~2A2h/8m and 8 = —1 allows (58)
to reproduce the standard square well energy spectrum
E = n hu The form f.or f(Q) given by (60) for this
limit is not useful since it can be shown to correspond to
a mapping of the interval 2/A into the whole real line.

It is, however, possible to solve the classical square well
problem using a canonical transformation of the form
E(p, Q) = —p f(Q), where the function f is chosen to be

Bf(Q) p A P
8 2m 8m

(76)

so that the classical result for the evolution of Q is

A2Pt
Q=Q'+

4
(77)

Whereas the original momentum p oscillates between a
positive and negative value, the new variable P is truly a
constant of motion. The classical canonical transforma-
tion gives

t'

q=f
I Q'+

I
p=

~g4m )
(78)

and this describes the bouncing motion of the classical
particle in the square well.

IV. QUANTUM CANONICAL
TRANSFORMATIONS AND ANOMALIES

In the operator approach to quantum-mechanical sys-
tems any nontrivial change of variables is complicated
by the ordering and noncommutativity of the constituent
operators that occur in expressions. Such difBculties are
not immediately apparent in the path-integral expression
(7) due to the c-number form of the variables in the ac-
tion. However, closer inspection of the action in (7) shows
that the formal time derivatives do not behave in a way
that allows the classical canonical transformation to be
implemented, since qi+q —qi is not a pri ori O(e). For this
reason the implementation of canonical transformations
in the path-integral fornlalisrn cannot in general repro-
duce the transformed classical action. In fact, it would be
an error in most cases if it did, since using the classical re-
sult in the action of the transformed path integral would
yield a transition element that was inconsistent with the
results obtained from the Schrodinger equation, operator
techniques, or the original untransformed path integral.
An alternate approach must be taken, and in this paper a
variant of the method of Fulcutaica and Kashiwa [15] will
be used. This approach can be inferred by examining the
ramifications of using a new set of canonically conjugate
variables to construct the path integral.

The phase space of a quantum-mechanical system may
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and upon taking the modulus squared, integrating over

q(T), and using the completeness of the position states,
it follows that

so(T) lo(o(o) o(o'), T)l' = (q(o) ~o(o)) = f
' „.

(80)

For a quadratic Hamiltonian, it is well known that the
function G is independent of q(0) and q(T) [1], so that
(80) relates the volumes of quantum phase space com-
ponents to each other. For example, the &ee particle is
such that

G(q(o) q(T) T) = (81)

so that (80) gives

possess unusual properties, as the following simple argu-
ment demonstrates. The standard configuration space
transition element can be written

( q(0) l q(T), T ) = G(q(0), q(T), T) exp iW(q(0), q(T), T),

(79)

most cases it is not. In order to evaluate these inner
products, a general form for them will be assumed, and
a consistency condition necessary to maintain (84) as a
unit projection operator will be derived. This result will
serve to define a quantum-mechanical version of canon-
ical transformations that is similar in structure to that
proposed by Fukutaka and Kashiwa [15].

If (84) is to hold, the form of the inner products must
be such that

(pylq') = dQN(ps IQN) e' ' "'"(Pilq*)
42~@

(85)

The new variables and the inner products are defined
in the following way. The inner products are written
formally in terms of some function F(p, Q),

1
( Pf ~

QN ) '~XP
o Ipf(Qf ()N)+ o (Pi ()f)I],

27rh

(86)
1

(R I o') = ~xr —-„(»Q'+ o'(o' 0')()
27rh

dq T = — dp 0 82
Inserting forins (86) and (87) into (85) gives

Result (82) is reminiscent of the spreading of a wave

packet for the &ee particle. A similar analysis for the
harmonic oscillator gives

1
(py lq') = exp

~ Py(Qy —Q;)+F(py, Qy)
2~@

dq T = dp 0 (83) F(p', Q;)— (88)

Of course, both of the phase space volumes appearing
in these expressions are infinite, and the comparison of
infinities is a poorly defined endeavor. Nevertheless,
these results hint at a richer structure in the quantum-
mechanical phase space, and that this structure is related
to the prefactor G.

If there exist new conjugate operators, Q and P, at the
quantum level, it is then natural to construct the path in-
tegral using their eigenstates as intermediate states. This
means a repetition of the steps used in Sec. II that led to
(7), using as a unit projection operator

(84)

In so doing, two difhculties occur immediately. The first
is the evaluation of the matrix elements of the original
Hamiltonian, H(p, q, t), in the new states. The second
problem is the end point evaluation. While the inter-
mediate states are the new ones, the end point states
of the transition element are still eigenstates of the old
operators. In the transition element of (1) there are
two inner products of importance to the final form of
the path integral constructed using N copies of the unit
projection operator (84), and these are (pt l Q~ ) and
(Pi l q; ). In some simple cases, such as the transforma-
tion &om Cartesian to polar coordinates, it is possible
to obtain exact expressions for these inner products. In

In order that (88) reduce to the standard result, it is

necessary to identify

—Py(Qy —Q;) = F(pg, Qg) —F(pg, Q;),
—q*(pr —p*) = F(p~ Q*) —F(p' Q').

