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Perturbed ladder-operator method: An algebraic recursive solution of the perturbed
Morse-oscillator eigenequation
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The perturbed ladder-operator method is applied to the solution of the perturbed Morse-

oscillator eigenequation, i.e., the radial Schrodinger equation with a total potential
—p(r —r ) 2

—p(r —r )

U(r)=D, (l —e ' )~+D, g,g, (1—e ' )'. This method, which is an extension of the original

Schrodinger-Infeld-Hull factorization method within the perturbative scheme, allows an analytical solu-

tion of perturbed eigenequations in almost the same way as factorizable ones. After expanding each per-
—sp(r —r )

turbation term in a series of y, (r) =e ', analytical expressions of the perturbed Morse energies are

obtained in terms of the anharmonicity constant and of the vibrational quantum number without having

to calculate either the excited unperturbed spectra or any matrix element. Analytical expressions of the

perturbed Morse eigenfunctions are then obtainable by iterated application of the perturbed ladder

operator on the key eigenfunction, or on any one of them. Illustrative examples are given.

PACS number(s): 03.65.Fd

I. INTRODUCTION

The radial harmonic-oscillator, radial Coulomb, and
radial Morse-oscillator eigenequations have been the sub-

ject of considerable interest in the development of
theoretical physics, since they correspond to physical
problems and they are exactly solvable. Nevertheless, as
soon as a more elaborate description of real problems is
required, solutions of these equations with an additional
perturbation are needed. Recently, it has been shown
that the perturbed ladder-operator method [1],i.e., an ex-
tension of the original Schrodinger-Infeld-Hull factoriza-
tion [2,3] method within the perturbative scheme, allows
an analytical solution of the perturbed Coulomb as well

as of the symmetric anharmonic-oscillator equations by
means of algebraic manipulations [4,5]. The perturbed
Morse-oscillator model is used widely to describe chemi-
cal bonds and the vibration-rotation spectra of diatomic
molecules, and, particularly, to provide the theoretical
centrifugal contributions to the rotational spectra of dia-
tomic molecules [6,7] or to extract the internuclear dis-

tance dependence of diatomic structure constants from
the experimental centrifugal data [8] (fine structure, A-
doubling, spin-rotation constants, etc.). In most cases,
analytical solutions of the perturbed Morse-oscillator
equation are required.

In the present paper, after a brief and necessary review

of the perturbed ladder-operator method, it is shown how
an algebraic recursive solution af the perturbed radial
Morse-oscillator eigenequation can be carried out by
means of the perturbed factorization process.

II. PERTURBED LADDER-OPERATOR METHOD

After exact or approximate separation of variables and
appropriate transformations of variables and functions,
many Sturm-Liouville eigenequations of current interest
in quantum physics can be reduced to the standard form

d2
2

+ U(x, m )+AJ P~ (x ) =0,
dx

associated with the boundary conditions (x, & x & x2 )

l@(xi }I'=l|((x2}I'=0, f lp(x)l'dx =1, (2)

where m=mo, mo+1, mo+2. . . is a quantum number
that takes successive discrete values labeling the eigen-
functions.

A. Exact factorization

Such an equation (1} is factorizable when it can be re-
placed by each of the following pair of difference-
differential equations,

H +iH++i4 (x)=[AJ —L(m+1)]4 (x),
H+H 4' (x)= [A L(m)]+1 —(x),

(3)

(i) Closed-form expressions of the eigenvalues AJ are
readily obtainable from the knowledge of the factoriza-
tion function L (m},

A =L(j ), (4)

where L(m) is the "factorization function, " which does
not depend on x, and H+ and H are mutually adjoint
"ladder operators": H*=I(.(x, m ) +d /dx.

Owing to the mutual adjointness of the ladder opera-
tors H+ and H, the necessary condition for the ex-
istence of quadratically integrable solutions of Eq. (1),
i.e., the quantization condition, is E(j —m ) = u, where u is
a non-negative integer and e = + 1 (or s = —1) according
to whether L (m) is an increasing (or decreasing) function
of m.

The interest and advantages of the factorization
method are well known [3]
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where j=j+s/2+ —,'.
(ii) The normalized eigenfunctions are solutions of the

following pair of difference-differential equations,

dE(x,m )+ +J- =N~(m)@J.
dx

Infeld-Hull factorization types, and let us assume that
this potential function, as well as the associated ladder
and factorization functions K(x, m } and L ( m ) to be
found, can be expanded in a perturbation series with a
parameter q,

K(x,m+1)—

where NJ(m ) = [AJ —L(m)]'

=Nq(m+1}+q

(5) U(x, m )= U' '(x, m )+gU"'(x, rn )

+g U' '(x, rn)+ .

K(x, m )=K' '(x, m )+gK"'(x, m )

+vPK' '(x rn)+

L(rn)=L' '(m)+rlL'"(m)+g L' '(m)+

These "ladder equations" allow the determination of any
(x}function from the knowledge of any one of them,

particularly from the knowledge of the normalized "key
eigenfunction" %~"(x), which is a solution of the first-
order differential equation

K(x j)—s +JJ(x)=0 .

B. Perturbed factorization

In fact, when an eigenequation is exactly factorizable,
closed-form expressions of the eigenfunctions, involving
classical polynomials, are known [9].

There are six fundamental types of potential functions
U' '(x, m ) (denoted types A to F, within the Infeld-Hull

[3] nomenclature} leading to factorizable equations.
Moreover, as pointed out by Infeld and Hull, when direct
factorization is not possible solely because of the inade-
quate rn dependence of the potential function U(x, m)
under consideration, one can resort to "artificial factori-
zation": one considers U(x, m ) as "embedded" in a new
potential function u (x,m;p, ) that depends on a supple-
mentary "artificial parameter p" such that u (x, m; p }can
be identified in m with a factorizing potential U'0'(x, m }
and that u(x, m;p=m)=U(x, m). Then Eq. (1) is fac-
torized using u(x, rn; p) and the associated p-dependent
ladder and factorization functions K(x,m; p) and
L(m;p). The eigenvalues A (JM)=L(j;p, ) are determined
as well as the eigenfunctions VJ (x;p), both depending
on the parameter p. At the end of the ladder procedure
(5), one merely sets p=m and obtains the required
eigenvalues A~ (m ) =A (p =m ), and eigenfunctions

(x )= iP (x;p =m ). This "artificial" or "embedded"
factorization device is widely used all along the "per-
turbed factorization" scheme.

where K' '(x, m }and L' '(rn} are the ladder and factori-
zation functions allowing an exact factorization of Eq. (1)
with U' '(x, m).

