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The displaced parity operators are shown to have properties that bear a deep relationship with those
of the Wigner functions. By exploiting these properties we show that these operators play an important
role in linking together many of the aspects of the various exact phase-space mappings of quantum
mechanics. These include the Wigner and Weyl representations, coherent states and the Bargmann rep-
resentation, the P and Q representations, the Weyl correspondence, and the Moyal star product formal-
ism. We also introduce corresponding displaced Fourier operators and show that their squares are just
the displaced parity operators. The formalism is extended to squeezed and displaced parity operators,
and their corresponding central role in the theory of squeezed coherent states and general squeezing is

explained. We also elucidate the part played by the displaced parity operators in the Moyal star product
and its extensions, as a first step towards a potential application of these operators in such modern devel-

opments as deformation theory and quantum groups. Finally, we indicate how the apparatus developed
might also find applications in other recent exact classical mappings of many-particle quantum mechan-
ics or quantum field theory, which are not special cases of deformation theory. Prime examples here in-

clude the powerful so-called independent-cluster method techniques, which incorporate the coupled-
cluster method formalism with its inbuilt supercoherent states. Throughout the work we stress the cen-
tral and unifying role played by the displaced parity operator and its generalizations.

PACS number(s): 03.65.Ca, 03.65.Bz, 03.65.Db, 42.50.Dv

I. INTRODUCTION

The displayed parity operator has recently been con-
sidered by several authors [1—4] within the context of
providing an integral form which gives a direct
correspondence (namely, a unitary map) between a func-
tion defined on the classical phase space and the
equivalent operator in the quantum-mechanical Hilbert
space. This work is thus clearly part of a long tradition
of generalized phase-space techniques for the treatment
of problems in quantum mechanics and quantum statisti-
cal mechanics, which originated with the pioneering
work of Weyl [5] and Wigner [6]. The latter work, in
particular, first introduced what is now known as the
Wigner distribution function. Important work by
Groenewold [7] and Moyal [8] also developed Wigner's
techniques further. These authors especially laid the
basis for showing that the Wigner correspondence be-
tween classical and quantum-mechanical functions im-
plies a definite rule of ordering for the noncommuting
operators in the latter case, namely, the so-called Weyl
ordering or Weyl symmetrization.

Other rules of association have been developed between
classical phase-space functions and their corresponding
quantum-mechanical Hilbert space operators, some of
which also lead to alternative phase-space distribution
functions [9—17]. For example, in quantum optics partic-
ular use has been made of both the P representation of

Glauber [12] and Sudarshan [13] and the Q representa-
tion of Husimi [9] and Kana [15],and their implied rules
of association for the noncommuting operators of normal
ordering and antinormal ordering, respectively. Each
such phase-space distribution function has lent itself to a
reformulation of problems in quantum mechanics or
quantum statistical mechanics as equivalent quasiclassi-
cal problems, where the distribution function plays the
role of a quasiprobability distribution in the appropriate
phase space. The relationships between the various dis-
tribution functions or, equivalently, between the various
representations of a given quantum-mechanical operator
have been investigated by many authors [18-21].

Although the Wigner distribution function was origi-
nally defined in terms of the Schrodinger wave function,
both it and the alternative distribution functions find a
more natural formulation in the Bargmann Hilbert space
[22,23] and the corresponding holomorphic (or Barg-
mann) representation of wave functions. A very natural
role is thus played by the (Glauber) coherent states. Fur-
thermore, these original coherent states have themselves
now been generalized to the so-called squeezed (or two-
photon or paired) coherent states [24—27]. The use of the
Wigner function for such squeezed states has been sug-
gested by a number of different authors [28—30], and a re-
cent rather complete discussion of the linear canonical
transformations of coherent and squeezed states in the
Wigner phase space has been given in Ref. [31].
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II. PRELIMINARIES
AND THE PARITY OPERATOR

We consider the linear harmonic oscillator with mass
m and angular frequency co. Its Hamiltonian is given by

A2
Hp= —'mes x + =%co(ata+ —'I),

2m 2 (2.1)

in terms of the identity operator I and creation and de-
struction operators a ~ and a, respectively,

a =(2mfico) '~ (mcox ip), —

a =—(2mfico) ' (mcox+ip),
(2.2}

which obey the usual canonical commutation relations of
the Heisenberg algebra M,

Finally, whereas all of the previous phase-space repre-
sentations of quantum-mechanical operators have been
based on pure {coherent) states, the present authors [32]
have considered the generalization to the so-called
coherent mixed states. The particular case of thermal
coherent states, which describe displaced harmonic oscil-
lators in thermodynamic equilibrium with a heat bath at
some nonzero temperature T, was studied in detail. It
was shown how an equivalent description of this formal-
ism can be given in terms of a superposition of coherent
states and thermal noise and thus how the formulation
applies to the common and important practical situation
of an admixture of coherent signal and noise. We also
showed how the usual P and Q representations can there-
by be generalized into their nonzero-temperature coun-
terparts, and we demonstrated their explicit relationships
to the Wigner-Weyl representation.

The intention of the present paper is to show how all of
the above developments can be drawn together by ex-
ploiting the properties of the displaced and squeezed par-
ity operator. Apart from shedding light on each of these
topics, especially by exploring deeper connections be-
tween them, we also indicate how further extensions and
ap'plications may be practicable for other situations.
These include theories in which a central role is played by
some star product analogous to that of Moyal [8] for the
Wigner representation of the product of two operators in
terms of their individual Wigner representations.

The outline of the remainder of the paper is as follows.
After a preliminary discussion in Sec. II of the parity
operator and relationships between it and the displace-
ment operator, the displaced parity operator is examined
in detail in Sec. III. The Weyl and Wigner representa-
tions are then considered in depth in Sec. IV as an illus-
trative example of the previous formalism. The relation-
ship of the parity operator with the Fourier operator that
generates Fourier transforms is explored in Sec. V, and
the formalisin is extended in Sec. VI to incorporate
squeezing as well as displacement. The Moyal star prod-
uct and related classical mappings of quantum theories
are discussed in Sec. VII. Finally, our results are summa-
rized in Sec. VIII, where we also indicate further exten-
sions and applications of them.

[x,P]=iI [a,at]=I . (2.3)

As always, all of the ensuing formalism also applies to a
single mode of the electromagnetic field of angular fre-
quency co, if we replace m by ficolc . Henceforth, we
freely use units where fi=m =co=1. The eigenstates of
Ho are the usual orthonormal set of number eigenstates
[ln &; n =0, 1,2, . . . ],

a~a n =n n

ln & =(n!} ' (at)"lo&, n =0, 1,2, . . . ,

where the vacuum state l0 & is defined as usual by

alo&=o.

(2.4)

(2.5)

These states provide a resolution of the identity operator

g ln&&nl=I . (2.6)

The corresponding Hilbert space % is now decom-
posed as the direct sum

%f=%i$%f2, (2.7)

where %, and %i are the subspaces spanned, respective-
ly, by the odd number eigenstates and the even number
eigenstates. We introduce the corresponding projection
operators onto the two subspaces as follows:

II,—= y l2n+1&&2n+ll,
n=0

II2=—g l2n &&2nl .
n=0

They have the following trivial properties on ff:
rr, +rr, =l,
Il,.ll,. =11,.s,j, i. ,j=1,2.