(89)
(90)

For the identifications of (89) and (90) the inner product
of (88) reduces to

1
(pslq*) = exp -&q'(py-p')

2vrfr
(91)

which is the correct result if the restriction p; = 0, famil-
iar &om the discussion in Sec. IIB, is enforced.

Although identifications (89) and (90) result in infi-
nite series definitions of the new variables P and Q, the
leading term of the expansions reproduces the classical
result. For example, (89) gives

OF(p~, Q~) 1 O' F(p~, Qz),
OQg 2 OQ2

so that the first term coincides with the time-independent
form of the classical canonical transformation to the new
variable P. In addition, the quantum counterparts of
identities such as (47) are altered. This will be discussed
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later in this section.
The "infinitesimal" versions of (89) and (90), to be

used in defining the path-integral variables, are given by

F(p' Q') F—(» Qj i)-
b,Qj

F(p+i, Q, ) F-{p, Q )
APj

{94)

-F(pj Qj) (95)

and the action sum in the path-integral (7) therefore be-
comes

—).qj{p'+i -p') = F{pj Qj) F(p' —Q*)
j=O

N

+).»+i(Qj+i —Qj) .
j=o

(96)

Result (96) is similar in form to the standard end point
terms generated in the action by a canonical transforma-
tion. It is important to remember that this result is valid
only for the case that p; = 0.

The form of the transformed Hamiltonian appearing in
the action is complicated by the dependence of the old
variables, q and p, on b,P and b Q, as well as P and Q.
From (93) it follows that pj is a function of P~, Qj, and
Qj i, but that the dependence on Qj i can be expressed
in a power series in b Qj,

(97)

where AQj ——Qj —Qj i and Apj ——pj+i —pj. Using
these definitions of the new variables allows the formal
time derivatives in the path-integral action to be trans-
formed appropriately, since (93) and (94) give

qj (p—j+1 —pj) = Pj+1(Qj+1 —Qj ) + F(pj+1 Qj+1)

F(p Q, t ) —F(p Q i, t,)-
b,Qj

F( '+ Q't) F( 'Q t)
Apj

H(p, , q, , t, ) = H(P, , Q, , DQ, , b,P, , t, )

BF(p+ Q. t.)
Bt

(98)

(99)

(100)

The result (100) is valid only in the limit that t~~i tj =—
e m 0. However, the identifications of (98)—(100) lead to
a result similar to (96),

The importance of the leading behavior of b,Q in e,
discussed in Sec. IIB, is now apparent. The form of
the transformed Hamiltonian will depend critically on
whether the terms containing b,Q and b P are suppressed
by the overall factor of e that prefaces the Hamiltonian.
It should be clear &om the discussion of Sec. II that
these 4 terms will be suppressed by some power of e;
it is not clear until the specific system and transforma-
tion are chosen if they will still contribute to the path
integral when the infinite sum is evaluated. If they do,
then the transformed quantum-mechanical Hamiltonian
will difFer from the classical transformed Hamiltonian.
The transformed Hamiltonian will therefore be written
H(pj, qj) = H(Pj, Qj, hPj, AQUA), since it is not a priori
obvious that the 6 terms can be suppressed. From the
discussion in Sec. IIB it is apparent there are cases where
such terms can contribute to the evaluation of the path-
integral, and, at least for one of the cases discussed there,
can become O(h) terms. These are the path integral
counterparts of the ordering ambiguities in the operator
approach to canonical transformations, and, in a loose
sense, represent cornmutators between the old canonical
variables j and p.

These results can be generalized to the case that the
function F or the original Hamiltonian have explicit time
dependence. Denoting the function as F{pj,Qj, tj), an
analysis similar to that which led to (93) and (94) gives

N).[—q (p+ —p ) —H(p q t )j
j=0

N
= F(pj, Qj, tj) —F(p(, Q;) t;) + ) Pj+i(Qj+i —Q, ) —eH(P;, Qj, bP;, EQj) tj) —e

j—0 s 2

(101)

However, it will now be shown that the Jacobian of a
general transformation may contribute terms of O(b, Q)
and O(AP) to the action in such a way that they are not
prefaced by a factor of e. For that reason they cannot
be ignored, since the sum in which they are embedded
allows them to contribute a finite amount to the trans-
formed action. These O(AQ) and O(b,P) contributions
are calculated kom (94) and (95) using the implicit de-
pendence of Q on q and p. Initially, these contributions

BQj BPj
~ i ~ h gg ~ t9p] 2

BP, BQ,
Bgj 19pj

(102)

where it has been assumed that Qj and P~ depend pri-

will be calculated for the case of a one-dimensional sys-
tem, and the generalization will be discussed afterward.

