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Bound states of two-dimensional nonuniform vvaveguides
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We consider the theoretical problem of finding the bound eigenstates of an infinite nonuniform
two-dimensional waveguide with Dirichlet boundary conditions. Using a coordinate transformation
we show that this is equivalent to finding the eigenstates of a uniform waveguide with a potential
proportional to the eigenvalue. Hence there is a sense in which the bound states occurring in
nonuniform waveguides are analogous to bound states due to potentials in uniform waveguides.

PACS number(s): 03.65.Ge, 02.30.Jr, 84.40.Sr, 03.75.Be

I. INTRODUCTION

It has recently been noted that infinite nonuniform
waveguides with Dirichlet boundary conditions can have
bound states [1—4]. The relevant mathematical problem
is the solution of the Helmholtz equation with the eigen-
function zero on the waveguide boundary 8:

V Q+k /=0; vP(x) =0, xcB
Bound states can occur when the waveguide is bent [1],
has an intersection [2], or a bulge [3]. The novel bound
states can have eigenvalues below the continuum cuto8'
for the corresponding uniform waveguide. In this paper
we provide a physical picture of these bound states, for
the case of two spatial dimensions. This picture also
facilitates their numerical computation.

The Helmholtz equation with Dirichlet boundary con-
ditions arises in a variety of physical problems. For exam-
ple, the TM modes of microwave waveguides satisfy it.
The bound states correspond to nonpropagating eigen-
modes below the propagation cutoK

The time-independent Schrodinger equation for a free
particle is just the Helmholtz equation. A steep potential
barrier will approximate Dirichlet boundary conditions
since it forces the wave function towards zero. Such a
potential barrier is provided for atoms by the light shift
potential in evanescent light fields [5—7]. These occur on
the walls of hollow optical fibers and hence could be used
to make atomic waveguides [8]. Nonuniformities in the
evanescent field could then produce bound atomic states
[9]. Such structures could be alternatives to the atomic
cavities already proposed [10—12].

Two-dimensional waveguides for electrons may be
formed by lateral confinement of two-dimensional elec-
tron gases at suitable heterojunctions. Bound states are
predicted in nonuniform channels when the electron de
Broglie wavelength, and coherence length, exceed the
channel width [13].

The bound states can be understood by noting that
for a uniform vraveguide the eigenmodes are products
of transverse and longitudinal sinusoids. The propaga-
tion cutoff is due to the existence of a longest transverse

wavelength satisfying the boundary conditions. For a
wider waveguide a longer wavelength, and lower eigen-
value, is possible. Bends, intersections, and bulges pro-
duce a region of the waveguide with a greater eH'ective

width, around which the bound state is localized.
In the following we provide another view of the ori-

gin of bound states. We will show that after a suitable
coordinate change they can be regarded as arising from
an efFective potential in a uniform waveguide. A similar
result was obtained by Goldstone and Jaffe for three-
dimensional waveguides in the limit of slowly twisting
waveguides [4].

This paper is organized as follows. In Sec. II we de-
scribe our transformation &om the Helmholtz equation
with nonuniform boundaries to a certain eigenvalue prob-
lem with uniform boundaries and a potential. In Sec.
III we show how the transformation can be applied to
the numerical calculation of the ground bound state of a
waveguide with a bulge. The Appendix describes details
of the numerical calculations.

II. THE TRANSFORMATION

We construct a new coordinate system (u, v) in which
the waveguide boundaries are coordinate curves of v.
Hence in the (u, v) system the boundaries are straight
lines of constant v. The required transformation uses the
solution v(z, y) of Laplace's equation, V'2v = 0, which is
a different constant on each boundary of the waveguide.
Such a function is guaranteed to exist. From v one can
construct another solution u(z, y) of Laplace's equation,
such that the coordinate system (u, v) is orthogonal. This
is done as follows: the vector field (Bv jBy, —Bv/Bz) has
no curl and therefore there exists a function u such that

f Bv Bv)
(2)

It follows that V' u = 0 and also that (Vu)2 = (Vv)2.
Geometrically, u is constructed to be constant along tra-
jectories orthogonal to the curves of constant v, and u
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increases along curves of constant v at a rate such that

Now for any function @(x,y), write P(u, v) = @(x,y).
Then

(V'u) + (Vv) + (V' u) + (V v)
t9tL Ov Bx Oy

= h(u, v)V' P,

are suitable orthogonal coordinates. We will use the pa-
rameter value u = 0.25 in all our calculations. The co-
ordinate lines u = const and v = const are shown in
Fig. 1(a) . We consider a nonuniform two-dimensional
waveguide bounded by the coordinate lines v = 0.3 and
v = —0.3. This waveguide has a bulge at its center and
hence has a bound state localized there. In terms of the
(z, y) coordinates v is given by

where

h(u, v) = (V'u) = (V'v) .

ay(z2 + y2 —1)v=y+
4z2y2+ (1+z2 y2)2'

Thus in the new coordinates the waveguide is straight
and the Helmholtz equation (1) becomes

V P+ k Q = k [1 —h (u, v)]P

where we have de6ned the effective potential

Vg
—= ks[1 —h '(u, v)]. (6)

This potential depends on the eigenvalue k2 and is hence
not a physical potential. Nevertheless, restricting our
consideration to a particular eigenfunction we can un-
derstand its form as arising &om its potential Vg. Such
a view could be useful, for example, in the analysis of
the decay of a quasibound state when the waveguide is
not in6nite. In that case other eigenfunctions are not
involved.

The existence of the potential suggests an interesting
possibility. A periodic boundary will generate a periodic
potential. Such a potential has Bloch type eigenfunctions
and the possibility of band gaps. For example, we might
expect to find atomic band structure in a hollow optical
6ber atomic waveguide with a periodic evanescent field

[14]. Such a field would result &om the interference of
counterpropagating light waves.