(2.8)

(2.9)

The parity operator Up is then readily defined in terms of
these projectors as

Up—= Ili —Il, =exp(iira a }, (2.10)

where the equality follows readily by post-multiplication
with the identity operator of the form of Eq. (2.6). It has
the easily proven properties

(2.11)

and is thus clearly an observable with eigenvalues +1.
We define position and momentum eigenfunctions

lx &„and lp &, respectively, as usual,

xlxp& =xplxp&„Plpp& =pplp (2.12)

and hence, to be compatible with Eq. {2.3), with the expli-

with normalizations as implied by the following resolu-
tions of the identity operator:

I=I dx'lx'&„„&x'l, I=J" dp'lp'&, ~&p'l,

(2.13)
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cit overlap

&x'Ip') =(2m )
' e'('"' (2.14)

and the overlap between two coherent states by

& z Iz') =exp( —
—,
'

Iz I' ——,
' Iz'I'+z "z') . (2.26)

We readily prove from Eqs. (2.2) and (2.5) that the
coordinate-space (or Schrodinger) and momentum-space
representations of the (normalized) vacuum state are
given, respectively, by

A +B e Ae Be ( 1 /2)[ A)Bj (2.27)

By making use of Eqs. (2.2) and (2.20), together with
the simple Baker-Campbell-Hausdorff relation

(x I 0) — —(/4e —((/2)x ( I(})
—) /4 —() /2)P

X p

(oIo) =1. (2.15)

valid for any two operators A and 8, each of which com-
mutes with their mutual commutator, we find that the
displacement operator can be written in the form

) =( —1)"„(,I
p & p() I

n &
= (

—I)"p & p() I
n &,

we readily prove

U, Ix, &„=I—x, &„, U, p & =I —p

(2.16)

(2.17)

By making explicit use of the parity relations for the
number eigenstates

D(z) =exp(iz)(zr )exp( —v'2izi(p )exp(&2izlx ), (2.28)

where zs =—Rez and zz =—Imz. Equation (2.28) leads sim-

ply to the following relations for the matrix elements of
D(z):

(p ID(z)Ix )„=(2n )
' exp[i( zzzl &—2izsp

+v'2izlx —px ) ] (2.29)

as expected.
We similarly introduce the usual set of (normalized)

canonical coherent states j Iz ); z EC] as the eigenstates
in & of the destruction operator

az =zz (2.18)

They are readily constructed explicitly either in terms of
the number eigenstates as

and

„(x'ID(z) Ix )„=exp[izl (x +x ')/+2]

X 5(x —x '+ &2zz ),
(p'ID(z) Ip ) =exp[ iz„(p+—p')/ v2]

X5(p —p'+v'2zl) .

(2.30a)

(2.30b)

Iz) =exp( —
—,'IzI') g (n!) '"z"In)

n=0
(2.19)

Equations (2.30a) and (2.30b) readily yield that

TrD(z) =a 5(zl )5(zx ) —=m5' '(z) . (2.31)

Iz ) =D(z)IO), D(z) =exp(zat —z'a ) . — (2.20)

or in terms of the unitary Weyl displacement operator
D(z) as

They also lead to the important relations

f dz)tD(z)=&2nIzl/&2)~~( —zl/i/2I,

zIDz = 2mzz 2 « —
z& 2

(2.32a)

(2.32b)
One again easily proves that the action of the parity
operator on the coherent states is given by

U, Iz=g&=Iz= —
g& .

One may also prove directly from Eq. (2.10)

Upa UP = —a, Upa UQ = —a

and hence that

Uof ( , at) aUto =f(
—a, —a )

(2.21)

(2.22)

(2.23)

for an arbitrary regular function f=f(a,a ). In particu-
lar we have

UOD(z)Uo=D( —z) UOD(z)=D( —z)UO . (2.24)

The coordinate-space and momentum-space representa-
tions of the coherent states are readily shown to be given
by

In turn, either Eq. (2.32a) or (2.32b) leads to the funda-
mental relation between the displacement and parity
operators

d2z Dz =UQ,
21T

d z =d(Rez)d(Imz)=(2i) 'dz dz",
(2.33)

where we have made use of Eqs. (2.11), (2.13), and (2.17).
Equations (2.30a} and (2.30b) are particularly useful,

for example, in deriving relationships between different
representations of state vectors or operators in &, which
can otherwise be difficult to derive and/or whose origins
often remain obscure. Thus a state vector If ) E& may
be represented by its Schrodinger (or coordinate-space}
representation f„(a) or its Fourier-inverse momentum-

space representation f (P) defined, respectively, as

„(xIz ) =m ' 'exp( —
—,'IzI' —

—,(z'+&2xz —
—,'x'),

(2.25a)

f„(a)—:„(aIf), fp(13)=p(Plf & . — (2.34)

(p Iz ) =n '/'exp( —
—,
' Iz I'+-,'z' v'2(pz —

—,'p—'}

(2.25b}

Alternatively, the Bargmann (or holomorphic) represen-
tation [22,23] of a state vector If ), whose decomposition
in the number-state basis is
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lf)= g f, ln&,
n=0

is de6ned as

fii(z)=—exp( —,'lzl )(z'lf)= g (n!) ' f„z" .
n=0

(2.35)

(2.36)

from which we see that U(z) is an observable, with eigen-
values equal to +1. It may also be written in the
equivalent forms

U(z)= y ( —I)"ln;z&(n;zl
n=0

We thus have
=11,(z)-ll, (z) . (3.6)

&0ID( —z') lf & =exp( —
—,
'

Ized'}fn(z}

. (2.37}
By making use of either Eq. (2.13) or Eqs. (2.31) and
(2.33},we can evaluate the trace of U(z),

zr exp —zl g z

=2' n. exp( —'z )f (
—2 ' zn) . (2.38b}

For all normalizable states
lf ) C the function f~(z) is

a holomorphic or entire function of the complex number
z of order p &2 (and type i~ —,

' if p=2). By taking matrix
elements of Eqs. (2.32a) and (2.32b) between states (Ol
and lf ), and by making use of Eq. (2.15), we find

z& exp —
—,'z& &

—z

=2' n exp( —'z )f ( —2 ' zr), (2.38a)

TrU(z)= TrUO= —,', (3.7)

which is compatible with the sum of the alternating
divergent series obtained from Eq. (3.6). It should be
pointed out that the trace of the operator
exp[(iir+e)a a ], where e is a real infinitesimal, exists for
e(0, but not for e) 0. In the case a=0, which is of in-
terest to us here, the trace thus exists as the one-sided
limit.