The starting point is the definition of the inverse Ja-
cobian,
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marily on qj and pj, i.e., that the dependence on the
other variables is suppressed by some power of ~. It will
be seen that this is a self-consistent assumption. The
partial derivatives of Pz can be obtained to O(b, Q) from
the expansion (97) by using the implicit dependence of
Q~ on qz and p~. The result is

1 f BsF BQ~Bp,. BF BQ, l

2 (Bp,'BQ, Bq& BQ. Bp~BQ, Bq~ )
1 BsF BQ~ Bp,
2 Bp2 BQ, Bq, BP,

(110)

BP~ 8 F 18 FBQ.
Bp~ Bp~ BQ~ 2 BQ2 Bp,

1 BsF 1 BsF BQ~

28p BQ2 68Qs Bq,.
(103)

It is important to note that, even if AQ~ is O(e), the
cross terms in (109) can contribute finite quantities. This
follows &om the fact that

N

J ' = lim (1+A~5, Q~ + B~b,P~)

BP, 18sF BQ, 18 F BQ,
Bq, 28Q2 Bq, 68Qs Bq,.

(104)

N

lim exp ) ln(l + Azb, Q~ + BEEP~). (.112)
N moo

Direct substitution of (103) and (104) into (102) gives As a result, the expansion of the logarithm creates terms
of the form

N

J—1
~ h 4 1

j=1

82F BQ, 1 BsF BQz

Bp, BQ, Bq, 2 Bp, BQ2 Bq,

N

J = exp ) —) [ihA, AQz + ihB~AP, ] &, (113)

(105)

«suit (94) can now be differentiated and combined
with the independence of qz and pz to obtain, to O(&p),
the quantum counterpart of (47),

Bq~ 8 F BQ~ 1 8 F BQ~

Bq, Bp, BQ, Bq~ 28p28Q, Bq,

The term Apj can be written in terms of an expansion
in b, Q~ and b,P~, so that to O(h)

(107)

Combining (107) and (106) and inserting the result into
(105) yields

which can be absorbed into the transformed action of the
path integral. It should be noted that these terms can
contribute a finite quantity to the action even if AQ is

O(e) since Ne ~ T. For the same reason, if the 6 terms
are O(e) or smaller, then the higher powers in the expan-
sion of the logarithm can be dropped. Because they are
proportional to h, terms of the form (113) are reininis-
cent of the velocity-dependent potentials (26) discussed
in detail in Sec. IIB. Clearly, if the b. terms are not
suppressed by a factor of e, it will be necessary to retain
higher-order terms in both the expansion of the Jacobian
(102) as well as later in the expansion of the logarithm
in (112).

These results may be generalized to the multidimen-
sional case. The multidimensional versions of (93) and

(94) are given by

~ ~ ~

j=l

1 ~ BsF BQ, Bp, BsF BQ~ |
2 (Bp28Q, Bq, BQ, Bp, BQ2 Bq, )

—P;&Q; =F(p", Q;) —F(p; Q; i)-(114)
(115)

1 BsF BQ, Bp,. (108)

N

J ' = (1+A,b,Q, +B;b,P, ), (109)

where

In general the lack of invariance for the measure of
a path integral under a transformation, which itself is a
symmetry of the action, is referred to as an anomaly [20].
In the case of (108), the anomaly arises due to the formal

nature of time derivatives in the path-integral action, and
has nothing to do with the behavior of the classical action
under a canonical transformation. Nevertheless, (108)
will be referred to as the anomaly and can be written, to
lowest order, as

where a sum over the repeated index a is implicit. The
definitions (114) and (115) do not yield a unique expres-
sion for each of the q~ and P~ since the Taylor series

expansions can be separated in an arbitrary manner for
each of the variables. In what follows, a symmetrized
definition of each of the canonical variables will be used,
so that

8 . (—1) BE,
BQa ) (~+ 1)t BQaz . . . BQa 2 2

(116)

8 . (—1)" 8 F
2 Bpa ~ (ri + 1)l Bpa& . Bpara 2 2Ap. '. . . Ap-",

j n=o j j
(117)

where there is an implicit sum over any repeated pair of
a; coordinate indices. It is straightforward to repeat the
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analysis that led to (109) and (110) and this yields the
multidimensional version of the anomaly to O(b, ),

For these conditions the entire A anomaly therefore re-
duces to a prefactor for the path integral, given by

where

J ' = (1+A,.Aq, + B,hP, ), (118) &Bf(q )&
'"

&»(Q*)&
&OA) (, Oq')

Similarly, the B anomaly can be written

(130)

1 O' F, . Op, OQ. , 1 O' F, BQ;
2 Opb Bpc Bqd Bqa Bpc 2 Opb Bqc Bqa Bqc

(119)

N

lim ) BbP
N-+oo

1 —nf P

BsF, Bp,' Bq,'
2BpbBp' Bq~. BP Bq. '.

