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We compare three procedures for constructing bound states whose energies are embedded in the con-
tinuous part of the energy spectrum. We use methods based on the Gel'fand-Levitan and Marchenko
equations to generate new potentials which look superficially similar to potentials supporting continuum
bound states, but which instead produce isolated energies embedded in the continuum for which no

physically acceptable wave function exists. Two examples are used to illustrate these results.
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I. INTRODUCTION

Recently there has been much interest in the construc-
tion of local potentials which support continuum bound
states, that is, bound states with energies embedded in the
continuous spectrum. Such states were first proposed by
von Neumann and Wigner in 1929 [1]. They suggested
that certain spatially oscillating potentials with amplitude
decreasing with distance could support positive-energy
bound states by means of coherent diffractive scattering.
At one particular momentum determined by the wave-
length of the oscillations of the potential, destructive in-
terference of the rejected waves can cause the amplitude
of the wave function to vanish at large distances, thereby
producing a normalizable state.

Inspired by the von Neumann —Wigner results, Stil-
linger [2] and Herrick [3] proposed that superlattices
consisting of ultrathin semiconductor layers might be
used to construct potentials supporting such bound
states. Capasso et al. [4] used the Bragg reflection condi-
tions to carefully construct such a superlattice for which
they report the remarkable observation of an electronic
bound state with no classical turning points. Infrared ab-
sorption measurements revealed a narrow isolated transi-
tion from a bound state within a quantum well to a bound
state at an energy greater than the barrier height. Weber
[5] has studied a solvable model inspired by the ideas of
Stillinger and Herrick and by the Capasso et al. experi-
ments.

Recent observations of narrow positron-electron coin-
cidence peaks in heavy-ion collisions [6,7] have also
spurred interest in continuum bound states. The mea-
sured widths of 30—60 keV are close to the experimental
resolution and should therefore be taken as upper limits
on the actual widths. In a theoretical effort stimulated by
these experiments, Spence and Vary [8] found zero width
resonances by solving the e e scattering problem using
three different relativistic two-body wave equations.
They concluded that these are bound states in the contin-
uum, although we have shown [9] that they cannot be
continuum bound states of the von Neumann —Wigner
type. Weber and Hammer [10] have constructed a local
model potential —not of the von Neumann —Wig ner
type —for the Klein-Cxordon equation, which supports

multiple bound states with energies that match those of
the observed peaks.

In this paper, we confine our attention to the investiga-
tion of local potentials which support bound states with

energies embedded in the continuous spectrum of the
nonrelativistic radial Schrodinger equation. In addition
to the von Neumann-Wigner procedure, two other
methods exist for constructing such states. Moses and
Tuan [11], and later Meyer-Vernet [12], used the
Gel'fand-Levitan equation to produce potentials support-
ing one or more bound states in the continuum. More re-
cently, Pappademos, Sukhatme and Pagnamenta [13]
have used methods associated with supersymmetric quan-
tum mechanics to find potentials which support continu-
um bound states. The purpose of this paper is to com-
pare the results of these three procedures.

We shall use units in which 6= 1 and 2m = 1. For sim-

plicity, we shall confine our attention to the case of zero
angular momentum; the generalization to nonzero angu-
lar momentum is straightforward. All three methods be-

gin with a radial Schrodinger equation

d
dJ'

+V, (r) tp(r)=k tp(r), 0&r & ~,

using a "comparison potential" V, (r) chosen to support a
continuous energy eigenvalue spectrum (possibly in addi-
tion to a number of bound states). We assume that V, (r)
satisfies conditions sufficient for the continuum wave
functions to be normalized so that their asymptotic form
1S

p(r, k)~sin[kr+5(k)], r ~ ~ . (2)

For simplicity we assume that V, (r) can be expanded in a
Laurent series and is no more singular than r ' at the
origin. If this is so, physically acceptable wave functions
tp(r) must satisfy y(0)=0 and 0& ~q&'(0)~ & oo. The wave
function of the continuum state with energy k will be
denoted by y(r, k). One particular continuum state, with

energy k, , wave function y(r, k& }=q&,(r), and scattering
phase shift 5(k, }=5,, will be singled out for special at-

tention. The goa1 of a11 three procedures is to construct a
new potential V(r) such that the new Schrodinger equa-
tion supports the same continuum spectrum as Eq. (l)
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with the exception of the energy k f, which now belongs
to a bound state embedded in the continuum.