Furthermore, by making use of Eq. (2.24},we find

U(z)=D(2z)UO= UOD( —2z),

where we have also made use of the group relation

III.THE DISPLACED PARITY OPERATOR D(z, )D(zi) =exp[ —,'(zizz —zizz)]D(zi+zz } (3.9a}

The displacement operator D(z) does not commute
with the projection operators IIi and 112 of Eq. (2.8).
Hence the decomposition of Eq. (2.7) of the Hilbert space
% into %F, and &z is not invariant under the action of
D(z). In order to define the "displaced version" of Eq.
(2.7) we introduce the displaced number eigenstates

for the Weyl displacement operators, which is readily
proven from Eqs. (2.20) and (2.27). In fact, by making
use of Eq. (3.8), we see that the Weyl operators and the
displaced parity operators taken together form a larger
group [1,2], with the additional group multiplication
properties given by

ln;z) =D(z)ln )— (3.1)
U(z, ) U(z2) =exp[2(z i z2 —z, zz )]D(2z, —2z2), (3.9b)

and generalize the operators II& and II2 into their dis-
placed counterparts

&=%i(z )a&i(z), (3.3)

where %(i(z) and gled(z} are the Hilbert subspaces
spanned, respectively, by the odd and even displaced
number eigenstates.

The displaced parity operator U(z) is now defined as

U(z) =D(z) UOD (z)—
=exp[in(at —z'l)(a zI)], —(3.4)

where, in the second line, we have used Eq. (2.10). This
definition, together with Eq. (2.11), immediately yields
the relations

U (z)=I, U(z)=U (z} (3.5)

II,(z)= g l2n+1;z)(2 +n1;zl=D(z)II, Di(z),
n=0

(3.2)

II2(z)= g l2n;z)(2n;zl=D(z)112D (z) .
n=0

They clearly obey relationships analogous to those ex-
pressed in Eq. (2.9). We may also write as the analogous
extension of Eq. (2.7)

D(zi ) U(z2} xp(zlz2 z 1 z2) U( 2zl+z2

U(z, )D(zi ) =exp(z i zi —z, z i ) U(z, —
—,'z2 ) .

(3.9c)

(3.9d)

in the derivation of which we have made use of the sim-
ply proven relationships

e '&lx &„=lx+a&„, e'lp & =lp+P& . (3.11)

Similarly, the mode of action of the displaced parity
operator on the position and momentum operators is
given by

U(z)xU (z) = —x+2 zii,
U(z}PU (z)= —P+2 ~ zr .

(3.12a}

(3.12b)

We may straightforwardly show from Eqs. (2.17) and
(2.28) that the mode of action of the displaced parity
operator on the position and momentum eigenstates is
given by

U(z}lx )„=exp[izl(4za —2 ~ x ) ] l

—x +2 zn )„,
(3.10a)

U(z)lp )~ =exp[ ized(4zl ——2 ~ p)]l —p+2 ~ zI )

(3.10b)
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(3.13b)

By making use of Eqs. (2.32a), (2.32b), and (3.8), we may
also prove the important relations

f dz„ U(z)=2 '"~l Zz, &„& v'Zz, l, (3.13a)

f dzt U(z) =2 '
m lv'2zz & „&/2zz l,

Eq. (3.20), we now define the Q p-arametric Fourier trans-
form of an operator e =e(z) defined in terms of a com-
plex parameter z to be that (unique) operator 8=—8(w)
whose Q representative is the Fourier transform with
respect to the parameter z of Q(8;z). Hence

from either one of which we may also prove
d(w)=8m. U(w) . (3.24)

—fd z U(z)=I,2
(3.14}

By making use of Eqs. (2.20), (2.26), and (3.9a), we readily
find

Q(D(z);g}=exp( —
—,
' lz l

+zg' —z'g) (3.16)

and

Q(U(z);g}=exp( —2lz —
gl ),

from which we may also prove the relation

(3.17)

ze" D —
—,'iz ', =8m U m; (3.18)

where we have introduced the convenient scalar product
notation

with the aid of Eq. (2.13).
We next consider the Q representations of the opera-

tors D(z) and U(z), where the Q representation of an ar-
bitrary operator 8 is defined in the usual way as

(3.15)

The reader should note very carefully that the Q-
parametric Fourier transform of an operator defined here
is quite distinct from the functional Fourier transform in-
troduced later in Sec. V, with which it bears no direct re-
lationship and with which it should not be confused.

IV. WEYL AND WIGNER REPRESENTATIONS

which is valid for arbitrary states la&, p&, ly &, and 5&.
Equation (4.1) is perhaps most simply proved by employ-
ing Eq. (2.13) to put the arbitrary states into either the
Schrodinger or momentum-space representations and by
making subsequent use of Eqs. (2.29) or (2.30a) and
(2.30b). In exactly the same way we also make use of Eq.
(3.8) to prove an analogous relation for the displaced par-
ity operators

—fd'z&~IU(z)ly & & plU(z}15& = &~18&&pie & (4.2)

Moyal [8] first proved the very important relation for
displacement operators

—f d'z&alD (z)ly&&PlD(z) 5&=&trl5&&Ply&, (4.1)

Z'W = 2(ZW +Z W)=zawtt +Ztwt (3.19)

8=f„(a,a )~Q(8;z)=f„(z',z), (3.20)

where f„(a,a }=:f„(tt,a ): and the normal-ordering
operator:(): indicates that in every term all of the de-
struction operators stand to the right of all the creation
operators

f„(a,a)= gP„,(a )"a'. (3.21)
k, l

between two arbitrary complex numbers z and m.

We note that Klauder [33] has shown that an operator
8 is uniquely determined by its Q representation in %.
Thus, if we write e in normal-ordered form, we have,
from Eq. (2.18), e= fd'z Tr—[D (z)8]D(z),1

(4.3a)

e=—fd'z Tr[U(z)8]U(z) .
4

(4.3b)

It is convenient and conventional to make a trivial
change of variables in order to rewrite Eq. (4.3a) in the
form

2e= f ",W(e;w)d(w),
(2n )

(4.4)

By assuming that the above four arbitrary states are
members of a complete set of states in &, and by expand-
ing the general operator 8 in the usual (nondiagonal)
decomposition in terms of them, Eqs. (4.1) and (4.2) can
be written in the equivalent forms

We next introduce the notation f(w)—:f(w, w") for the
two-dimensional Fourier transform of the general func-
tion f(z)=f(z, z '), —

where the function W(8; w) is defined as

W(8;w) =m Tr[D( ,'iw)8] . — (4.5)

Thus, if we define the operator d (z) as

d(z}:D( —
—,'iz ), — (3.23)

we see from Eq. (3.18) that the Q representations of the
operators d(z) and 8m U(w) are Fourier transforms of
each other, as defined by Eq. (3.22). By making use of

d wf(w)=—f d ze" f(z) f(z)= f 2e
" f(w) .

(2m)

(3.22)

e=f ', w(e; )d( ),
(2m)

(4.6)

using the notation introduced in Eq. (3.22) for Fourier

The representation of Eq. (4.4) for the arbitrary operator
8 as an expansion in terms of displacement operators is
just the usual so-called Weyl representation and W(8;w)
is the corresponding Weyl or 8'representation of e. By
making use of the familiar Parseval formula of Fourier
analysis, Eq. (4.4) may be rewritten in the form
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transforms.
Further use of Eq. (3.24), and a comparison with Eq.