2 2 2 2 2

(120)
1 —o. T d

dt —lnP .
2a

(131)

F = Jf(-Q) . (121)

From the results of Sec. III it is clear that (121) is ade-
quate to transform all arbitrary single power potentials
to a cyclic form. The anomaly associated with (121) will
be evaluated using the classical forms for the new vari-
ables. Such a procedure is consistent only to O(b, ). It
follows that these classical forms are given by solving

q~ =~(p~)' "f(q~) &' =(») B
(122)

and these relations in turn show that

Bq~ 1 (i ) /Bf i
EO4)

'. =-J"'
Bp, 1 &Bf ) B2f

Using (122)—(124) in (110) and (111) yields

1 (Bf) 'Bf
2n IBQ ) BQ

1 —o.
B~

(123)

(124)

(125)

(126)

Similarly, using the multidimensional generating function

F = p f (Q)— (127)

results in a vector anomaly solely of the A type, given by

B2fb Bq&
A

2 BQ BQ' Bqb
2 2 2

(128)

It is important to note that if it is possible to treat
Bq —e Q, then the exponentiated anomaly term of (125)
becomes

N T
— lim ) A~bq~ = —

dt's(q)

Q
j—1 0

dt —ln
1 d Bf(Q)

2a 0 ch
(129)

Exponentiation of (118) leads to a result similar to (113).
The O(b, ) anomaly takes a particularly simple form

when the original generating function is given, for the
one-dimensional case, by

As a result, the B anomaly creates a second prefactor,

( P ) (1—a)/2a
Bj =

I
P'

I

&Pi�)

(132)

Results (130) and (132) show that, even in the case that
the canonically transformed Hamiltonian is cyclic and
the transformed path integral generates no prefactor, it
is still possible for the correct prefactor or van Vleck de-
terminant to be recovered from the anomaly associated
with the canonical transformation.

However, results (130) and (132) also show that the
problem of identifying the appropriate boundary condi-
tions for Q and P is of paramount importance to evalu-
ating the anomaly and determining the correct prefactor
for the original path integral. In previous sections it has
been stressed that the use of a canonical transformation
requires suppressing the p, term that must be inserted
into the action to allow the definition of the canonical
transformation. On the face of it, simply setting p; to
zero would appear to be sufficient to bypass this prob-
lem. However, doing so would create three initial and
final conditions for the classical system, thereby overspec-
ifying the classical solution to the equations of motion,
a solution that is critical to evaluating the path integral
for cyclic coordinates. However, if q; is set to zero, the p;
term is automatically suppressed since it appears in the
action as q;p;. This choice therefore allows the value ofp;
to be determined Rom the classical equations of motion
consistent with the boundary conditions q; = 0 and p~
arbitrary. The requirement that q, , rather than py, be
zero for consistency is an outgrowth of choosing to write
the action with a term of the form qp, rather than pq.
This in turn was a result of choosing a canonical trans-
formation of the third kind. Other choices will lead to
diferent consistency requirements.

In the case of quantized variables, the problem is yet
more subtle. In Sec. II D the path integral with an action
translated by a classical solution was evaluated and the
fiuctuation variables p~ and q~, given by (37) and (38),
were shown to be arbitrary at their unde6ned end point
values, i.e. , q(t = T) and p(t = 0). While this is a natural
consequence of the uncertainty principle, it means that
the original quant»m variables do not collapse to their
classical values at these times, i.e., q(t = T) g q, (t = T)
Therefore using the classical de6nitions for both of the
q and p end point values is not a reliable method. As



4552 MARK S. SWANSON 50

in the classical case, if py is to be defined and p,. is to
be arbitrary, i.e., nonzero, it is clear Rom the discussion
in Sec. IIB that the path integral must be evaluated at
q; = 0, since such a choice will suppress the p; term
while still allowing p, to be arbitrary. The absence of
qy from the action of the path integral of the form (7)
allows it to be arbitrary without encountering a similar
problem. Thus the canonically transformed path inte-
gral's end point values are correct only if q,. = 0. For
a canonical transformation of the form given by (121),
this means that Q; must be a root of f(Q). This clearly
also suppresses the initial value of the generating function

(&') &(Q*).
Obviously, the q, g 0 case can be evaluated by first

translating the action everywhere by the classical solu-
tions, as in Sec. II D. This leaves a path integral with the
effective boundary conditions q; = 0 and py

——0, allowing
a consistent evaluation. A drawback to this technique is
that such a translation will create additional terms in
the potential in most cases, and the simple canonical
transformations introduced in Sec. III to render power
potentials cyclic will no longer be applicable after the
translation. However, if the original potential was lin-
ear or quadratic this will not be the case, since such a
translation induces no additional terms in the Huctuation
potential for these two cases. A translation by a classical
solution then shows that the prefactor of the form (130)
must be independent of the end point values for the case
that the original potential was linear or quadratic, and
should be evaluated consistent with the conditions q, = 0
and py ——0.

Apart &om these considerations, the transformed ac-
tion with the anomaly term in it is given by

N

) [(P, y i hA, )AQ, + i AB, b,P,

eH(P, , Q, ,—DQ~, b,P, )] . (133)

If the range of the P~ integrations is —oo to +oo, it is
possible to move the anomaly into the Hamiltonian by
translating the P~ variables to P~ —ibad~, so that the
Hamiltonian becomes formally similar to that of a parti-
cle moving in a complex vector potential.