As already pointed out [1],the critical point of this ex-
tension of the factorization method within the perturba-
tion scheme relies on the choice of suitable x basis func-
tions y, (x) and Y, (x) for expanding the required factoriz-
ing perturbations U' '(x, m) and associated perturbed
ladder functions K' '(x, m), respectively. These basis
functions, which are specific to each factorization type,
have to satisfy the following "ladderlike" relations:

2K'0'(x, m ) Y,(x)= A, ( m)y, (x)+B,(m)y, +,(x ),
F,' =a,y, (x)+p,y„,(x),

Y, (x)Y,(x)=gh(s, t, r)y„(x) .

~w

K' '(x, m)= g Y, (x)Q (rn)[k' '+F' '(m)], (9)

where k,' ' is an arbitrary summation constant,
F,' '(m)=0 for s=S&, and

m —i [B(j)—p ]

[B ('+1)+'P ]
(10)

Hence, when working out the solution of the factoriza-
bility condition for the perturbed eigenequation, it can be
shown [1] that, at each order N of the perturbation, the
perturbed ladder function to be found is

Let us now consider an eigenequation (1) where the po-
tential function U(x, m } does not belong to any of the six

The F,' '(m) function to be found is the solution of the
recursive Snite-difFerence equation

hW,"~'+[6(A,(m}+a, )+2a, ]Q,(m)[k,' '+F,' '(m)]F(N) (m) — g —i .
Q, ,(m + 1)[B, ,(m + 1)+P, , ]
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SN
= g W,' )(m)y, (x) .

s=0
(12)

Starting from s =S&, descending down to s =1, and

keeping in mind that F,' '(m}=0 for s =S)I„Eq. (11) al-

lows a recursive determination of closed-form expressions
of the F,' '(m} functions. Then, the required ladder func-
tion K' '(x, m) is given by Eq. (9) and, as well as the
F,' '(m) functions, it contains the arbitrary constants
k,(+). The associated factorizing potential U' '(x, m) is
also obtained [1]. Thus, using the artificial factorization
device with an arti6cial parameter p, one can solve
physico-mathematical problems with a potential function
V(x, m ), such as

V(x, m)= U' '(x, m)+IVIV"'(x)+71 V' '(x)+

(13)
provided the V' '(x) have the same dependence in x as
the U' '(x, m ), i.e., they can be written

SN+1
V' '(x)= y b,' 'y, (x) . (14)

s=1

When matching the given perturbation V' '(x) with the
factorizing perturbation U' '(x, m ), via the artificial de-

vice, it is convenient to keep in mind that F,' '(m) is

defined within an arbitrary summation constant and to
impose the vanishing condition

F,(~)(m =p) =0 .

Then, we obtain the following relations allowing the
determination of the arbitrary summation constants in
terms of the data,

k (s)
SN

k (x)
s —1

(N)
bSN+1

Qs„(p)(&s (p) Ps„)

b' '+ W' '(p)+[A (p) —a ]Q (p, )k'

Q, -I(p) [&,-I(p) —p, - i)

(16)

and, consequently, the determination of the F,' '(m)
functions in terms of the expansion coefficients of the
given perturbation V' '(x). Once the F,' '(m) functions
known, the perturbed factorization function L' '(m; p) is
obtained from the solution of the finite-difference equa-
tion [1]

L' '(m)= —b, '(EW0 '+ [6[A0(m}+a0]+2a0]

XQ0(m)[k0 '+F0 '(m)]), (17)

with the associated condition to be fulfilled,

L' '(m =p)= —W(') '(p) —[A()(p) —a()]

XQ0(p)[ko"'+Fo"'(p}] . (18)

where, at each order N of the perturbation, the W,' '(m)
function, originated from the preceding orders of the per-
turbation, is known and is defined by the relation [10],

N —1

8' '(x m)= g K' '(x m)K' "'(x m)

Finally, once the perturbed ladder functions
K'"'(x, m;p) and the factorization functions L'"'(m;p, ),
both depending on the artificia1 parameter IM, have been
found recursively from v=1 up to v=X, the perturbed
problem (up to the Nth order of the perturbation) may be
handled in the same way as the exact factorizable (unper-
turbed) problem. The perturbed eigenvalue A'"'(m) asso-
ciated with the perturbation V' '(x) is

A'."'(m) =L"(m =j;p=m ) . (19)

K(x, m;p, )=K' '(x, m }+g Il'K(")(x, m;p) .
v=1

(21)

Summarizing the results, a given equation (1) is
relevant to the perturbed ladder-operator method as soon
as one can display the given potential U(x, m ) into an
unperturbed "kernel potential" U' '(x, m ) leading to an
exactly factorizable equation with an additional perturba-
tion V(x}. This perturbation has to be expandable in a
series of suitable basis functions y, (x ), which satisfy the
ladderlike properties (8). The critical point of the method
is the solution of the finite-diff'erence equation (11).

III. EXACT FACTORIZATION
OF THE (UNPERTURBED)

MORSE-OSCILLATOR EQUATION

Let us consider the radial Morse-oscillator wave equa-
tion [11], i.e. , the second-order dificrential equation
(0 r~(~)

g2 2

+D (1 e
" "

)2 .y(0)(r) E(0)y(0)(r)
2p dr

where p is the reduced mass, D, is the depth of the poten-

tial well, p is the range parameter, and r, is the equilibri-

um distance. When introducing the dimensionless coor-
dinate x =(pw, lfi)'~ (r r, ), the Mo—rse-oscillator equa-

tion (22) becomes

—2(2g )ll2~ 1 —(2g )&l2

e ' + e ' x
dx'

1 2+ E' ' -P' '(x)=0, (23)
2g, Aw,

where w, =(2D, lp)' P and g, =A'w, l4D, are, respec-
tively, the vibrational and anharmonicity constants.

As already known, the (unperturbed) Morse-oscillator
equation (23) is exactly solvablc and, particularly, can be
matched with an exact Infeld-Hull type-8 factorizable
cqllatlo11 [3], l.c, lt CRI1 bc wr1ttcI1 RgR111,

(12d2 2ax+2(22d(m + 1 )eax+ A(0) ql(0)(x) 0d' 2 jm

The total perturbed eigenvalue and associated ladder
function are

N

A, (m)=L' '(j )+ g Il"L"(m =j;p=m),
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with a = —(2g, )'r, d =I/2(„m = —
—,'+1/2(„and

A' '=2E' '/hw, —1/2g„and the associated Ter Haar
boundary conditions [12],

The perturbation terms are [13]
SN+1

V(N)(x) —g2 ~ b(N)esax
s

s=1

A. Determination of the perturbed ladder function

(30)

The associated ladder and factorization functions are

K(0)(x,m ) = —(2m+ ade™,
L, "'(rn}=—(22m2 .

(25)

Closed-form expressions of the eigenfunctions are
known [9],

%sejm(x) Njm XP[2( rl X 'T2 )]Is (1r2 (26)

where N is a normalization constant, l.„'( } is a
Laguerre polynomial of degree v =s(j—m ), ~) = —2sj,
~2= —2sd, and a=+1 (or s= —1) according to whether
L ' '(m ) is an increasing (or decreasing} function of m.