In Sec. II we show some of the variety of potentials and
bound states obtained by the method of von Neumann
and Wigner. In Sec. III we use the formalism developed
in the preceding paper [16] to discuss the Meyer-Vernet
[12] treatment of continuum bound states. Section IV
uses the formalism of Ref. [16] to remove the continuum
bound state created by the von Neumann-Wigner
method. This allows us to construct potentials analogous
to those created by the von Neumann-Wigner and
Meyer-Vernet methods, but which do not support contin-
uum bound states. These results are illustrated by two
examples in Sec. V. In Sec. VI we consider the
Pappademos-Sukhatme-Pagnamenta [13] method based
on supersymmetric quantum mechanics and show that it
is exactly equivalent to the Meyer-Vernet method. In
Sec. VII we summarize our results, evaluate the relative
merits of the procedures we have studied, and discuss
some questions arising out of the earlier literature on
isospectral Hamiltonians.

s(r) —O(r') . (8)

From Eqs. (5) and (6) it follows that

f, (s) ~ f„(s)
V(r) = V, (r)+4p~(r)p&(r) +p&(r)

where derivatives with respect to s are denoted by sub-

scripts. Also, by virtue of Eqs. (4) and (6),

s 2s. (10)

We first consider constraints on f{s) as r approaches
zero. It is not sufficient for g(r) to be normalizable: in or-
der that the energy spectrum associated with Eq. (3) be
bounded below, g(r) must approach zero as r ~0 at least
as fast as r'~ (see Ref. [17]). Since tp, (r) is of order r as
r ~0, it follows that f (s) must satisfy

lim r'~ f(s) &O(1) .
r~O

We next consider constraints on f(s) as r~ 00. For this,
it is convenient to write

II. THE von NEUMANN-WIGNER PROCEDURE f(s)—e g($) (12)

The von Neumann-signer method consists of con-
structing a normalizable wave function and then using
the Schrodinger equation with fixed positive energy to
find the potential. Consider the radial Schrodinger equa-
tion

Then

V(r) V, (r)= ——4g, (s)y', (r)y&(r)

(13)

The condition that g(r) be normalizable requires that

+V f=k g, 0&r &oo .
T

(3) lim
g(s) 1

s~m ln(s} 2
(14)

We assume that the effective potential V goes to zero for
large r Then .E=k . Only those solutions of Eq. (3)
which vanish at the origin and are bounded as r ~ ao are
physically acceptable.

We now choose

(4)

lim
g(s)

gazoo s
(15)

It follows that there exist constants a, P, y, and ro, such
that

while the requirement that V(r) be bounded as r ~ ~ im-

plies that

V(r) = V, (r)+2 +tI("}f'(r) f"(r)
(5)

where f is a function of r yet to be specified and

q&, (r)=p(r, k, ) is the —solution of Eq. (1) with energy
E, =k f. Iff is reasonably behaved at the origin and de-
creases suSciently rapidly as r ~ 00, we obtain a bound
state. By solving Eq. (3}for the potential we find

with

and

0&a~1,
P&0,

y ln(2s) & ~g(s) ~
&P(2s}, r & ro, (16)

(17)

(18)

s{r)=I [y,(g)] dg .

If V, (r) is sufficiently well behaved at the origin for

qr&(r) ~ O(r),
r~O

then

(6)

(7)

where the prime indicates derivatives with respect to r.
In order that the potential remains finite at the zeros of

y, , we take f to be a function of r through the variable s
defined by There exist infinitely many possible asymptotic forms for

g (s) which fit between the bounds given by Eq. (16). As
examples we cite forms such as (2s) [ln(2s)] and
(2s) [ln[ln(2s))] with cr &0, (2sP[ln(2s)] and
(2s PI ln[ln(2s) ]] with 0 &p & u, and [ln(2s) ] with
cr) 1. We ignore these complications and restrict our
discussion to the two bounds given by Eq. (16), which we
combine into a single asymptotic form for g(s) of the
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g(s) ~ P(2s) +y ln(2s) —ln(A)+R(s), (20)

lim R (s)=0 .
$~00

(21)