(4.3b), then shows that Eq. (4.6) may be rewritten as

B=— d z8'6;z Uz=2 (4.7a)

where W(6;z), the Fourier transform of the Weyl repre-
sentation of B, is explicitly given by

W(8;z)=2Tr[U(z)8] . (4.7b)

W(I;z)=1, W(Uo, z)= —,
'n.5' '(z} . (4.8)

We note that Eqs. (4.4) and (4.8} lead to the Weyl repre-
sentation for the parity operator

Ue= fd tD(t)= fd texp(ga) —t"a) (49e)1 2 1

and hence to the following alternative form for the dis-
placed parity operator:

U(z)= f d (exp[/(at z'I) g'(a—zI)]—. —1

2' (4.9b)

Henceforth, we propose to refer to the representation of
Eqs. (4.7a) and (4.7b) for an arbitrary operator 8 as an
expansion in terms of the displaced parity operators, as
the Wigner representation, for reasons that will become
clearer below. The Wigner and Weyl representations of
8, W(8;z) and W(8; w), respectively, are thus simply re-
lated by being the Fourier transforms of each other. We
note that the Wigner representations of the identity
operator I and the parity operator Uo are given from
Eqs. (3.7), (3.8), and (2.31) as

W(8;z ) =exp

zest

2n „(&2z„ I
6

l
+2z )

Xz(+2ztl+2zx )„. (4.13b}

The equivalence of Eqs. (4.13a) and (4.13b) is perhaps
most easily established by the insertion of a complete set
of coordinate-space eigenstates from Eq. (2.13) into Eq.
(4.13b), so that the operator 8 is given a wholly
Schrodinger representation, and by making use of the
Taylor theorem.

Furthermore, by making use of Eqs. (3.13a), (3.13b),
and (3.14), together with Eq. (4.1), we may rather simply
prove the following relations for the Wigner representa-
tion of an operator B:

of Eq. (4.12) or by an explicit evaluation from Eq. (4.8) in
terms of position eigenstates we Snd

n(e, z)= f dq„(XZ2zz+ —,'qlq)l&2zz —
—,'q),

Xexp( i—+2zl q ) . (4.13a)

The latter form is particularly well known as the signer
function in the case that 6 is a density operator p; it is for
just this reason that, more generally, we now refer to Eqs.
(4.7a} and (4.7b) as the Wigner representation of an arbi-
trary operator 8.

It is interesting to note that Eq. (4.13a) may also be
written in the alternative and particularly suggestive
form of a unitary operator acting on the product of the
mixed coordinate-space and momentum-space represen-
tations of the operator 8 and the identity operator

By making use of Eqs. (3.22), (3.23), and (4.4), we may
readily show that the operators whose Wigner represen-
tations are the simple monomials (~2za ) (&2zt)" and
z z'" are given, respectively, by

W(8;z)=(~2za ) (~2zt)" 8= [x p "js, ,
(4.10)

zg W z 2K p 2zr 2zl p

f dz W(8;z)=&2m „(&2z„lel&2z )„,
—fd z W(e;z ) =Tre .1

(4.14a)

(4.14b)

(4.14c)

(4.11}

By making use of Eq. (2.30a}, we may rewrite Eq. (4.5)
in the following more explicit form in terms of position
eigenstates:

W(e;z)=~f dx „(x+2 '"z, lelx-2 '"z, )—„-
Xexp(i2 '"z„x) . (4.12)

Further, either by directly taking the Fourier transform

W(6;z)=z z'" 8=[a (a )")~ .

Here the symbol I A 8"]n represents the so-called
Weyl-ordered or Weyl-symmetrized form of the product
A S", namely, the equally weighted linear combination
of all possible distinct products involving the operator A
taken nt times and the operator k taken n times. It may
be expressed formally as

)n ' 'n

exp(tTA+rk)l, () .

It is precisely these relations that provide the usual inter-
pretation of the Wigner function W(p;z) for a density
operator p (with Trp= 1) as a quasiprobability distribu-
tion in phase space. These relations are, of course, well
known, but here they are derived through Eqs. (3.13a)
(3.13b}, and (3.14), so that the relationship of the dis-
placed parity operator formalism to the Wigner function
formalism is clearly shown.

We also note the strong similarity between Eqs. (2.38a)
and (2.38b) for the Bargmann representation of state vec-
tors and Eqs. (4.14a) and (4.14b) for the Wigner represen-
tation of operators. One of the particular merits of the
present formulation in terms of the displaced parity
operators has been that it widens the Wigner formulation
of quantum mechanics into a larger arena.

A particularly important application of the Wigner
representation is to express a product of operators in
terms of their respective Wigner representations. By
making use of the group relation of Eq. (3.9b}, together
with the basic relation of Eq. (4.7a}, we may easily derive
the general expression
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4e,e,=, d'z, fd'z, W(e, ;z, ) W(e, ;z, )
operator p will yield the values —1 and +1 by Pi(p;z)
and P2 (p;z) respectively. Thus

Xexp[2(z', z2 —z, zz )]

XD(2z, —2z2) . (4.15)

Use of Eq. (2.31) immediately yields the useful relation

P, (p;z ) =Tr[pil, (z) ],
Pz (p;z) =Tr[pII2(z) ],
P, (p;z)+P2(p;z)=1 .

(4.19)

d'
Tr(e,e, )=f W(e„.z)W(e„z) . (4.16) Furthermore, the mean value of the measurement is

clearly seen to be given from Eq. (3.6) as

We return to the general theme of expressing products of
operators in terms of their Wigner representations in Sec.
VII, where we discuss the Moyal star product in the con-
text of further applications of the parity operator and its
variants.

In many practical applications we are interested in sys-
tems represented by mixed states rather than by pure
states. A particularly interesting case is thus when one of
the operators is a density operator p (i.e., with the prop-
erties p=p and Trp= 1). An important example arises
in equilibrium statistical mechanics, where the thermo-
dynamic or statistical density operator representing a
canonical ensemble of systems with Hamiltonian H at a
temperature T is given by

r

p=Z exp
H

k~T
(4.17)

Z:—Tr exp
H

k~T

where kz is the Boltzmann constant. The expectation
value (8 & of an operator 8 in the mixed state described
by p may be computed from Eq. (4.17) as

(e&=Tr(pe)
d'z zWe;z

P2(p;z) P, (p—;z ) =Tr[pU(z)]

=
—,
' W(p;z ) = —,'Ps, (z), (4.20)

where we have used Eq. (4.7b). We thus see immediately
from Eq. (4.20) that P~(z) satisfies the inequality

—2~Ps, (z) &2 (4.21)

and that the probabilities Pi (p;z) and Pz(p;z) are given in

terms of the Wigner function as

Pi (p;z ) = 2 [1—,'Pw(z) ]-,

P2(p;z ) = —,
' [1+—,'Ps, (z)] .

(4.22)

V. PARITY AND FOURIER OPERATORS

Just as the elementary parity operator Uo is seen from
Eq. (2.10) to be a square root of the identity operator, it is
interesting to note that it is itself the square of the uni-

tary Fourier operator Fo, defined as

Fo =exp( ,'isa a—)= g i "ln & (n
l

.
n=0

(5.1)

The reason for the choice of nomenclature for this opera-
tor will become clear in the ensuing discussion. The
definition immediately yields the properties

= f f P q p (p, q) w(e;p, q), (4.18)
Fi)F(i =I=F FO,o

Fo= Uo Fo=r .
(5.2)

where Pa, (z) —= W(p;z ) or, equivalently, Ps,(p, q )

= W(p;p, q) is the Wigner representation of the density
operator, or simply the Wigner function. Equations
(4.14a)—(4.14c) show clearly in this case how
P~(z):Pz(p, q) has th—e interpretation of a quasiproba-
bility distribution in the phase space 'N. Although Eq.
(4.13a) immediately implies that the Wigner representa-
tion of any Hermitian operator, and hence Pii, (z) in par-
ticular, is a real quantity, it is not necessarily positive
definite as would be a classical probability distribution in
phase space.