The Morse-oscillator eigenequation (23) is a (class-II,
e = —1) type-B factorizable equation with the associated
quantization condition m —j=U. Indeed, since
(2 = —(2g, )'i2 is a real constant, L' '(m) is a decreasing
function of m and the Morse-oscillator eigenvalue is
A( '= —(2 j = —a (m —v)2. Setting m = —

—,'+1/2g„
we get the expected expression of the energies

F,' ', (m}=—
[ W,

' '(m}+[(s 2m�)+—2sb, ']

X[k' '+F' '(m)]] (32)

where the W,' '(m} functions are defined by Eq. (12},i.e.,
N —1

0"' '(x m)= g K'"'(x, m)K' "'(x,m)
v=1

SN

(22 g W(N)(m )esax

s=0
(33)

Using Eqs. (10) and (29), it is found that Q, (m) = 1 and,
at each order N of the perturbation, the perturbed ladder
function is [see Eq. (9}]

SN

K' '(x, m)=(2 g e""[k'N'+F,' '(m)] . (31)
s=0

The F,' '(m) function is found to be the solution of the
following finite-difference equation [see Eqs. (11) and
(29)]:

E'„'=A'w, [v+ —,
' —g, (v+ —,') ] . (27) As a consequence of the expression (29) of Y, Y„ it is easi-

ly checked that

d a2d2e2ax+2(22d(m +. l }eax
dx

+ V(x)+A %. (x)=0, (28)

where V(x)=2}V("(x)+q V' '(x)+ is a perturba-
tion.

The following x basis functions and associated data can
be chosen [see Eq. (8)]:

y, (x)=a e"", Y,(x)=(2e'

A, (rn) = —2m, B,(m) =2d, a, =s, P, =0,
Y, (x)Y,(x)=y, +,(x) .

(29)

At this level, let us remark that the quantum number
m plays a central role within the factorization scheme,
while it does not appear within the Morse-oscillator equa-
tions (22) or (23), general results following from the exact
(or perturbed} factorization process have to be expressed
in terms of v =e(j—m ) and m before being applied to the
Morse-oscillator problem or any other particular prob-
lem.

Since the (unperturbed} Morse-oscillator equation is a
type-B factorization equation, an analytical solution of
the eigenequation (23) with an additional perturbation
V(x) can be carried out by means of perturbed type-8
factorization.

IV. PERTURBED TYPE-B FACTORIZATION

Let us consider the perturbed type-8 eigenequation,

S~=S„+S~ „=NS1 . (34)

W,(")(m;j )= y w,'"'(k) j'k
k=0

(36)

At any order X of the perturbation, the C,' '(t)
coefficients are to be found while the w,' '(t) coefficients
are known functions of the C( )(k) of the preceding or-
ders of the perturbation ( v= 1,J)j 1). —

Now, in order to obtain the expansion of F,' ', (m;)M) in
a series of binomials {",™},we use Eq. (32) together with
the above expressions (35) and (36) of F,' )(m;(M) and
W,' '(m;p). Since [14]

r

p m p m t ((l m (t+1) )M rn
p

P NT P Pl P P7$

t )+1

The determination of the perturbed Morse F,' '(m)
function can be worked out in the same way as the deter-
mination of the anharmonic oscillator F,' '(m) function.
Since, for s =SN, we have Fs( )(m ) =0, it is checked that

F,'N'(m) is of degree (SN —s } in rn [see Eq. (32)] and that,
consequently, W,' '(m) is also of degree (SN —s ) in rn [see
Eqs. (33), (31},and (34)]. Therefore, we set

SN —s

F' '(m p, )= y C' '(t) j (35)
t=1

so that the vanishing condition (15) is fulfilled, and

S —sN
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we get

[s —2m +2sb, '
j ~ = —(2p+s —2t ) t

—2(s t ——1) t+1
Keeping in mind that the expression (32) of F,' ))(m;p)
holds within an arbitrary summation constant that can be
chosen so that F,' ', (m) keeps the same form (35) as

F,' )(m), from the comparison of the expression (32) of
F,' ') (m) with its standard expression (35},we obtain the
following relations:

b (N)(0 }—b (N) +w (N)(0)

b,' '(k)=w, ' '(k) for k&0 .
(40)

x bs„'+)— (J'} (41)

where the d~ (cr., k, s ) coefficients obey the recurrence for-
mula

When applying this recurrence formula, it can be inferred
that we can write

' a+1-
k j+0 —k

Cs( ' (k)= —g g d, (o u—, k, SN u—)
J=o u=j

—(s+2)u —2)C,' '(1)I,
C' ' (t)= — tw' '(t) —2(s —t)C'Ã(t —1)

1
s —

1 2d s s

—(s+2)u 2t)C,' —'(t)I for t ~2 .

(37)

d (a+1,k, s)=2(s —o —k)d (o,k —l, s)

+(2)u+s —o —2k )di(o, k, s ), (42)

with dk(0, k, s)=1 and the nonvanishing condition

j k j+0.. This formula allows the determination of
any dj(o, k, s). Particularly, we get

Starting from s =Sz+ 1 down to s = 1, and from
t =S&—s+ 1 down to t = 1, these relations allow a recur-
sive determination of the C,' '(t) in terms of the arbitrary
constants k,' '. One has now to obtain analytical expres-
sions of the k,' ' in terms of the data, i.e., in terms of the
expansion coefBcients b,' ' of the given perturbation
V(N)(x)

From Eqs. (16) and (29), we get

d, (o,j,s) =(2p, +s —2j)

d (crj + 1,s)

=(2)u, +s —2j) )(2s —2j 2a)—

+(2p+s 2j cr ——1—)d (o —l,j+ i, s)

d~(a, j+cr —l, s )

'+ w'N'(0) —(s+2p)k' 'I1
s —

1 2d s s s (38)

= (2(u+s —2j —3o +3 )(2s —2j—2)

+(2s 2j —4o+—4)d, (a —1,j+o.—2,s),

C,' ')(k)= — (b,' '(k) —2(s —k)C, '(k —1)
1

2d

—(s+2)u —2k)C,' '(k)I, (39)

where

Setting k,' '= C,' '(0}, it is easily seen that the determina-
tion of the C,' '(t} for t =SN —s+1 down to t =0 can be
performed in terms of the expansion coeScients b,' ' of
the perturbation V' '(x) by means of the single re-
currence formula,

d&(cr,j+a, s ) =(2s —2j —2)

where (n) „=n(n —h)(n —2h) . (n —ho+h) is a
generalized factorial of step h.