So in (z, y) coordinates the waveguide boundary is de-
6ned implicitly by the solutions of this equation for
v = +0.3. In terms of the (z, y) coordinates u is given
by

az(l + z2+ y~)
4z2y2 + (1 + z2 y2)2

0.3-

yo
-0.3-

-2

(s) y= 03

y=-0, 3
1 x 2

(b) y= 0.3

y= -0.3

Note that as z ~ oo the (u, v) coordinates approach the
(z, y) coordinates.

We now give numerical solutions for the ground bound
state of this waveguide. These will be compared to those
for the transformed problem. The ground state eigen-
value for this waveguide is k2 19.6. This may be com-
pared to the cutoE for a uniform waveguide of width 0.6
units which is k2 = (x/0. 6)2 27.4. As expected the
ground state eigenvalue is below the uniform waveguide

III. AN EXAMPLE

In this section we apply our transformation to a speci6c
nonuniform waveguide. We start &om the observation
that the real, u, and imaginary, v, parts of any analytic
function F(z) of the complex variable z = z + iy,

0.3
y 0-

-0.3

(d)

0

y= 0.3

y= -0.3

F(z) = u(z) + iv(z), u, v E {real functions), (7)

satisfy Laplace s equation. This provides candidate func-
tions v(x, y) for defining waveguide boundaries. Further-
more, the Cauchy-Riemann equations tell us that since
v(x, y) is the imaginary part of an analytic function, the
real part u(z, y) defines the required coordinate orthog-
onal to v.

In particular the real and imaginary parts of the ana-
lytic function

( a
F(z) = z

~

1 —
~

= u+ iv,1+"r

FIG. 1. The example waveguide and bound state in natu-
ral (x, y) and transformed (u, v) coordinates. The coordinates
are chosen so that the propagation direction for a uniform
waveguide would be along x or u. (a) The (u, v) coordinate
curves defined by Eqs. (9) and (10). The waveguide bound-
aries are v = +0.3. (b) Contour plot of the ground bound
state @(x,y) in (x, y) coordinates. The waveguide boundaries
v(x, y) = +0.3 and x = +2 are shown by thick lines. (c)
Contour plot of the ground bound state P(u, v) in (u, v) co-
ordinates. The waveguide boundaries v = +0.3 and u = k2
are shown by thick lines. (d) Contour plot of the efFective
potential Vg(u, v) defined by Eq. (6). The contour levels are
from 0 to —1.25 in steps of 0.25.
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cutoff. The ground bound state is shown in Fig. 1(b).
It was found numerically by the pseudotime method de-

scribed by Schult et aL [2]. This method is based on
the conversion of the elliptic Helmholtz equation into
a parabolic equation. Then all the Helmholtz equation
eigenfunctions decay in pseudotime, but the ground state
decays most slowly and hence dominates the solution af-
ter a sufficiently long pseudotime. Renormalization of
the solution is used to prevent it decaying to zero. Com-
putational details are discussed in the Appendix.

A similar numerical method can be applied to the
transformed Helmholtz equation. Equation (5) is an un-

suitable form because it requires the eigenvalue to be
known. A suitable form for numerical work is found by
multiplying Eq. (5) through by h(u, v):

h(u, v)V P+ k P = 0.

The boundary conditions are now that the wave function
is zero on the coordinate lines v = +0.3, which are of
course straight lines in the (u, v) coordinate system. This
simplifies the numerical implementation of the bound-

ary conditions and is an advantage of the transformed
Helmholtz equation. We have numerically solved the
transformed equation (ll) and obtained the eigenvalue
Itz = 19.4, which is within I'%%up of the value obtained in
the (z, y) coordinate system. The eigenfunction is shown

in Fig. 1(c). By transforming back to (x, y) coordinates
we confirmed that it is identical to the eigenfunction ob-
tained by solving the original Helmholtz equation.

The effective potential Vj„Eq. (6), for this waveguide
is shown in Fig. 1(d). It approaches zero for large v and
is most negative at u = 0 and v = +0.3. As previously
discussed the ground bound state Fig. 1(c) can be viewed
as arising &om this potential.

In conclusion we note that the two forms of the trans-
formed Helmholtz equation, Eqs. (5) and (11), embody

the two advantages of the transformation to straight
boundaries. The first form, Eq. (5), allows us to under-
stand bound states in terms of a confining potential in-
stead of in terms of nonuniform boundaries. The second
form, Eq. (11),simplifies the treatment of the boundaries
in numerical solutions.
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APPENDIX A: COMPUTATIONAL DETAILS

The function h is defined by Eq. (4) to be a function of
(x, y). However to use it in the transformed Helmholtz
equations (5) and (ll) we need it as a function of (u, v).
Hence the equations u = u(x, y), v = v(z, y) must be
(numerically) solved to obtain z and y as functions of
u and v. Once this is done a substitution yields h(u, v)
from h(z, y).

The infinite waveguide must be truncated for computa-
tions. Hence Dirichlet boundaries were put at the ends;
at z = +2 and at u = k2. Moving these boundaries
confirmed that this was far enough out not to afFect the
ground state.

The bound state in Fig. 1(b) was obtained with an
(z, y) grid spacing of 0.01 units. The computed eigen-
value was k2 = 19.9. Decreasing the grid spacing to
0.005 units gave k = 19.6.

The bound state in Fig. 1(c) was obtained with a (u, v)
grid spacing of 0.01 units. The computed eigenvalue was
k2 = 19.4. Decreasing the grid spacing to 0.005 units
also gave k2 = 19.4.
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