The lower bound for lg(s)l in Eq. (16) corresponds to set-
ting p=O and y )—,

' in Eq. (20), while the upper bound

corresponds to p )0 and 0 & a & 1, with no restrictions on

y. Since

s(r) ~ ,'r+O—(l), (22)

the asymptotic form of the continuum bound-state wave
function is

P(r) ~ Ar rexp( —Pr )sin(k, r+5, ), (23)

while the asymptotic form of V(r) as r ~ ~ is

V(r) V, (r—) ~ 4(aPr —'+yr ')

Xk, sin[2(k, r+S, )]

+4p2a r~' "sin (k, r+5, )

+0(r ') . (24)

If p=0, the continuum bound state decreases with in-

creasing r according to a power law rather than showing
the exponential decrease normal for a conventional
bound state. The supporting potential V(r) oscillates
with wave number 2k

&
and with an amplitude which de-

creases as r with increasing r. If p@0, the continuum
bound state decreases exponentially as r ~ 00, but the ex-
ponent is determined by the parameter a rather than by
the energy of the state, as would be the case for a conven-
tional bound state. Furthermore, if p@0 the potential for
large r oscillates with an amplitude which decreases more
slowly than r ' as r~ ~, while if a is as large as 1 the
amplitude of the oscillations for large r remains constant.

The von Neumann —Wigner procedure provides a wide
range of possible potentials which support continuum
bound states. However, it provides no method other than
numerical integration for constructing the complete ener-

gy spectrum and the associated energy eigenfunctions.
Nevertheless, if p) 0 and 0&a & —,', or if p=O, we can at
least demonstrate the existence of scattering solutions
satisfying the asymptotic condition of Eq. (2) for all

krak

&. For this, we rely on an analysis by Atkinson [14].
If V(r) satisfies the conditions

f dg V(g)

I,(r)= f dg V(g)cos(2k/)
T

I, (r) = f dg V(g)sin(2k(')

(25)

aIld

f dpi v(g)1, (g) I
&, f dpi v(g», (k) I

& ~,
then every nontrivial solution of Eq. (3) has an asymptot-

ic form given by Eq. (2) (Theorem 2.1 of Ref. [14]). For
this argument, we assume that the potential of Eq. (13)
has no singularities for finite r. Provided krak, and ei-
ther p=O or else p%0 and 0&a & —,', the conditions of
Eqs. (25)—(27) are satisfied by a potential with asymptotic
form Eq. (24). This is sufficient to prove the existence of
a scattering state for any positive energy k provided
krak„but does not give any procedure for constructing
analytic expressions for the scattering states. However,
Atkinson's theorem does not settle the question of wheth-
er or not bound states exist. In particular, we do not
know whether any bound states of Eq. (1) survive as
bound states of Eq. (3), possibly with a shifted energy. If
it were not for these difficulties, one could construct po-
tentials with multiple bound states of positive energy by
repeating the von Neumann-Wigner procedure. For ex-

ample, one could use the potential supplying a bound
state at E& =k, as the comparison potential for the intro-
duction of a bound state at E2=k2. The methods to be
discussed in Secs. III and IV will overcome this difficulty,
but at the cost of restricting the potentials to a small sub-
set of those produced by the von Neumann-Wigner
method.

The possible existence of a continuum bound state is
associated with the oscillating long-range tail of the po-
tential. Can one use a potential with an arbitrarily weak
asymptotic form and still create a continuum bound state
at an arbitrarily chosen energy? This question is partially
answered by Eq. (24). Provided pAO, the coefficient of
the leading term in the asymptotic expansion of V(r) can
be made arbitrarily small, independently of the value of k
or E=k . If y=O in addition to p@0, then the
coeScient of the next leading term is small if that of the
leading term is small. Furthermore, if p~0 but pAO,
then Eq. (23) shows that the wave-function tail increases
in spatial extent. On the other hand, if p=O, so that we

require y & —, for normalizability, then in order to create a
continuum bound state with energy E =k one must use
a potential whose leading asymptotic term has a
coefficient at least equal to 2k. For the original example
of von Neumann and Wigner [1], with p=O and y =2,
the coefficient of the leading asymptotic term in V(r) is
8k. These remarks do not contradict the assertion made
by Vary et al. [18] that for a von Neumann —Wigner con-
tinuum bound state inserted at an arbitrarily chosen ener-

gy, the value of the potential at a axed value af r can be
made arbitrarily small by a suitable choice of the parame-
ter.