Hence, we get the following expression of the per-
turbed ladder function in terms of the data coeScients
b„' '(i) by means of Eqs. (31), (35), and (41),

S~ S~+1
K( )(x, rn;)(), )= g g b„' '(i)g„;(x,m;p),

i=o u=1

where

u —1

y„,.(x, m;tu}= —a g
s=0

sax
u+1 —s —1

d;(u —s —l, t, u —1) . {443

Let us emphasize that, since the expressions of the d (o, k, s) depend neither on the order N of the perturbation nor
on the expansion coefficients of V'N'(x}, the determination of these "ladder basis" functions g„;(x,in;tu) can be p«-
formed once and for a11.
%'e get
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2d
' " 2d . 1

p, m p —m
2

X20= —a [(2p+ 1)+2de'"J,1

1
X30= —a

3

(2p+2)(2p+ 1)+2(2p —1) 4 p —m
2

r

1—a
2

e'" 2p+2+2 ~
1

—a
1

e 2'
2

(45)

r I'

1
X2i (2p —1) P —2 P +2de1, 2, 1

1
X40

4

(2p+ 3 )i+6(2p+ 1)(2p —1) —12(2p+ 1) 2

'3
1

a
2

r

e'" (2p+3)i+6(2p, +1) P
1

r

1—a
2

r

e"" 2@+3+4 ~ m
1

a
1

e 3@x

2

and so on.
Then, as soon as the particular problem under con-

sideration is relevant to perturbed type-B factorization,
the expression (43) allows a straightforward determina-
tion of the perturbed ladder functions K' '(x, rn;p) in
terms of the data coefficients b„' '(i},which are specific to
the particular problem under consideration.

I„(i;m,p) =— 1

2

Q @+i

g d;(u, t, u —1) P (49)

Consequently, when substituting m with j and p with m
into this expression, we obtain the required expression of
the perturbed eigenvalue associated with the perturbation
V'"'(x),

B. Determination of the perturbed eigenvalues

Using (17) together with the expression (29) of A, (rn)
and a„we get the following expression of the perturbed
factorization function:

SN SN+1
A'„'(m)= g g I„(i)b„' '(i),

i=0 u =0

where I„(i)=I„(i;j,m ).
For class-II problems (j=j, m —j=u), we have

(5Q)

L'+'(m;p)= —8' '(m;p)+2m[k' '+F' '(m;p)j .

(46)
I„(i)=— 1

2

'
Q @+i

g d;(u, t, u —1) (51)

S~+ 1

L' '(m'p)=2d g C' '(t) p
t=O

(47)

Indeed, the arbitrary summation constant, which has to
be chosen so that the condition (18) is fulfilled, is
L ~N~(m =p p) = —iu~N~(Q)+2pk~+~ =2dk~N~ =2dCPI(Q)
[use Eqs. (46) and (38)]. Then, substituting for C','(t)
from Eq. (41) into Eq. (47), we obtain the fallowing ex-
pression of the perturbed factorization function in terms
of the data coeScients:

S~ S~+1—i

L' '(rn;p)= g g I„(i;rn,p)b„' '(i), (48)

where

i =0 @=0

When comparing this expression with the expression (32)
of F,' ', (m), it is seen that, formally, and within an arbi-
trary summation constant, we have L ' '( m; p }
=2dF', '(m) and that, consequently, we can write

N

A„(m) =A/'(m)+ y A'„"'(m),
v= 1

(52)

where p has to be substituted with m in the expressions
of the d, (u, t, u —1). Closed-form expressions of the I„(i)

are given in Appendix A and can serve for the analytical
solution of any eigenequation relevant to (class-II) per-
turbed type-B factorization.

At any order N of the perturbation and for any given
problem involving a perturbation that can be expanded in
a series of the y, (x) functions, the determination of the
perturbed value A'„'(m) amounts to the determination of
the data coefficients b,' '(i) in terms of the expansion
coeScients of the perturbation. Note that, in the same
way as at the first order, the u dependence of AP'(m) is
entirely contained in the expressions of the "pseudoin-
tegrals" I„(i)

Finally, the total eigenvalue of eigenequation (28}, up
to the Nth order of the perturbation, is
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t=O
(53)

When comparing this expression of A'„"(m), with its al-
ternative expression within the classical Rayleigh-
Schrodinger framework, we obtain, as a by-product, the
expression of the diagonal matrix elements (y, (x)) be-
tween the (unperturbed) type-B eigenfunctions 4' '(x)

where A'"'(rn) is given by Eq. (50).
Let us remark that, at the first order N = 1 of the per-

turbation, since 8'"(rn) =0, we have w„'"(i)=0 for any i,
and the data coefficients b„'"(i) reduce to the expansion
coefficients b„'" of the perturbation V"'(x) in a series of
the basis functions y„(x}=a e"'" [see Eq. (40)]. Hence,
the expression of the first-order perturbed eigenvalue
reduces to

[see Eq. (26)],

(y, (x) ) =a (e"")= —I,(0) .

C. Recursive determination of the data coef5cients

(54)

At each order X of the perturbation, the data
coefficients b,' '(i) are defined by Eq. (40) and involve, in
addition to the expansion coeScients b,' ' of the given
perturbation V' '(x) in a series of the y, (x), the expan-
sion coefficients m,

' '(i) of
N —1

8' '(x, m;p)= g K'"'(x, m;p)K' "'(x,m;p)
v=1

in a series of a e""("; ) [see Eqs. (33) and (36)].
Using the definition (33) of 8 '(I) together with the

expressions (31) and (35) of K' '(x, rn) and F,' '(rn), we
get (0&s ~S~)

S —s+r S& —r

W' '(m)= y y y y C,"„(t)C„' '(u)
Qv=1 r=O t=O u=O

Since we can write [14]

(55)

p —m p —m
Q

k

k=t

t p —m
k —u k

we obtain, after some rearrangements, the expression (36}of W,' '(m), where

N —1 s k k
~(iv)(k) —y y y y k & C(v) (r)C{Jv v)(—

v=1 r=Ot=Ou=k —t
(56)

Then, using the expression (41) of the C,' '(t), making again some rearrangements and keeping in mind the definition
(40) of the data coefficients, we obtain

N —1Sv+' Sw-.+'
b' '(0)=b,' '+ g g g X(s,O~p, O q 0)b "(0)b' "'(0),

v=1 p=1 q=1

N —
1 k k

b,' '(k) = g g g g g X(s,k ~p, I;q, n )b'"'(1)b' "'(n),
v=1 1=On =0 p=1 q=1

where the b,' ' are the expansion coefficients of the given perturbation V' '(x) in a series ofy, (x), and

(57)

X(s,k ~p, 1;q, n )=
P q '

k k
1

d&(p
—s+r —1,t,p —1)d„(q r —l, u, q

—1) . —k t

r=Ot=lu =n

Since, at the first order (v=1), the data coefficients
reduce to b„'"(0)=b„"'and b„"'(p ) =0 for any pAO, rela-
tions (57) allow a recursive determination of the b,' '(k)
up to any order Xof the perturbation.