The anomaly appears because of the structure of
quantum-mechanical phase space. The exact function of
the anomaly depends on the specific system being evalu-
ated. Some of these will be discussed in Sec. V.

A. Transformations of the free particle

1(Bf ) 8'f
A, =--~

~ 2) 8~=0.

It is important to investigate if the approximations used
to derive (134) are valid, since the exact Jacobian may
contain additional terms. The definitions of the new
quantum-mechanical variables in (93) and (94) result in

v, = f(Q, ), (135)

In this subsection a specific set of canonical transfor-
mations of &ee particle systems will be considered. In
Sec. IIC the path integral (35) for the square well was
derived. Through Poisson resummation it was shown to
possess the same infinite range of integrations for the
measure as that of a free particle. The path integral for
the square well can therefore be evaluated by the tech-
niques of (28) and (29) for cyclic Hamiltonians. This
shows that the square well path integral reduces to the
correct result, i.e. , the value of the action along the classi-
cal trajectory with the additional overall factor of 1/~2a.
There is no need to perform a canonical transformation
on this system.

However, since the exact solution of the &ee particle
path integral is available, such a system can serve as a
laboratory to investigate the validity of the techniques
derived in previous sections. To begin with, the variables
in the action will be translated by the classical solution
to the equation of motion, so that the end point vari-
ables are given by p~+~ ——0 and qp = 0. Because it
is quadratic in the momentum, the action is unaffected
in form by this translation. However, the arguments of
Sec. IIC show that the remaining path integral should
reduce to a factor of unity, even in the event that it is
canonically transformed. In this subsection the effect of
canonical transformations associated with the classical
generating function F = —p f(Q) on such a free parti-
cle path integral will be considered. Such a canonical
transformation at the classical level creates a Hamilto-
nian that, for most choices of f, is velocity dependent.
Such Hamiltonians are typically not self-adjoint, creating
difficulties in constructing the Hilbert space of the theory.
It is therefore of interest to examine how the transformed
path integral sidesteps this problem.

This canonical transformation has the general form
(121). so that, to O(b, ), the anomaly is given by

%. EXAMPLES

In this section the machinery developed in the previous
sections will be applied to specific cases to evaluate the
path integral by a canonical transformation. In most of
the cases the exact form of the path integral is available
by other methods, so that the outcome of the canonical
transformation may be compared to show that equivalent
results are obtained.

P,AQ~.
f(Q ) —f(Q, —i)

t »(Q -) &'&(Q.)
BQ, 28Q2. P~ . (1M)

Because q~ is independent of P~, the exact Jacobian for
the jth product in the measure is given by
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dpi' dq~
= dP~ dqz J~

dPdq 1. 11(Bf(q)~
2E Bq')

p,' P, ' &Bf 5

2m 2m (Bq~ &

1 f'Bf(q~)b B2f(q~)
- —2

(138)

(137)

When exponentiated, (137) yields the same O(6) result
~ (134).

However, it would be misleading to exponentiate this
Jacobian for the following reason. The Hamiltonian in
the path-integral action remains quadratic in momentum,
since

Even though the O(EQ) terms in the Hamiltonian could
be treated as a perturbation, the presence of the &q
terms in the anoinaly prevent integrating over the Q vari-
ables as in (28) to show that this remaining path integral
reduces to unity. Instead, the P integrations must be
performed first, and this shows that the anomaly in the
measure is canceled as a result of the Gaussian P inte-
grations. Since the action was translated by the classicaI
solution prior to canonical transformation, the bound-
ary conditions are Py = P; = 0 and qy = Q; = 0. Upon
performing the P integrations, the remaining Euclidean
path integral reduces to

Bf(q') 1 1 - m+q' t'Bf(q )&', 1 &Bf(q )&
' B'f(q )

BQ; 2+le ti, 2e q Bq~ ) 2 ( Bq~ ) Bq~
& . (139)

It is natural to define the new variables f~ = f(q~), and this gives

df dq
Bf(qs)

8 (140)

This new variable must have the same range of integration as the original variable q~ by virtue of (135). The
transformed action simplifies as well since

- 2
~q' &»(q~) ~ 1 t'Bf(4) & B'f(q. ) ~q.' (&f, ~

'
mdf~

26
(141.)

The resulting path integral is therefore identical to the
original path integral written in terms of the q~ variables.
The anomaly has been canceled by contributions &om
the Hamiltonian. This means that the path integral de-
fined by the measure (137)and the action (138) maintains
a well-defined quantum theory for a velocity-dependent
Hamiltonian.

In general, it is not difficult to see that a canonical
transformation resulting in a transformed Hamiltonian
that is quadratic in P will possess O(b, q) terms that,
upon integration of the P variables, can result in cancel-
lation of the anomaly.