Does an arbitrary potential with asymptotic form given

by Eq. (24) necessarily support a continuum bound state
at energy k &? On the one hand, there are infinitely many
comparison potentials V, (r) which support scattering
states such that the scattering phase shift at energy k,
has the value 6„and any one of these could be used as

the starting point of the construction. Then again, the
function f (s) is largely arbitrary. These arguments
might suggest that almost any potential with the asymp-
totic form given by Eq. (24) will support a bound state
with energy k, . However, bound states are always asso-
ciated with standing waves, which can exist only for cer-
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tain discrete values of the energy. It would seem highly
improbable that the existence of a bound state of energy
E, =k, could be inferred from the asymptotic form of
the potential alone, regardless of how the potential
behaves at smaller radii. For example, suppose V(r) has
the asymptotic form Eq. (24) with P=O, y & —,'. Then any
solution of Eq. (3}with k =k& must be a linear combina-
tion of solutions g+(r, k& ) having asymptotic forms

P+(r, k, )~ A +r*rsin(kt r+5&+ —,'m k —,'n ) . (28)

For a physically acceptable wave function P(r, k, ), the
coefficients of f+(r, k, } and f (r, k, ) are determined by
the condition g(0, k, )=0. In addition, the wave function
of a bound state with energy k f must be square integra-
ble. This will not be so unless the coefficient of g+(r, k, }
is zero. One would expect this to be true only for a small
subset of potentials with asymptotic form Eq. (24). We
conclude that while there are infinitely many potentials
which do support a continuum bound state at energy
E1=k1, there are infinitely many more which do not do
so, even though they appear to have the appropriate
asymptotic behavior for large r. We shall return to this
question in Sec. IV, where we shall give an explicit pro-
cedure for constructing potentials which do not support
continuum bound states.

III. THE MEYER-VERNET METHOD

The Gel'fand-Levitan equation has the form

K(r, r')=g(r, r') f dgK(r, g—)g(g, r'), (29)
0

where the kernel g(r, r') is constructed from solutions
y(r, E) of Eq. (1) with the boundary condition y(O, E)=0.
In the context of the present paper, g(r, r') is chosen to
be [15,16]

g(r, r')= Q A, , 'y, .(r)y, (r'), (30)

K(r, r') = g y; (r)[b, '(r)]Jyj(r') . (32)

The function P(r, E) defined by

P(r, E)=p(r, E) f dgK(r, g')p(g, E)—
0
n

=qr(r, E) gq;(r)[b, '(r)]—;,.

X f dgyj(g)q&(g, E), (33)

is the solution corresponding to energy E of a new

where for convenience we write y(r, E, }—=q&, (r). The pa-
rameters A, , must be such that the n Xn matrix b,(r}
defined by

EJ(r)=X,5J+f dip;(g)yj(g), i j =1, . . . , n (31)
0

is nonsingular, but are otherwise arbitrary. In the
preceding paper [16], we have shown that Eq. (29) with

g (r, r') defined by Eq. (30) has the unique solution

Schrodinger equation with potential V (r) given by

V(r) = V, (r) —2 K(r, r) = V, (r) —2 ln~detb(r) ~
.

dr dr

(34)

Clearly 1i(O,E)=0 and E belongs to the physical spec-
trum of the new Hamiltonian if P(r, E) is bounded as
r~oo. As shown in Ref. [16], f(r, E), EKE;, corre-
sponds to a bound state or a continuum state with energy
E of the new Schrodinger equation according to whether
qr(r, E) corresponds to a bound state or a continuum state
of the comparison Schrodinger equation. If, however,
E=E, for somei, then

f;(r) =g(r, E—;)= g tpj(r)[h '(r)]),.A,
j=1

(35)

q&&(r)

A. +s(r)
q&, (r }

X+f "dg~q, (g)~'

while the potential which supports this continuum bound
state is

(36)

V(r) = V, (r) —2
dr +s r

= V, (r}—2 in~A, +s(r)~ .
T

(37)

It is apparent that this is just a special case of the von
Neumann —Wigner procedure discussed in Sec. II with

pl /2

[A, +s(r)]
(38)

The asymptotic forms of g(r} and V(r) for large r are
given by Eqs. (23) and (24), respectively, with a =0, y = 1,

In the more general case, one sees from Eq. (31) that
b(r) approaches a diagonal form in the limit as r~ oo.
Hence

Conditions for f, (r} to be normalizable are discussed in
Ref. [16] In particular, it is sufficient that
lim„„b,;;(r)= oo.