The expressions of the "data coupling coefficients"
X(s, k~p, l;q, n ) depend neither on the order of the per-
turbation nor on the particular problem under considera-
tion. Tables and/or subroutines giving these expressions
can be made available once and for all, and can serve for
the solution of any perturbed type-B eigenequation. Par-
ticularly, when dealing with extensive pe rturbations

and/or high orders of the perturbation, this recursive for-
mulation of the data coef5cients may be well adapted for
microcomputer programming.

From a practical point of view, let us add that the
bounds of u and of t in the expressions (50) of the per-
turbed eigenvalue A'„'(m), as well as in the expression
(43) of the perturbed ladder function K'+'(x, m;p), are
enlarged ones, as a matter of fact, the actual bounds are
narrower and will follow from the vanishing conditions of
the data coefficients b„' '(i) that are specific to the partic-
ular problem under consideration.
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D. Illustrative example

Since the main purpose of this paper is to present the
method and to test its capabilities rather than to give new
results or extensive tables, we limit ourselves to a short
example of perturbed type-B factorization. Let us con-
sider the solution of the perturbed type-B eigenequation
(28) up to the third order (N= 3) of the perturbation, and
in order to avoid writing down too many expressions, let
us assume that the perturbation corresponds to the
choice S, =1 and, therefore, Sz=2 and S3=3 [see Eq.
(34}]. This choice corresponds to perturbation terms that
are

2. Second order (N=2} of the perturbation (Sq =2}

One has to first determine the nonvanishing second-
order data coefficients b„' )(i}. One can use either their
expression (57) together with the required coupling
coefficients X(s,k~p, l;q, n) or the expression (61) of
K("(x,m;(M) and keep in mind that the required w( '(i)
are the expansion coefficients of 8' '=(K"') in a series
of a e" {" }. Since b' '=h, , b' '=hi, and b' '=h3,
we get

'4

bo '(0)= (4d gi+4d(2@+1)g)gz
1

V'"(x)=a jg)e +gee '"j,
V(2)(x} a 2 [h e ax+h e 2ax+h e 3ax]

V'3'(x)=a [p)e™+pze +p3e "+pze~"] .

I First .order {N=l}of theperturbation {Si=1}

(59} +(2p, +1)gi],
3

b) '(0)=hi+2 [2dgig~+(2((i+1)g~],
1

(62)

The first-order (nonvanishing) data coefficients are
bi" (0}=gi and bz")(0)=gz and, consequently, the per-
turbed eigenvalue is [use Eq. (53) and Appendix B]

r

A'„"(m)= g, +gz (2m+1)1 1

2d
r

X 2m —2
1

(60)

The perturbed ladder function is given by Eq. (43). Using
the expressions (45) of X)0 and X&0, we get

1K("(x,m;p) = —agi

'2
1

b(z~)(0) =h~+ gz,

b' '(0)=h

The perturbed eigenvalue is

3
A' '(m)= g I„(0)b' '(0), (63)

—agz [2p+1+2de'"] .1
(61)

where, for class-II problems, the required closed-form ex-
pressions of the I„(0) have already been written down
{seeAppendix A). We get

A(,"(m)= 1

2

3

[2m(2m+1)(2m+2)b3 '(0)+4md(2m+1)b' '(0)+8rnd b' '(0)+b' '(0)]

3

[24b' '(0)+4d(2m+1)b' '(0)+8d b' '(0)]

3
1

2d
—24(m —1)b' '(0) +24b' '(0)3 2 3 3 (64)

The perturbed ladder function is

3

K( ){x,m;)M}= —a 1

2d
. 4d'b (') (0)+2d {2&+1)b (') (0}

+ (2)M+2){2p+1)+2(2p—1)

2

r

4 P m b(g)(0)
2 . . 3

1

2d
2db( '(0)+ 2(((+2+2 ~ b' )(0) —ae b' '(0)2 2d

(65)
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3. Third order (N =3) of the pertttrbation (Sz =3)

Using Eqs. (57) or picking up the expansion coefficients of 8' '=2K"'K' ' in a series of a e"'"(",. ), we get the fol-
lowing expressions of the {nonvanishing) third-order data coefficients:

'5 '4

bo '(0)=2 (2p+2)(2p+ 1)[2dg, +(2p+1+2d)g~]b3 '(0)+2 (2p+ 1)[2dgi+(2p+ 1)g2]bq '(0)1

2d 2d
'3

+2 [2dg, +(2p+1)g2]b', '(0),
2d

4 '3 2

b', '(0)=pi+2(2p+2) [2dg, +(4p+2)g2]b~q~'(0)+2 (2dgi+(4p+2)g2)b2 '(0)+2 g2bI '(0),{2) 1

2d 2d 2 2 2d
'3

b~'(0)=p2+2 (4p, +3)g2b3'(0)+2 gqb2'(0),
1 (2)

2 23 2d
'2

b', '(0}=p3+2 g2b3 '(0),1

b4" {0}=p4
'5

bI3'(l)=4 (2p —l)[2dg, +(2p+ 1)g ]b' '(0),1

4

b', '(1)=4 [2dg, +(2p+1)g~](2d+2p —1)b3 '(0),1

g, b',"(0),
3

b',"(1)=4 1

2

5

(2)= —8 [2dgi+(2p+1)g2]b~&2'(0),
1

2d

4

b' '(2)= —8 g b' '(0)1

2d
(66)

The perturbed eigenvalue and associated ladder func-
tion are

4 2

A',"(m)= g I„(0)b„"'(0)+g I„(1)b„"'(1)

any order N, the same expressions (57}, (50}, and (43)
serve for the determination of the data coefficients b„' '(i),
of the perturbed eigenvalue A', '(m } and of the perturbed
ladder function E' (x,m;p}, respectively.

0=0 0=0

0 =1
1

b(3)(2)+
0 =1

0 =1

1

+ Q I„(2)b„' '(2),
0=0

4 2

SC"'(x,m;p)= g b„"'(0)y„,+ g b„"'(1)y„,

(67)

V. ANALYTICAL SOLUTION
OF THE PERTURBED MORSE-OSCILLATOR

EIGENEQUATION

Let us consider now the solution of the perturbed
Morse-oscillator eigenequation

d2 2 —p(r —r, ) 2+D, [1—e '
] +U(r) P(r)=EQ(r),

21M dr
where the pseudointegrals I„{i) and the ladder basis func-
tions g„;(x,m;p) have to be replaced by their closed-
form expressions [see Appendix A and Eqs. (45)]. For the
sake of brevity, the final analytical expressions of A'„'(m )

and of K' '(x, m;p) have not been reproduced.
The computation can be pursued up to any higher or-

der of the perturbation without any special difBculty, at

(68)
where U(r) is a perturbation that can be displayed into
perturbation terms U' ~(r) of the form

$'~+ 1

U(N)(r) —D y g(N)(1
" "