1 i 1 2 TIy
Wf, —— exp —— —T &py + + q, mAT

&2~t

+pfq;+ —mA T
1

6
(143)

Since the action is linear, the e8ect of a canonical trans-
formation on the path integral will be analyzed for the
case that py = q; = 0. Result (143) shows that the path
integral with py ——q; = 0 must result in

B. The linear potential
1 i1 23

Wf, = exp ———mA T
h6 (144)

The case of the linear potential,

= u'
H = +mAq,

2m

allows an exact integration of the path integral, yielding
the transition element

The evaluation of this path integral by canonical trans-
formation can be used as another test of the techniques
developed in the previous sections. The classical action
has the form (53) and can be rendered cyclic by a canon-
ical transformation of the type (54). Evaluating the in-
tegral (60) for the classical generating function yields
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p3 g
F(p, Q) = — —1

6m2A 9mA2Q2 (145)

However, this generating function suffers from a defect
inherited &om the parent Hamiltonian, which is not pos-
itive definite due to the odd power of q. Using the gen-
erating function of (145) yields the classical Hamiltonian

can be evaluated by finding the action along the classi-
cal trajectory. The initial and final conditions are de-
termined &om the equations of motion for the original
variables, with the boundary conditions that pf and q,.

both vanish. The solutions for p and q consistent with
these conditions are easily found, with the result that
p, = mAT. Using (148) then gives

8 = P'/', (146)

which is positive definite since P is assumed to range
over real values and the real branch of the 2/3 power is
used. In order to match the range of the original Hamil-
tonian, P would have to range over both pure real and
pure imaginary values, rendering the integrations over
P undefined. A similar problem exists for the range of
the new canonical variable Q, since classically it is trans-
formed to

P, =~ —mAT +Ep~
)

while

2 T2

3 Ep —-mA2T2

The Hamiltonian equations of motion give

(151)

(152)

Q2
8 p

9mA2 p2 + 2m2Aq
' (147)

P=O w Pf ——P;,
Q= P / —m Qy=Q, + Py /—T .

3 3

(153)

(154)

resulting in imaginary values for the case that the original
Hamiltonian is negative.

This problem can be remedied by adding the term
pEp/mA to the generating function (145), where the limit
Ep M oo is understood. Doing so allows the range for P
to be real while still matching the range of the origi-
nal Hamiltonian, since the transformed Hamiltonian be-
comes

2 3/2

H = P / —Ep m P =
~

+mAq+Ep ~, (148)
g2m

T T
dt [PQ —P / + Epj = EpT — dt P, —

p p 3

=2 1 2 3= —EpT ——mA T
3 6

(155)

The generating functions reduce to

In the liinit that Ep + oo, it follows that Qf = Q, .
Using these results, the action along the classical tra-

jectory becomes

while the range of Q is now real, since

8

9m% (p + 2m Aq + 2mEp)
(149)

Ff ——0,
2

F; = —EpT.
3

(156)

(157)

Finally, form (130) for the anomaly prefactor reduces to

The necessary presence of Ep stems &om the fact that
the Hamiltonian is not bounded &om below.

Since the transformation does not yield a quadratic
Hamiltonian, it will be assumed that the perturbative
argument of Sec. II is valid, and that terms of O(b, Q)
in the transformed Hamiltonian can be suppressed. The
transformed path integral is then given by

ApBp i
Wt; = exp —[Pt —Pt])&2~@

lim Ap ——1,
f Eip ~oo

while the prefactor (132) becomes

(p e i/3

(158)

(159)

~ T
x dQ exp — dt [PQ —P*t + Ee])2mb h

where A and B~ are the anomaly prefactors (130) and
(132), F; and Fy are the generating function evaluated
at the initial and final conditions, and all O(b, Q) terms
have been suppressed in the Hamiltonian.

Because the transformed Hamiltonian is cyclic, the re-
sults of Sec. IIC show that the remaining path integral

Combining results (155)—(159) gives the correct result

(pf =O~e * / ~q;=0) = exp ———mA T—'HT a i 1

&2~@

(160)

showing that all reference to Ep has disappeared from the
problem. It is not diKcult to extend the same analysis to
the case that q; = 0 and py g 0 to show that the correct
results follow &om the canonical transformation.
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C. Polar coordinates

The transformation from Cartesian to polar coordi-
nates served as the first indication that adopting classical
canonical transformations to the path integral was more
complicated than expected [9]. In effect, it is a multi-
dimensional version of the transformation to a velocity-
dependent potential analyzed in Sec. VA. As a result, a
mechanism similar to (141) should occur, allowing the
canonically transformed path integral to maintain its
equivalence to the original path integral.

The starting point is the two-dimensional Hamiltonian

1 b,r, l
dz~dyf dp ~dp„, -+ d8, dry. dPe~dP„,.