Our previous discussion in terms of the displaced pari-
ty operator U(z) now allows us to give a very natural ex-
planation and physical interpretation for such negative
values of P~(z). Thus, as explained in Sec. III, U(z) is a
Hermitian operator with eigenvalues —1 and + 1, with
corresponding projection operators II,(z) and Ilz(z). We
denote the associated probabilities that an observation of
U(z) for a system in a state described by the density

FoaFo = —ia, Foa Fo =ia (5.3)

From Eq. (2.2) we thus have (again in units where
fi=m =co= 1)

FoxFo =p FopFo = x

and hence also the relations

Fol~&„=l~&, , Fol~&, =l —~&„. (5.5)

Equations (5.5) also lead to the alternative expressions for

Fo= f" da la& „(al=f da la&„(—al . (5.6)

We note that similar operators to Fo have been con-
sidered elsewhere within the context of finite Hilbert

Similarly, the mode of action of Fo on the basic oscillator
operators a and a is readily proven to be given by
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spaces [34], whereas here it has been introduced for the
infinite-dimensional Hilbert space 9 of the harmonic os-
cillator. We also remark that the trace of the operator
exp[( —,in. +5)a a], where 5 is a real infinitesimal, is easily

found to be given by [1—exp( —,'in+5)] ' in the case
5(0. For 5&0, the trace diverges. In the case 5=0,
which is of interest to us here in connection with the
Fourier operator, the trace may be defined by the one-
sided limit and is given by

F(z}=exp(i
~
z ( }F&&D[ —(1+i )z ]

=exp(i)z~ )D[(1 —i)z]F&& . (5.15)

U(z) =F (z)

and that it also satisfies the relation

(5.16)

It is clear that the displaced Fourier operator is related to
the displaced parity operator through the relation

TrFp= —,'(1+i ) . (5.7)
F (2)=I . (5.17)

For an arbitrary ket vector ~g) in R, we define its
Fourier transform ~gF ) as

Igr &
—=Fp lg & . (5.g)

Thus, for a general operator 8=6(x,P), we have from
Eq. (5A) that

8=8(x,P)-8,=8(P, —x) . (5.11)

As already noted in Sec. III, this very general functional
definition of the Fourier transform of an arbitrary opera-
tor is quite distinct from the rather more specialized
parametric Fourier transform defined in $ec. III for a
class of operators defined in terms of a complex parame-
ter. For example, we readily see that

By making use of Eqs. (5.6) and (2.14) we see that this
definition immediately yields the relations

,&a~lgj, &=~& —aug&=&2m& ' I d&&e", &&&lg&,

(5.9)
(a~gr ) =„(a~g ) =(2n )

' f dPe' ~z (P~g ) .

We thus observe that the mode of action of the Fourier
operator Fp on an arbitrary state vector in ff is to gen-
erate its usual Fourier transform.

We may also define the Fourier transform 6z of an ar-
bitrary operator 8 in % as

8 =F6F— (5.10)

The relationship between the parity and Fourier opera-
tors studied in this section demonstrates another interest-
ing aspect of the quasiclassical Wigner-Moyal approach
to quantum mechanics. We return to this point later in
this paper.

where, by analogy with Eq. (5.2), we define

z =—cosh( —,'r)z+e ' sinh( —,'r)z' (6.4a)

VI. INCLUSION OF SQUEEZING

We introduce next the unitary squeezing operators
[24-27] [S(p); pECJ, defined as

S(p)—:exp[ —,'pa —
—,'p'a ],

(6.1)
p =re', r &0—, n(8&—n . .

Their mode of action on the basic destruction and
creation operators is to induce the homogeneous Bogo-
liubov transforination

S(p)aS (p) =a& =—cosh( —,'r )a+e 'esinh( —,'r )a t,
(6.2)

S(p)a S (p)=&zt —=e' sinh( —,'r)a+cosh( —,'r)at .

Equation (6.2) immediately gives that the mode of action
of the squeezing operators on the Weyl displacement
operators is given by

S(p)D(z)S (p)=D(z p)=S(p)D(z)=D(z p)S(p),

(6.3)

Dr(z) =—FpD (z)Fp =D ( iz ) (5.12a)
and hence

or, equivalently, z ~=cosh( —,'r)z —e 'esinh( —,'r)z' . (6.4b)

FpD (z) =D (iz )F&& . (5.12b)
We note that the inverse relation to the canonical trans-
formation of Eq. (6.4a) is

F(z)= g i"~n;z)(,n;z~ .
n=0

(5.14)

We may also use Eq. (5.12b) together with the group rela-
tion of Eq. (3.9a) to express F(z) in the forms

We may also define the displaced Fourier operator F(z)
by analogy with the displaced parity operator as

F(z):D(z)FpD (z)—
=exp[ —,'im(a —z'I)(a zI)] . —(5.13)

In terms of the displaced number eigenstates
~ n;z ) of Eq.

(3.1) it clearly has the representation

z=cosh( —,'r)z —e ' sinh( —,'r)z' =(z ) (6.4c)

We also consider the displaced and squeezed number
eigenstates

jn;z, p) =S(p)~n;z) =S(p)D(z)~n ) . (6.5)

Clearly, although the squeezing and displacement opera-
tors do not commute, Eq. (6.3) shows that the order of
the operations can be inverted if an appropriate adjust-
ment of the displacement parameter is made at the same
time. We may use these states to generalize further the
operators II& and II2 into their displaced and squeezed
counterparts
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II,(z,p) =S(p)II,(z)S (p)

l2n +1;z,p &(2n +1;z,p l,
n=0

(6.6)

fo—:coshr, f, =—,
'e' sinhr,

f2 = —cosh( —,'r )z' —e ' sinh( —,'r }z,

f, —= lzl'+coshr .

(6.12}

II2(z,p):—S(p)iiz(z)S (p)

= g l2n;z, p&(2n;z, pl,
n=0

with the obvious properties

Ili(z, p }+II2(z, p) =I,
II;(z,p)II (z,p)=II;(z,p}5;, i,j =1,2 .

(6.7)

We note that the density operator p, ( T) has the simple

expansion

p, (T)= y p„(T)ln;z, p&(n;z, pl,
n=0

(6.13)

in terms of the displaced and squeezed number eigen-
states of Eq. (6.5), and where p„(T) is the Planck distribu-
tion

This procedure thus further extends Eq. (3.3) to provide
the decomposition of the Hilbert space p„(T)=(1—e ~)e "~, /:— Ace

k~T
(6.14)

&=&i(z,p )e&z(z, p), (6.8)

where %,(z,p) and &2(z,p) are the Hilbert subspaces
spanned, respectively, by the odd and even displaced and
squeezed number eigenstates. The squeezed and dis-

placed parity operator is similarly defined as

U(z, p)=S(p)U(z)S (p)

=exp [

iver(a

zI )(ae —z'I )]—

p„,(T), ,=lz, p& &z,pl,

where lz, p & is just the squeezed coherent state

lz, p & = l0;z,p & =S(p)D(z}10&=S(p)lz & .