)r



50 PERTURBED LADDER-OPERATOR METHOD: AN ALGEBRAIC. . . 4515

which can be written again,

S~+ 1

U(N)( ) D y ((v)

s=0
(69) I(.'"(x,m ) = —ag, Ig, +gz+g2e'"] . (77)

(43) and, after setting 2d =2@+1=/,
' in the expressions

(45) of y, v and yzo, we get

1 1 1
a = —(2g, )'~, d=, (u=m = ——+

2g,
' 2 2g,

(70)

A. Analytical determination of the Morse-Pekeris energies

As a first example, let us consider the analytical solu-
tion of the diatomic rotation-vibration Morse equation
when the rotational term is treated as a perturbation by
means of a truncated Pekeris expansion [15],

2

Then, analytical expressions of the perturbed Morse-
oscillator energies and wave functions are readily obtain-
able when merely setting in the final type-8 expressions,

b'"(0)=(g(+g&)'g,',
b P'(0 }=2gz(g, +gz )g, ,

b(2)(0) g2(2

(78)

The second-order perturbed eigenvalue is [see Eq. (50)]

A'„'= —g, {gi+4g2(g, +g2)

At the second order (N =2} of the perturbation, the
nonvanishing data coefficients b„' '(i) are the expansion
coefficients of 8' '=(I(."') in a series of a e"'"(I'™).
We get

Pe 2
—P(r —r )=(1—3a+3a )+(4a—6a )e

T

2gg(2g(g2+3g2)(v+ —,')] i (79)

—(a—3a )e
—213(r—r~ )

(71)
and we obtain

E' '= —A D, '[a + 'g (Sa ——18a +9a )(u+ —'}j
where a =1/Pr, . One has to work out the solution of the
perturbed Morse-oscillator eigenequation (68}with a per-
turbation,

(80)

The associated perturbed ladder function is [see Eq. (43)]

U(r)= U'"(r)= A [(4a—6a )e K( '(x, m)= —ag, [bi+bi+b e2™], (81)
—2P(r —r )—(a—3a )e (72}

where A =B,[J(J+1)—0 ] in the Hund-(a) coupling
scheme, or A =B,[N(N+1) —A ] in the Hund-(b) cou-
pling scheme, J=N+S, N is the total orbital momentum
of the molecule, S is the total spin of the electrons, and
B, is the rotational constant.

It is easily checked that V(x)= V"'(x) is the type-8
counterpart of U(r) when setting

b', "=g, = —
—,'g, 'AD, '(4a 6a ), —

=g ='g AD (a —3a )

bI( '(0)=2(,(g, +g2)(b, +b2),
bi" =2/, [bi(g, +gi)+g, (b, +b, )],
b(»(0) =2gig b

The third-order perturbed eigenvalue is

(82)

where the shortened notation b„=b„' '(0) is used.
At the third order (N =3) of the perturbation, the non-

vanishing data coefficients b„' '(i) are the expansion
coefficients of 2I(.'"'K( ' in a series of a e" (", ), and we
get

2 [E'"—A (1—3a+3a~)]
(73) A'„'= —Ib' '(0)+b', '(0)+b' '(0)

—2(, [b( '(0)+b2 '(0)](v+ —,')] . (83)

2 E(N)

At the first order (N = 1) of the perturbation, the per-
turbed type-B eigenvalue is [see Eq. (50))

Then, after giving the data parameters their Morse-
Pekeris expressions (78) and (73},we obtain

E„' '= —A D, Ia (1—3a)

A'„"=g,I,(0)+g2I2(0) . (74)
+2(,(v+ —,')a (1—3a) (7—3a)] .

Picking up the expressions of I, (0) and I2(0) in Appen-
dix A and giving the type-8 parameters their Morse-
oscillator expressions (70), we get

I

A',"=(g,+g2) 1 —g, —2g, (75)

and then [see Eq. (73)]

E("=A [1—2$,(3a—3a }(u+—')] . (76)

The associated perturbed ladder function is given by Eq.

(84)

The determination of the Morse-Pekeris energies can
be pursued, up to any higher order, by computing succes-
sively the expansion coefficients of e =(K ')
+2~'"~' ', 8' ~=2''"~' '+2~' '~' ' and so on

Of course, the expressions (76), (80), and (84), of E„'",
E„' ', and E„' ', are directly obtainable as a particular case
of Eqs. (60), (64), and (67) by setting b; =p,. =0 and giving
the type-B parameters their Morse-Pekeris expressions.

It should be noted that, when introducing the rotation-
al term by means of the Pekeris expansion (71), the



4516 N. BESSISAND G. BESSIS 50

Morse-Pekeris equation is relevant to exact type-8 factor-
ization and, in this case, the perturbed factorization pro-
cess (up to the Nth order) provides only an approxima-
tion of the exact result (see, for instance, formula (10) of
Ref. [16]},i.e., the expansion of the exact compact expres-
sion of the rotation-vibration energy in a series of
A D, +', truncated at the Nth term.

B. (1—e '" "') -perturbed Morse-oscillator energies

As another illustrative example, let us consider the
solution of the perturbed Morse-oscillator equation (68)
with a perturbation

'ej 4U(r) =2gD, (1—e '
)

At the first order (N= 1) of the perturbation, the per-
turbed eigenvalue is [see Eq. (50) with Si =3]

A', "(m ) =b, I, (0)+b2I2(0)+ b 3I3 (0)+bgI4(0), (88)

E,"'=g ~ ( —,
' ——2'g, )+(3—4g, )

where the I„(0) are given in Appendix A. When giving
the type-B constants their Morse-oscillator expressions
(70) and (87), we obtain the following expression of the
first-order perturbed Morse-oscillator energy (in fico,

units),

In its present form, the method does not directly apply
to the solution of the Morse-oscillator eigenequation with
the perturbation

V(x) =c,(1—e'")+c2(1—e") +c3(1—e'") +

Indeed, setting y, (x)=a 1;(x)=a (1—e'")', we get

2E (x,m;}u) Y,(x)= —2(m —d )y, —2dy, +, ,

Ys = —sy, 1+sy, ,dx

+(3—9g, ) 2
—6g,

The first-order perturbed ladder function is

4
K'"(x,m;p)=a g b„g„o(x,m;p),

u=1

(89)

(90)

2 E(x)
i6cOq

2 [E'" 2gD, ], A'—
iICOq

(87)

and, therefore, the two-term ladderlike condition (8) is
not fulfilled, an extension of the method should be need-
ed. Of course, in that case, one may expand the perturba-
tion in a series of the suitable x basis y, =a e" and, after
an adequate dispatching of the perturbation, one can use
the general perturbed type-8 results of the present paper.