Meyer-Vernet's approach to continuum bound states
[12] is easily described in the present formalism. If some
or all of the E; are embedded in the continuous spectrum
of the comparison Hamiltonian, the corresponding wave
functions p;(r) are not normalizable even though they are
bounded as r~ oo. The constraint that h(r) be nonsingu-
lar then requires that A, , & 0. Since the p;(r) are continu-
um eigenstates, lim„„b...(r) = oo and therefore the func-
tions g, (r) given by Eq. (35) are normalizable and corre-
spond to continuum bound states of the Hamiltonian
with potential V(r) given by Eq. (34}.

As an illustration of the method, we choose n = 1 and
A,

&
——A, &0. Then the (normalized) wave function for the

continuum bound state with energy E, —:k, & 0 is
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lim
detb, (r)
n 7

gb;;( )

(39) [f( }1'
V(r) = V, (r)+4qI(r)y, (r) +

s J s

so that the asymptotic form of the potential generated by
the Meyer-Vernet method is given by

d2
V(r) V—,(r) — —2 g ln A,;+f dg[y;(()]

r~oo .
) dr 0 and

4 fss s 4fs s f s 2[f(s)]
f(s) J(s) [J( )]

(46)

4r —' g k, sin[2(k;r+5;)]+O(r ), f, (s)
V(r) = V, (r)+4qI(r)y&(r)

s
[f(s}]' .
I(s)

(40)

while the (normalized) continuum bound-state wave func-
tions have the asymptotic forms

f„(s)
+[g,(r)]'

s

4f (s)f(s) 2[f (s)]+
I(s) [I(s}]'

(47)

P;(r) — 2A,
' r 'sin(k;r+5;)+O(r ) . (41)

IV. REMOVAL OP von NEUMANN-WIGNER
STATES

In Ref. [16] we showed that one can remove bound-
state energies from the spectrum of a Hamiltonian using
methods based on either the Gel'fand-Levitan or the
Marchenko equation. We gain more insight into the von
Neumann-Wigner potentials by using these methods to
delete the continuum bound state. These procedures will
not change any of the other energy eigenvalues associated
with the original von Neumann —Wigner potential. In
general, however, they will not recover the comparison
potential V, (r). Instead, for the Gel'fand-Levitan ap-
proach we find

Whereas one cannot use the von Neumann-Wigner
method to construct potentials by analytic methods
which are guaranteed to possess more than one continu-
um bound state, doing so is easy with the Meyer-Vernet
approach as we have presented it. However, this Aexibili-

ty is gained at the cost of obtaining a less general class of
potentials supporting continuum bound states.

—,
' A (aP) '(2s)' rexp[ —2P(2s) ], PAO

', . -A'(2y —1)-'(2s)-"+' P=o.

From Eqs. (44), (45), and (49)

I(s)=f 1([f (s)] J(s)—
0

where

N +O(s ' rexp[ —2P(2s)'] }, P+0
N +O(s r+') P=O, (50)

N'= f "dg[f(g)]'. (51)

We shall first consider the asymptotic form of V(r) for
large r, postponing discussion of V(r) until later. From
Eqs. (46) and (50),

We consider the asymptotic forms of J(s}and I(s) in
order to study the asymptotic forms of V(r) and V(r).
From Eqs. (12), (20), and (44)

J(s} — A f dg(2() rexp[ —2P(2() ] . (48)
g~ oo S

The leading term, obtained by an integration by parts, is

d2
V(r)= V(r) —2 &in f

ding

(g)
dr

while for the Marchenko method we find

2

V(r)= V(r) —2 ln f "deaf (g)
dr O

(42)

(43)

V(r) V(r) = —4—y((r)p)(r) I(s)

2f.(s)f(s) [f(s) ]4

I(s) [I(s)]
O(r rexp[ 2Pr ]) . —

T —+ oo
(52)

where f(r) and V(r) are defined by Eqs. (4) and (5), re-
spectively. As is clear from Eqs. (42) and (43), V(r) and
V(r) are not the same. By Eq. (10),

dg[g(g)] =f dg[f(g)]:—J(s) (44)

and

Because I (0)=0, this potential is singular at r =0. If

f(s) —O(s~),
s~O

(53)

where p & —
—,
' by Eqs. (8) and (11), it can be shown that

f dkl4(k)]'= f,dk[f(f)l'= I(» . —(45)
lim [r [V(r) V(r)]] =6—(2p+1) &0 .
r~0

(54)