(6.15}

(6.16)

At zero temperature, the density operator reduces to the
projector onto the pure displaced and squeezed vacuum
state

=II (z,p) —II,(z,p) .

It has the simply proven properties

U (z,p)=I, U(z, p)=U (z,p) .

(6.9)

(6.10}

The Weyl representation of p, may now be derived
from Eqs. (4.5), (6.3), and (6.12) as

W(p, ;w) =ir Tr[D( ,'iw )S(p)p—,oS (p)]

=ir Tr[S( p)D—( ,'iw )S—(—p)p, o]
As an example of this formalism, we consider the equi-

librium state of a canonical ensemble of displaced and
squeezed harmonic oscillators in contact with a heat bath
at some nonzero temperature T. The Hamiltonian of the
displaced and squeezed oscillator has as its lowest eigen-
state a squeezed state. In this sense it clearly plays a fun-

damental role in the study of squeezed states and their
important experimental realizations and applications. It
is perhaps inappropriate and unnecessary in the present
context to discuss in any detail the various experimental
realizations of squeezed (e.g., two-photon coherent}
states, since much literature already exists. We simply
point out that in practice such states will always be pro-
duced with some unavoidable admixture of thermal noise.
Two cases can be considered, namely, where the noise is
or is not itself also squeezed. The example considered
here refers to the former case. Thus we consider the
mixed state described by the thermodynamic or statistical
density operator p~p, =p, (T), as defined by Eq.
(4.17) with H ~H, , with

=n. Tr[D( ,'iw )p, o—], (6.17)

where, in the last line, we have used Eq. (6.3). By making
further use of Eq. (3.9a}we find

W(p, ;w)=ir Tr[D( —z)D( —,'iw )D(z)poo]

=n. exp(iz w )Tr[D( —,'iw )poo] . (6.18}

The Fourier transform of Eq. (6.19) then yields the analo-

gous Wigner representation of p, , from Eq. (3.22), as

Finally, the trace in Eq. (6.18) is readily evaluated in the
number eigenstate representation of Eq. (2.4). By making
use of Eq. (6.13}we readily find

W(p, ;w)=m. exp[ —
—,'coth( —,'P)lw

l
+iz w ] .

(6.19)

H, z
=S(p)D (z)HOD t(z}—St(p )

W(p, p, g)=2tanh( —,'P)exp[ —2tanh( —,'P}lz —g l'] .

(6.20)

=fico(foata+f, a +ffat2+fza+f~zat+f3),

(6.11)

The thermodynamic average of an operator e in the
mixed state represented by the density operator p, (T) is

thus given by Eqs. (4.16}and (6.20) as

where the coeKcients are defined explicitly as (e&—= (e&(z,p;T)=Tr[ep, (T)], (6.21)
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d(8 &
=f 8'(8;g)2 tanh( —,'P)

Xexp[ —2tanh( —,'P)~z —
g~~ ] . (6.22)

By changing the integration variable from g to g, and by
making use of Eqs. (6.4a) and (6.4c), we find

(8&(z,p;T)=exp[ —,'coth( —,'P)h, ]W(8;z ), (6.23)

where 6, is the usual two-dimensional Laplacian opera-
tor

around the phase space point

(x &:—(x &(z,p; T)=[cosh( —,'r }—cos8sinh( —,'r)]q

+sin8 sinh( —,
' r )

mm
(6.29)

(P & = (P &(z,p; T)= [cosh( —,'r )+cos8 sinh( —,'r )]p

+sin8sinh( —,'r)mcoq .

Furthermore, the associated uncertainties are also readily
deAved as

a' —a' a'
6,=—4 = +

azaz' az2 az'
{6.24) :—&(x —(x &)2&(z,p; T}

In the proof of Eq. (6.23) we have also made use of the
general relation

k )0, (6.25}

which is valid for an arbitrary function f(z,z')—:f(z) of
the complex variable z and its conjugate z', provided
that the integral exists. Equation (6.25) is most easily
proven by taking the Fourier transform of both sides of
the relation. We note that in the zero-temperature limit,
Eq. (6.15) shows that Eq. (6.23) reduces to the relation

(z,p~8~z, p & =exp( —,'6, ) 8'(8;z ), (6.26a)

Q(8;z ) =exp( —,
' 5, )W(8;z ) . (6.26b)

By making further use of Eq. (4.10), Eq. (6.23) provides
the following relations for the thermodynamic expecta-
tion values of Weyl-ordered functions of either the opera-
tors a and a ~ or the operators x and p:

([f(a,a )]z,&(z,p;T)=exp[ —,'coth( —,'P)5, ]f(z,z' ),
(6.27a)

([f(x,P)]g &(z,p;T)

=exp[ —,'coth( —,'P}b,, ]
' 1/2

2A Rez, 2m Ace Imz, (6.27b)

which itself reduces in the limit p~0 of zero squeezing to
the well-known relation between the Q and Wrepresenta-
tions

coth( —,'P) [coshr —cos8 sinhr ],
2mN

(hp):—n —= ((P—(P &) &(z,p;T)
(6.30)=

—,'Am c0 coth( —,'P) [coshr +cos8 sinhr ],
~„=-(-,'(Px+~p)-(P &(x & &(z,p; T)

=
—,'Rcoth( —,'P}sin8sinhr .

We have also derived these relations by a different means
in an earlier publication [32], in which we have also dis-
cussed the generalized uncertainty relation for the mixed
squeezed coherent states in terms of the so-called uncer-
tainty determinant or variance determinant. This exhib-
its in a particularly revealing fashion the combination of
both a minimal quantum-mechanical (Heisenberg) uncer-
tainty factor with a corresponding thermodynamic factor
which vanishes in the pure state limit as T~O. Similar-
ly, Eq. (6.27a) also allows us, for example, to calculate the
photon-number expectation value for the mixed state de-
scribed by the density operator p, ( T).

VII. MOVAL STAR PRODUCT
AND CLASSICAL MAPPINGS

We return now to the representation of products of
operators in terms of their individual 8'representations.
In the first place, the use of Eqs. (3.9d) and (3.7) in Eq.
(4.15) leads easily to the important relation

~(8)82,'z)=
2

d z) fd z2W(8„'z, +z)8'(82;z2+z)

Xexp[2(z', z2 —z, z2 ) ] (7.1)

where in the latter equation we have reverted to units
where the Planck constant A and the oscillator parame-
ters m and co have not been set to unity (as elsewhere in
this paper). In particular, if we write z in the usual phase
space form

for the Wigner representation of the product of two
operators in terms of their respective Wigner representa-
tions, where we have used the fundamental de6nition of
Eq. {4.7b}. The analogous relation in terms of the Weyl
representations is given by

mwz=
2A'

q+
(2mkco )

' P s (6.28) d w)
W8)8g, w )= ~ W(8„—'w+ w, ) W(82, —'w —w, )

(2n )

one easily shows from Eqs. (6.27b} and (6.4b) that the
density operator p, (T}describes a mixed state localized Xexp[ —,'(w, w' —w fw)], (7.2a)



R. F. BISHOP AND A. VOURDAS 50

The bijective mapping 8~W(8) between a well-
defined class of operators [8j in the Hilbert space & and
a corresponding class [ W(8) j of functions defined ex-
plicitly in Sec. IV is the basis of the so-called Weyl [5] (or
Weyl-Wigner [6]) correspondence. The functions
W(8;z), which are functions of the complex number z
and its conjugate z", are formally defined on the dual
A'=%' of the Heisenberg algebra, and this is just the
classical phase space. Under the Weyl correspondence a
product of two operators is mapped into the so-called
Moyal star product [8] of the mapped functions

8,8, W(8,8,;z)=—W(8, ) «W(8, )(z), {7.3)

where the star product is thus given explicitly by Eq.
(7.1).