One has first to work out the solution of the perturbed
type-8 eigenequation (28) with a perturbation

v(x) = v'"(x)

& 2[b e ax+ b e 2ax+ b e 3ax+ b e4ax]

It is easily checked that V(x) is the type-8 counterpart of
U(r) when setting

where the y„o(x,m; p ) are given by Eq. (45).
At the second order (N =2) of the perturbation

( S2 =6), the expressions of the data coefficients b„' '(i )

can be obtained either as the expansion coefficients of
(K"') in a series of a e"'"(", ) or by means of Eq. (57),
1.e.,

4 4
b„' '(i) = g g X(u, i ~p, 0;q, 0)b b

p=l q=l
(91)

After some straightforward algebraic manipulations and
after setting 2p+ 1 =2d =g, ', we obtain the expressions
of the nonvanishing b„' '(i), which have been reported in

Appendix B. Then, using the expression (50) of AP'(m)
and picking up the required expressions of the I„(i) in

Appendix A, we obtain the following expression of the
second-order perturbed Morse-oscillator energy:

E(2) g2, (21+3( 21g2)+(18 233g +99(2) U +(133 1061' +405g2)

+(—", —390$, 660$, ) —
3

—5$, (84—495$, +225/, )
1.

—10$,(6+57$, } (92)

The associated second-order perturbed ladder function is
given by the standard expression (43).

The analytical determination of the perturbed Morse-
oscillator energies can be pursued up to any higher order
of the perturbation without any other special difficulty

than, of course, writing down more and more extensive
expressions.

As expected, the general expression (51) of the (class-
II) type-8 pseudointegrals I„(i)gives again, as a particu-
lar case (i=0, 2d=2p+l=g, '} the analytical expres-
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(e ' )=1—g, —12$,(l —g, )

r

—12(,(1—3g, ) 2 +24/, {93}

sions of the diagonal matrix elements—sp(r —r )(e ' ) = —I, (0) between the (unperturbed) Morse-
oscillator functions. We get

&.
'" " )=(. ' " )=l-g, —2g, ",

% )( x; (x)=W J(e)'( x)exp —fKx(xd;(x)dx

where 4' '(x)=N"exp[jax+2de'"] is the zeroth-order
(type-B} key function. Then, the complete set of the per-
turbed eigenfunctions can be generated stepwise by suc-
cessive application of the ladder operation,

dK(x,m; p } —
%z (x;IM )

X

(e ' ) =(1—g, )(1+2/, )

+4(,(1—g, )(1—8g, )
J

r

—36/2(1 —3g, ) 2
+72/3

where

=[L(j;p) L(m—;IJ)]'~ 4 +,(x;p, ),

L(m;p, )=—a m +gL'"(m;p)+q L' '(m;p)

+ +~"L'"'(m;I ) .

(98)

and so on. These expressions are quite in accordance
with previous results (use, for instance, formula (33) of
Ref. [17]).

Finally, let us remark that as (,~0, the expressions
(89) and (92) of the perturbed Morse-oscillator energies
E„"'and E„' 'reduce to

E( )—3g
1

4 1 2

E( )= 2 21+18 v + v + 51 v

8 1 4 2

(94)

C. Determination of the perturbed eigenfunctions

Let us now consider the determination of the perturbed
eigenfunctions up to any order N of the perturbation and
apply the usual factorization scheme. The total (type-B)
ladder function is

K(x,m;p}= —am+ade +K&(x,m;p),
where

Kz(x, m;p)=riK"'(x, m;p)+g K' '(x, m;p)

+ . +g~K'"'(x, m;p) .

(95)

The (class-II) perturbed key function (u =0) is the solu-
tion of the first-order differential equation [see Eq. (6)]

6fK(x,j;p)+ ql "(x;p)=0 .
dx

(96)

One finds

One finds again the already known expressions [18,5] of
the x -perturbed harmonic-oscillator energies. This is
not surprising since, as already pointed out [19], the
Morse-oscillator equation (23) reduces to the harmonic-
oscillator equation as the anharmonicity constant g,
tends to zero. Finally, let us note that perturbed type-8
factorization with a perturbation V(x) given by Eq. (86)
can also be used for the determination of the rotation-
vibration Morse-oscillator energies taking into account a
more elaborate expression of the rotational term.

Starting from the perturbed key function (v=0), the
ladder process (98) can be pursued until the determina-
tion of the required (u =m —j ) eigenfunction. Once the
p, dependent ip (x;p) is obtained, the artificial parame-
ter p has to be set equal to its actual value p =m.

The expressions of the perturbed Morse-oscillator
functions (within the Ter Haar approximation [12)) are
readily obtainable from their (type-B) counterpart

(x;m ) after setting x =(pcs, /fi)'~ (r r, ), introdu—c-
ing the suitable normalization constant and giving the
type-B parameters their Morse-oscillator expressions (70).
This point is going to be considered elsewhere in more
detail, together with the computation of the perturbed
Morse-oscillator transition probabilities and intensities.

VI. CONCLUSION

Owing to the fundamental and practical interest of the
Morse-oscillator model, many various methods [20] have
been made available for the solution of the (unperturbed)
Morse-oscillator eigenequation. This is not quite the case
when an analytical solution of the Morse equation with
an additional perturbation V(x) is required, and it may
be useful to resort to perturbed type-8 factorization. An
analytical solution of the perturbed eigenequation is
readily obtained without any prior knowledge of the ex-
cited spectra and without having to calculate any matrix
element. This is an advantageous feature of perturbed
factorization with regard to other perturbative methods—sp(r —r )
since of-diagonal matrix elements (u'~e '

~U ) be-
tween (unperturbed) Morse-oscillator eigenfunctions are
nonvanishing for all v'. Moreover, once the perturbed
ladder and factorization functions have been obtained,
one finds again all the advantages of the exact factoriz-
able (unperturbed) method: determination of any per-
turbed eigenfunction 'PJ. {x;p}from the knowledge of
the perturbed key perturbed function W~&(x, p) by means
of p-dependent ladder equations (5) and/or determination
of recursive formulas [21] for the computation of matrix
elements between perturbed eigenfunctions.

Of course, perturbed type-8 factorization can also be
applied to any problem involving the solution of a per-
turbed confiuent hypergeometric eigenequation [3]. Let
us emphasize that, since the ladder basis functions
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y„;(x,m; p ) as well as the pseudointegrals I„(i;m, p ) do
not depend on the order X of the perturbation, the Xth
order of the perturbation is not significantly more
diScult to handle than the first order. At any order X of
the perturbation, the perturbed eigenvalue is obtained in
the same way as at the first order, i.e., by adding the
products b„' '(i)I„(i;m,p) of the data coefficients b„' '(i),
which are specific to the particular problem under con-
sideration, with the required standard (type-B) pseudoin-
tegrals I„(i;m,p). For any problem relevant to per-
turbed type-B factorization and at any order N, once the
data coefficients b„' '(i) have been obtained in terms of
the expansion coeScients of the given perturbation
V' '(x) by means of algebraic manipulations, the deter-
mination of the perturbed eigenvalue (and perturbed
ladder function merely amounts to picking up the re-
quired type-8 pseudointegrals (and ladder basis func-
tions).