~

1 ——2')
(168)

It is possible to exponentiate the anomaly, resulting in
terms in the transformed action with the form

2rf )
(i69)

The resulting measure for the path-integral transforms
according to

(p'. + p„') . (161)

The action associated with this Hamiltonian may be
transformed into polar coordinates by using the classi-
cal generating function

F = —p r cos 8 —p&r sin 8 . (162)

(
P„~ = p ~ (

cos 8f + —sin 8f b,8f )2 )
+p„f ~

sin8z ——cos8f 48f
~') (i63)

Psf = —p ~ ~
r~ sin8~

x~ = T~ cos 8~

g~ = T~ sin 8~

1 l1——sin8. Ar ——r-cos8 682 2 2 2 2 2)

1+ —cos8 6r — rsin8 —682 2 2 2 2

(i64)
(165)
(166)

These definitions yield p and p~ in terms of the new
variables. Substituting them into the Hamiltonian gives
the transformed Hamiltonian to O(E):

1 1 ( 14rP„+—
i

1 ——
i Pe

2m "~ r2
g 2 r~ )

(167)

Of course, the quantum-mechanical version of this trans-
formation results in terms of O(b. ) and higher. In the
following analysis, the O(b, ) terms will be retained to
construct the form of the path integral under this trans-
formation. It is to be remembered throughout that this
is a shorthand for the full canonical transformation. For
simplicity, the boundary conditions will match those for
the case that the original Cartesian action has been trans-
lated by the classical solutions to the equations of motion,
so that p f = py f = x, = y; = 0. For such a choice the
remaining path integral must reduce to a factor of unity.

The procedure is tedious but straightforward. The new
momenta and coordinates are given by

Since the range of the P„~ integrations is infinite, this ex-
tra term can be transferred to the Hamiltonian by trans-
lating the P„~ variables. This results in

1 2 1 2 ih h,P2 P2
2m "~ 2m "~ 2mr~ 8mr 2 (i70)

This is precisely the self-adjoint form (67) for the Weyl-
ordered Hamiltonian in spherical coordinates discussed
in Sec. III.

However, as in the case of the velocity-dependent
transformation discussed in this section, it is misleading
to exponentiate the anomaly term. This is demonstrated
by performing the momentum integrations. The integra-
tion over Pe exactly cancels the anomaly, and the result-
ing measure in the path integral is rf dry d8~ (2vr/me),
while the action becomes

N 2

) ~2 2~1 ~~ ~82
2e 2e ( 2 r jj=1 2

(171)

Using (165) and (166) it is straightforward to show that
(171) is, to O(E), the same as

N

) —Ex-+ —b,y
2E' 26'

2=1
(172)

while the measure is the same as dz~ dy~. (2w/me). Thus
the path integral with P„and Pg integrated generates a
path integral and measure exactly equivalent to the orig-
inal path integral with p and p„ integrated. Since the
original path integral reduces to a factor of unity, this
completes the proof that the path integral with its ac-
tion constructed using (167) and measure given by (168)
reduces to a factor of unity. This is an O(6) proof of
equivalence, similar to the all order proof for the trans-
formation to a velocity-dependent potential discussed in
Sec. VA. This is in effect nothing more than a multi-
dimensional version of the relationship (141), and could
be extended to an all orders proof.

D. The harmonic oscillator

Retention of the O(b, ) terms is essential since the trans-
formed Hamiltonian (167) is not cyclic and also remains
quadratic in the momenta. The anomaly term can be
calculated to O(b, ) directly from the form of the trans-
formations, or by using the multidimensional form (119).

The harmonic oscillator has been analyzed by employ-
ing the canonical transformation (50)

p'F = — tanQ, (173)2m'
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so that, in the nomenclature of Sec. III, f (Q)
tan Q/(2m') and a = 2. It will be reviewed here for
the sake of completeness and because certain results will
be used in Sec. V E. The results for the quantum version
give

(175)

q, = P'+' + "' tan Q, , (174)

P, b,Q, =. (tanQ, —tanQ, .
g) .

2m(d

The classical canonical transformation leads to the trans-
formed Hamiltonian H = ~P. The quantum version of
the transformation, given by (174) and (175), results in
terms of O(h) in the transformed Hamiltonian. However,
because the transformed Hamiltonian is not quadratic
in P and is cyclic, it will be assumed that suppressing
these terms is allowed by the perturbative argument of
Sec. IIB. A mild difference occurs since the range of the
P variable is [O, oo]. This prevents the transfer of the
anomaly into the Hamiltonian. As a result, the anomaly
terms will be evaluated using (130) and (132).

Performing the path integral using results (28) yields
the transition element

76e7; = exp —IF7 —F, + Se]), (176)
2vrh

where S,~ is the transformed action evaluated along a
classical trajectory,

T
S,~

—— dt P, , —~P, . 177
0

Hamilton's equations of motion, Q = ur and P = 0,
have the solutions Qy = Q, + uT and Py = P;, showing
that S,~

——0. The restriction to q; = 0 is satisfied by
the choice Q, = 0. Using these results in (130) and (132)
gives the anomalies

for all but the quadratic and linear potentials, doing so
induces additional terms into the action, preventing the
use of the generating function (54) which was derived to
render the simple power potential potential of (53) cyclic.