An alternative form for the star product is easily ob-
tained by first expanding one of the two Wigner represen-
tations in the integrand of Eq. (7.1) about the point z, by
using the Taylor theorem. In this way we find

+"a-+
W(8,8;z )=

o m!nf 4 Bza Bzr

gm+nW(6 .
)

X
Bzs Bzg

(7.4a)

Equation (7.4a} may also formally be written in the form

W(8&82;z}=W{8„'z)exp 8 8
4 2R zI

a a
Bzl Bzit

X W(82;z)

a a 5 a= W(8„z )exp
2 Bz Bz az

X W(8z', z), (7.4b)

where, as usual, the arrows indicate the direction in
which the derivatives act. Qne may also show that the
Moyal star product is associative

W(6, ) «[ W(8i) «W(63) j
=

[ W(6, )«W{62)j «W(8i)

(7.5)

d w) cE N2
W(8,62.,z)= f I W(6i, w&)W(82, wi)

(2m ) (2m. )

Xexp[ i—(w&+ wz). z

+—,'(w, wz —w;wz)] .

(7.2b)

W(6,62,'p, q ) = ( —1)" iA

m!n t

8 +"W(8,;p, q)

Bq Bp

e '"W(6„p,q)

Bq "Bp
(7.6)

Another form for the Moyal star product may be
found by using the easily derived expression

exp ——(w i Z+ w, Zt) e

where the scalar products in the exponents are defined as
in Eq. (3.19) and the Bopp operators [35] Z and Z are
given as

1 8 t, 1 8Z=z+- Z —z2a,
-'

2a. (7.8)

Substitution of Eq. (7.7) into Eq. (7.2b) then yields the al-
ternative form

W(8,8,;z,z') = [ W(8, ;Z,Z') j W(8, ;z,z'), (7.9)

where we explicitly write W(8;z) = W'(8;z, z'} and
where the first term on the right-hand side of Eq. (7.9) is
the Weyl-ordered operator, as in Eqs. (4.10) and (4.11).

We hope to have persuaded the reader of the relevance
and usefulness of the parity operator in the context of the
Wigner representation and hence to the Moyal star prod-
uct. Thus it should be clear that the displaced parity
operator plays an absolutely central role in the whole of
this section through Eq. (4.7b), although for simplicity of
notation we have not made the dependence explicit. Oth-
er similar applications of the parity operator and its gen-
eralizations are also now suggested in this framework.
We first note that there is a venerable tradition in quan-
tum mechanics of developing alternatives to the usual
Hilbert space approach to the quantization procedure.
Thus, apart from the well-known Feynman path-integral
method, the Moyal star product, based as shown here on
the Weyl correspondence, provided an early and notable
autonomous route to the quantization of a classical
mechanics or field theory. It has since been extensively
discussed by a number of other authors [36—38].

Furthermore, from a modern vantage point the Moyal
star product is a particular example of deformation theory
[39,40], wherein the algebra of functions on the classica1
phase space of a classical mechanics system is deformed
so as to obtain consistency with its quantized counter-
part. Fox example, in the Moyal star product quantiza-
tion procedure, the quantum-mechanical commutator of
two operators e& and 62 is mapped into the so-called
Moyal bracket

By making use of Eq. {6.28) we also note that Eq. (7.4a)
becomes a representation of the Moyal star product as a
formal power series in the Planck constant A',

[6„e,] [6„6,]~=W(8, )*W(8, )
—W{6,}»W(8, ).
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The Heisenberg equation of inotion for an operator is
thereby mapped into an equation of similar form for the
corresponding mapped function given by its Wigner rep-
resentation, with the commutator replaced by the Moyal
bracket. Functions on the phase space thus generally
have a similar role in deformation theory to the operators
in the quantum-mechanical Heisenberg picture; the
definition of the star product is thereby equivalent to the

specification of a particular candidate for the quantum-
mechanical counterpart to the classical starting point.

Deformation theory generalizes the above concepts for
more complicated symplectic structures and Lie algebras
of functions. Broadly speaking, one introduces the defor-
mation parameter A, and in terms of it deforms both the
ordinary product and the Poisson bracket. In the latter
context, one observes from Eq. (7.6) that

aw(e, ) aw(e, ) aw(e, ) aw(e, )
W(8,8,;p, q) - W(8&',p, q) W(82', p, q)+ —iiii

A~O 2 q p p

1 a w(8, ) a w(e ) a w(e, ) a w(8 ) 1 a w(e, ) a w(e )+—
2 z

+O(fi ).
4 2 aqz ap2 apaq apaq 2 ap2 aqua

(7.11)

More generally in deformation theory we deform in terms
of some specified star product as follows:

fg f~g =fg+O«), (7.12a)

i'[f,g ]~f eg —g ef=iiiiI f,g ] +0(fi ) (7.12b)

for functions f and g in the original classical phase space
and where the notation implies the usual assumption of
the classical limit as iii~0. A special class of functions
(or observables), namely, the so-called preferred functions
(or preferred observables), satisfies Eq. (7.12b) with zero
second-order term, as is the case of the Moyal star prod-
uct of Eq. (7.11). Thereafter, all other functions are built
from the preferred functions and can be interpreted as
forming the universal enveloping algebra of the Lie group
generated by the preferred functions.

In our own example, the Heisenberg algebra necessari-
ly leads to the Moyal star product as the only feasible
solution with the required properties and the Wigner rep-
resentation thereby occupies a special role. We remark
that in the case of more complicated symplectic struc-
tures than those considered here, we expect a comparable
analysis to that of the present paper to be useful and with
a central role again played by the analogous parity opera-
tor. We also note that deformation theory has obvious
connections with the theory of quantum groups, which
are structures formed by so-called quantum deformations
of Lie groups. We again speculate that some of the unify-
ing features of the present analysis might also be general-
ized for use in this arena. We hope to report on such ex-
tensions in the future.

VIII. DISCUSSION AND FURTHER EXTENSIONS

In this paper we have extended earlier work on the dis-
placed parity operators. In particular we have explored
the deep relationships that exist with the Wigner repre-
sentation. We have also discussed the interesting connec-
tions between the parity and Fourier operators. Further-
more, special emphasis has been placed on the role of the

displaced parity operator in the various classical map-
pings of quantum mechanics typified by the Weyl
correspondence and the Moyal star product, which we
have discussed in detail.