Being algebraic and recursive, the perturbed ladder-
operator method may be easier to use (with the help of
computer algebra) than other traditional methods, such
as the Rayleigh-Schrodinger one. Nevertheless, the use
of perturbed factorization imperatively requires the given
perturbation V(x } to be expanded in a series of the
specific x basis functions y, (x}, namely, for perturbed

type B, y, (x )=a exp(asx ). Fortunately, for the case of
the Morse potential, once each perturbation term V' '(x)
of the total perturbation V(x} has been expanded in a
series of the natural expansion basis functions—p(r —r) t
z, (r)=(1—e ' }', it can be identically transformed
into a finite series of the required basis functions—sp(r —r, )

y, (r)=e '. Hence, our working expansion is ex-

actly equivalent to the traditional one. Of course, the

convergence of the perturbation expansion can be prelim-
inarily improved by considering V(x) as a polynomial in—p(r —r )
z, (x }= 1 —e ' and using, for instance, a (con-
veniently shifted) Chebyshev series economization tech-
nique [22].

Let us mention that the choice of the suitable per-
turbed type-B x basis functions y, (x)=a exp(asx) and

Y,(x)=a exp(asx ), which have been used in the present
paper, is not at all exhaustive. The associated basis func-
tions y, (x)=a exp( —asx) and Y, (x)=a exp( —asx) also
satisfy the ladderlike properties (8), with associated data
A, (m)=21, B,(m)= —2m, a, =0, and P, = —(s+1).
Nevertheless, in this case, the solution of the finite-
diff'erence equation (11) is more intricate. One encounters
analogous intricacy when dealing with the solution of the
spiked or, more generally, the singular anharmonic-
oscillator eigenequation involving (1/x)" perturbations
(perturbed type-C factorization, with associated data

y, (m)=(1/x) ', Y, (m)=(1/x) '+', A, (m)=2b,
B,(m) =2m, a, =0, and P, = —(2s+1). Owing to their
particular interest in quantum physics, these two last
cases, as well as the solution of the perturbed
transformed-Jacobi eigenequation [determination of per-
turbed Wigner functions DM''&(y, 8,$) or of perturbed
spherical harmonics FP(8,y), analytical solution of the
Schrodinger equation with a perturbed Poschl-Teller po-
tential [23], with a Gaussian potential, etc. are under con-
sideration.

APPENDIX A: EXPRESSIONS
OF THE TYPE-B PSEUDOINTEGRALS

Using the standard expression (51), we get

Io(i}=— . for any i,U

I (0)= — 2m —2 U

2d 1

I (1)=— (2m —2) —4
1

2d .1 . .2 .

I (2)= — (2m —4)
1

2d .2
—6 U

.3

I (3)=— (2m —6) —8
1

2d 3 4

I~(0)=— 1 U

2d
(2m + 1) 2m —2

1

2

I2(1)=— 1

2d
(2m —1)(2m —2) —12(m —1) +12

1 .2 . .3 .

I2(2) =—
2d

(2m —3)(2m —4) .2.
—(20m —42) +323 4
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Ip(3)=— 1

2
(2m —5)(2m —6) 3

—(28m —88) 4 +60

I3(0)=— 1

2

3

2m(2m+ 1)(2m+2) —24m
1

—24(m —1) 2 +24
J

I3(1)=— 1

2

3

2m(2m —1)(2m —2) —24m(m —1) +24m
1 .2 . .3 .

I3(2)=— 1

2d

'4

P

(2m —2)3 .2.
—12(2m —3)z 3 +(120m —240) 4

—120
I I I

I4(0)=— (2m +1) 2m (2m +3)z+ 8m (2m —7)
P

—72(m —1) +72
.2 . .3 .

I4(1)=— 1

2d

4

(2m+1)4
1

—16(m —1)(m+3)(2m —1)

I4(2)=—

—24(2m —15m + 12) 3 +240( m —2) 4
—240

J

4 r

2
(2m —1) (2m —2) —24(2m —7m +6) +60(2m —4) —1203 .2. .3. 4

~ 5

Is(0)=— 1

2d
(2m +4)q+ 40m (m + 1)(2m + 1 }(2m —5 )

I,(1)=—
'5

r

—240m(m —1)(2m+5) 2 +1440(2m —1) 3 +1440(m —2) 4
—1440

(2m +2)
& 1

—120m (2m —1)(2m —2 }
I

I6(0)=—

—120m(2m —2)(2m —7} 3 +1440m(m —2) 4
—1440m

'6
r ~ w ~

(2m+1) 2m(2m+5)4+12m(2m+3)z(6m —13)
1

—240m(m —1)(2m+17)
2 I

—480(4m —26m + 15) +7200(m —2) 4
—7200

.3.

and so on.

APPENDIX 8:
PERTURBED MORSE-OSCILLATOR

DATA COEFFICIENTS

The second-order data coe%cients assoriated with the—p(r —r)4perturbation U(r)=2gD, (1—e '
) can be obtained

by using the expression (90) of the first-order perturbed
ladder function E"'(x,m;p). We get (within a factor

g
—

2)

r

X' "(x,m; p, )=f,+g, &

+e f+g, ~,

2ax. f + p m, + 3axf

where, after setting 2@+1=2d =g, ', we have
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fo = —,'g, (1+/, —2g, ), go =
—,'g~(1 —2g, ),

Then, (K"') is easily expandable in a series of
a e""("; ) by means of the relations

p —m p —m p —m p —m+2

p —m p —m p —m p —m
] 2

2
2

+3
3

p —m p —m p —m p —m p —m+6
3

+6 4

and we get the required expressions of the second-order
nonvanishing expansion coefficients b„' '(i) =w„' '(i) [not-
ed b„(i)],

bo(0) for bo(1)=g p+2fogo r

bp(2) =2gp+h p+2f pho+4g oh p,
bp(3) =6ho+6gphp, bp(4) =6ho,

b&(0) =2fof i b](1)=2f&go+2gtgo+2gjfo

b, (2)=2f,hp+4g, gp+4g, hp, b, (3)=6g,hp,

b~(0)=2fpft+f (

bz(1) =2fogz+2gofz+2gogz+2f, g, +g f

bz(2) =4gogp+4hpgz+2g, +2hofz, bz(3) =6hpgz,

b3(0) =2fof 3 +2ftf t

b3( 1 ) 2gof3+2f, gz+2g, fz+2g, gz

b3(2 )=2 hpf 3+4gtgz b4(0)=2f ]f3+ft
b4(1)=2g, f3+2fzgz+g~, b4(2) =2g~,

bs(0) =2f~f3, bs(1) =2gzf 3, bs(0) =f3
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