However, it is possible to treat any translated action
with a potential involving terms higher than quadratic
in first approximation as a time-dependent harmonic os-
cillator. This follows &om the fact that the translated
action will possess the form

p' 1 B'V(q.),2= —qp — —— '
q2m 2 Bq2

(181)

where q, is a classical solution to the original equa-
tions of motion consistent with the boundary conditions
q, (t = 0) = q, and p, (t = T) = py. The presence of a set
of well-defined eigenvalues for the associated eigenvalue
problem is of central importance in determining tunnel-
ing rates and stability of states in the quantum theory
and is intimately related to Morse theory [21].

A canonical transformation approach to the remaining
quadratic path integral, eH'ectively a time-dependent har-
monic oscillator with the boundary conditions q; = py ——

0, will be used to obtain an approximate evaluation. This
begins by defining the time-dependent frequency ur(t) by

1 B'V{q,)
fD Bq

(182)

The right-hand side of {182)can be negative for a wide
variety of circumstances. For example, the potential
V(q) = —Pq2 + Aq gives rise to negative values for u2

along any trajectory that passes through the range of
values q ( p/6A. As a result many trajectories will

generate an imaginary value for ~ for intervals of t.
The time-dependent canonical transformation to be

used is given by

(By(Q&)~ ' /BJ(Q*)l
0 BQr ) 0 BQ' ) icos &uT

'

(178)

tan Q,
2mur(t)

(183)

where the time-dependent frequency of (182) appears in
(183). Suppressing all terms of O(b, ) and using result
(100), the transformed Harniltonian for this case is given

by

(1—a)/2a

(Py)
(179)

The product of the anomalies reproduces the correct pref-
actor (45). The generating functions become F; = 0 and

2

Fy ——— tanuT .I f (180)2m'
Comparison with (44) and (45) shows that combining
these results in (176) yields the correct harmonic oscilla-
tor transition element for the case q; = 0.

E. The time-dependent harmonic oscillator

One of the drawbacks to the techniques developed in
this paper has been the restriction q; = 0. Of course, it
is possible to circumvent this problem by first translat-
ing the action by a classical solution to the equations of
motion. The remaining path integral will then have the
boundary condition q; = 0 automatically. Unfortunately,

0 = (u(t) P + sin 2Q .
P B~(t)

2ur t Bt
(184)

Bu)(t) sin 2Q
Bt 2&v(t)

(185)

P=- B6d(t) cos 2Q
Bt ur(t)

(186)

The solution to (185) depends upon the form of &u(t), but

Clearly, suppressing the O(b, ) terms is not valid in this
case since the transformed Hamiltonian is no longer
cyclic. As a result, the analysis that follows must be
considered as an attempt at an approximate but non-
perturbative evaluation of the path integral. Hamilton's
equations of motion are given by



50 CANONICAL TRANSFORMATIONS AND PATH-INTEGRAL MEASURES 4557

d'g t'
z 2~' +— (187)

The form for Q is then given by

( ~y+~jl
Q(t) = arctan

ld )
(188)

Once the form for Q(t) is known, it is straightforward to
solve (186) by formal integration to obtain

Pg I
~ (8~(t) cos2Q(t) ) t

Bt u(t) )
(189)

in general it cannot be formally expressed as an integral.
The exact solution can be obtained by first solving the
associated equation

F = —ur (t)E. (192)

F(t) = cos Q(t)
~(0)

(193)

where

Comparing the two forms of the prefactor, (190) and
(191), is hampered because of the difficulty in simul-
taneously 6nding exact solutions to the two differential
equations, (187) and (192), for all but the trivial case
uJ(t) = (dp, where the two results can be seen to coincide.
However, it is possible to compare the two results for the
case that T is sma11 and u is a slowly varying function of
time, so that second derivatives and products of deriva-
tives of ur can be ignored. Assuming that u(0) g 0, an
approximate solution to (192) is then given by

The classical action along the trajectory given by (185)
vanishes, while by virtue of the boundary conditions,
E; = Ef = 0. The entire translated path integral there-
fore reduces to the prefactor generated by the anomalies,
and this is given by

1 (Kr(t) cos2Q(t) ) texp — dt
/2xh cos Q(T) p ( t9t 4~(t)

(190)

The exact form for the general time-dependent har
monic oscillator prefactor has been obtained by Lo [22].
Applying Lo's result to the specific case considered here
gives the following time-dependent prefactor for the q; =
py

——0 transition element:

+ F(0)F(T) 2, (191)
1 ~ F(0) d~

2nn (F T

where E is a solution of the associated equation

Q(t) = d'r Ld('r) .
0

(194)

2z hcos Q(T)
(u(T) i

(195)

This is the same result obtained from (190) by using (194)
and the approximation cos 2Q(t) —1, so that

t'ur(T) l
exp I dt cos 2Q(t)

p 4ld (u 0
(196)

Result (190) is, of course, dependent on the original form
of the interaction prior to translation as well as the values
of py and q;. This is because the functional form for u(t)
depends on the original form of the interaction and the
boundary conditions of the trajectory through (182).

Form (194) is also the approximate solution to (185) for
small times. Placing (193) into (191) gives the prefactor
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