In the latter context we also note that other recent
work [41—44] has led to quite distinct exact classical
mappings of quantum (many-particle or field) theories,
which are not subspecies of deformation theory. These
are based on methods which we refer to generically as
independent-cluster method (ICM) techniques and which
include the configuration-interaction method, the normal
coupled-cluster method (NCCM), and the extended
coupled-cluster method (ECCM). Each ICM leads to a
new star product [44], which, while sharing many of the
properties of the Moyal star product, is conceptually
quite distinct from it and has some important difFerences.
Nevertheless, the temporal evolution of the (many-
particle or many-mode) inulticonfigurational amplitudes

I xi, Xz ], which completely characterize each ICM
description of a quantum theory, is described by classical
canonical equations of motion in terms of some well-
defined classical Hamiltonian functional H[xz, XI]. Each
ICM may also be regarded as performing a definite "bo-
sonization" [41] (and, more generally, also a "fermioniza-
tion" [43]) of the original (many-body or field-theoretic)
Hilbert space %F onto the subset of coherent states in a
larger bosonized and fermionized space 2P in which % is
imbedded. The ideal bosons and fermions in 2P carry
the same multiconfigurational index labels I as the ICM
subsystem amplitudes and in each case a one-to-one
correspondence exists between them.

Furthermore, each mapped classical Hamiltonian func-
tional is defined in some classical phase space I pQy„
which is itself a submanifold of the infinite-dimensional
space I spanned by all points (xi,xl). It has also been
emphasized [42] that the states generated by each ICM
may be viewed as a well-defined set of supercoherent states
in JV associated with each point (xl, xl) in I . While the
usual coherent or squeezed coherent states are typically
used to provide a quasiclassical approximation for the
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quantal system, these supercoherent generalizations pro-
vide an exact, yet similarly classicized, description. In
this way, each ICM provides a supercoherent map of &
and the quantum-mechanical Hamiltonian operator H
onto the target classical phase space I

pQy
and its associ-

ated classical Hamiltonian H =H [xz,XJ ] for a set of
multiconfigurational fields [x~,x~ ].

It has been shown explicitly [44] how the expectation
values of products of operators can be computed in each
case in the mapped classical phase space I in terms of a
new ICM star product of the expectation values of the in-
dividual operators, in direct analogy with the Moyal star
product involving Wigner representations discussed here.
In this way the ICM classical map of an arbitrary quan-
tum theory provides an equivalent classical mechanics
based on the traditional concepts of phase space, Hamil-
tonian and flow, with the ICM star product incorporating
the essentially quantum-mechanical features. The new
ICM star products have the feature that the star commu-
tators are precisely (generalized) Poisson brackets defined
in terms of the full set of multiconfigurational amplitudes
[xz,xi]. In this way commutators in % are mapped into
Poisson brackets in I, which again thereby acquires a
symplectic structure. For this reason we again expect a
comparable analysis to that of the present paper, with the
parity operator playing a key role, to be of benefit in a
further analysis of the ICM techniques.

In the same context we note that Arponen and Bishop
[42] have given a detailed analysis of the ICM techniques
for an arbitrary single-mode bosonic field theory (which
includes the important example of the anharmonic oscil-
lator) within the Bargmann or holomorphic representa-
tion discussed here. They have shown explicitly how
both the NCCM and the ECCM may be viewed as pro-
viding definite supercoherent or multicoherent states, in
the sense that the usual Glauber (or one-photon) coherent
states which underpin the holomorphic representation
may be extended not only to the squeezed (or two-
photon) coherent states discussed in Sec. V but also to the
"hypersqueezed" (or n-photon, with n )2) multicoherent
states. These authors showed very precisely how such
hypersqueezed states, although having infinite norm
within the Hilbert space &, can be used to obtain finite
and perfectly well-defined expressions for energies and ex-
pectation values of other operators.

Indeed, the introduction of such states within the
coupled-cluster approaches provides a systematic means,
within the broader context of many-body quantum
mechanics or quantum field theory, to go beyond the
gaussian or Bogoliubov approximation implied by the re-
striction to the coherent or squeezed coherent states in
the corresponding mapped phase space I . It is our be-
lief that use of these coupled-cluster techniques could
also profitably be made in quantum optics and allied
fields, especially when cojoined with the unifying frame-
work provided by the present analysis and its extensions
envisaged here. In a similar context, an alternative ap-
proach to n-photon states has recently been presented
[45] in terms of analytic representations in the mul-
tisheeted complex plane and multisheeted unit disk. The
ideas discussed in the present paper are readily generaliz-

able in this context also.
Finally, we note that the analysis presented here has

been restricted to the phase space of a single oscillator or,
equivalently, of a one-mode field. However, the experi-
mental realization of squeezed states in quantum optics,
for example, usually involves two modes. A general dis-
cussion of two-mode squeezed states has been given by
the present authors [46]. The most general description is
now in terms of the Bogoliubov transformation between
the creation and destruction operators of the two in-
dependent modes and the associated algebra is Sp(4,R).
In particular, we considered in detail the states 8~z, ,zz )
where the ten-parameter family of operators [8] is asso-
ciated with a unitary representation of the group Sp(4,R)
and the two-mode coherent states ~z„z2 ) = ~z, ) ~zz ) are
the joint eigenstates of the destruction operators a, and
a 2 for the two independent modes. The operators8:8(—~, P;o, P;r, , H, , A, , ;r2, 82, Az) take the form

8=%'(—co, g)V(o, g)ll'"(r, , H, , A, , )Q'2'(rz, 82, 12),
where

'N(co, f):exp(—,' toe '~a—~a 2t
—

—,
' toe '~o

gaia 2 ),
V(o, g) =exp( ,'c—re'&a, —a,—,'oe '&g—tia2t ),
+' '(r 8 A, ):exp( 'r e—'a —'r e '—ot—)J' J' J 4 j j 4 j J

Xexp(ik a a ),

(8.1)

(8.2)
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where all ten parameters are real.
The operators [Q'~'(rJ, HJ, A, )}—= [S'~'(p )

Xexp(ik, ata )] are just the usual unitary representa-
tions of the SU(1,1) subgroups associated with squeezing
of the two modes j=1,2 independently. We have ex-
plained elsewhere [27] that this is just the so-called (—,', —,')
representation of SU(l, l). The operators V and "lV are
similarly associated with two difFerent types of two-mode
squeezing. Thus the operators [V(o,g}exp[i@(a,o,
+aza2+ I)]] lead to the so-called discrete series repre-
sentation of another SU(1,1) subgroup [47], while the
operators ['N(co, f)exp[iv(a ta, —atzaz)]] lead to the
Schwinger representation of the SU(2} subgroup of
Sp(4,}R). Both of these two-mode types of squeezing have
found applications. Examples include the study of inter-
ferometers [48] and other applications in quantum optics
[49]. It should be clear that all of the various types of
two-mode squeezing can readily be incorporated within
our formulation by simply working in the phase space of
the two modes, taken as the direct product of their indivi-
dual phase spaces. The forxnalism presented here is thus
straightforward to extend. More generally, the extension
to n-mode squeezing associated with the group Sp(2n, m}
is also, in principle, not difficult. We hope to report on
such extensions elsewhere.
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