Hence Since this is positive, V(r) is a physically acceptable po-
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and

[f l 4 P(2J(s) s
(56)

4f, (s)f(s)

J(s)
+ 2[f(s)]'

[J(s)]

[f s ], [f s ] 2 ( ), O( a —2)
J(s} J(s} '

r

Hence

(57)

V(r) V, (r) —4k&(aPr— ' yr '}sin[2(k&r+—5&)]

+4P a r ' "sin (k, r+5, )

+O(r ) (58)

Since PXO implies a) 0, this potential decreases with in-
creasing r less rapidly than r '. However, from Eqs.
(17), (18), and (24), the sign of the term proportional to
4k, aPr ' is wrong for Eq. (58) to be the asymptotic form
of a von Neumann —Wigner potential.

We next consider P=O. In this case,

while

I:f
J(s) r- (59)

tential. From Eq. (52) it follows that V(r) is indistin-
guishable from the von Neumann —Wigner potential V(r}
for suSciently large r, although if P=O the approach of
V(r} to V(r} as r ~ ~ may be quite slow.

The wave function with energy k
&

constructed by the
Marchenko procedure to satisfy the Schrodinger equation
with potential V(r) is

j(r, k, )=, f(s)y(r, k, ) —Q(r, k, ) . (55)
N

deaf (k)]'
0

As anticipated, the function f(r, k, ) is not normalizable,
because it diverges at r=0 W.e denote the solution of
the Schrodinger equation with energy k, and which van-

ishes at the origin by y(r, k&). Then the Wronskian of
f(r, k, ) and y(r, k, } is a constant. Since

lim„„g(r, k, )=0, it follows that y(r, k, ) must be un-

bounded in the same limit. Hence there does not exist
any physically acceptable solution of the Schrodinger
equation with potential V(r) corresponding to the energy
E, =k', .

We now return to the consideration of V(r). Because
the asymptotic forms of J(s) are quite different for PAO
and P=O, we consider these two cases separately.

If PWO, then

Unless y=1, we are faced with a potential which oscil-
lates with an amplitude which decreases at large r only as
slowly as r '. Since P=O, it follows from Eqs. (19) and
(24) that Eq. (61) cannot be the asymptotic form of a von
Neumann —Wigner potential.

By using the Gel'fand-Levitan method we have des-
troyed the von Neumann —Wigner continuum bound
state, but it is conceivable that the wave function g(r, k

&
)

with g(O, k&)=0 created by the procedure might be a
scattering state. From Eqs. (4), (35) and (10),

p2
g(r, k, )= „ f(s)q)(r, k, ) .

dk[f(C)]'

From Eqs. (12), (20), (44), and (49),

O(s +r 'exp[P(2s) ]), P0

(62)

(63)

Hence if either PXO or P=O and y ) 1, the wave function
g(r, k, ) is unbounded as r ~~, so that E, =k f is neither
a bound-state energy nor a continuum-state energy. If
P=0 and y =1, then g(r, k& ) represents a scattering state.
If P=O and —,

' & y & 1, then g(r, k, ) represents neither a
bound state nor a scattering state. The function g(r, k& )

is bounded and satisfies the boundary condition at the
origin, so that it is a physically acceptable wave function;
however, it oscillates with a decreasing amplitude for
large r, so that it is not a conventional scattering state;
but neither is it normalizable, so that it does not
represent a true bound state.

It follows from this discussion that corresponding to
any von Neumann —Wigner potential V ( r } whose asymp-
totic form is given by Eq. (24) and which supports a
bound state in the continuum with energy E, =k, there
always exists at least one potential V(r) whose asymptot-
ic forms contain oscillatory terms with amplitude de-
creasing no faster than r ' and which does not support
any physically acceptable state with energy E, . Indeed
whatever may be the values of the parameters a, P, and
y, the asymptotic form of V(r) is indistinguishable from
that of V(r), so that V(r) cannot be distinguished from a
von Neumann-Wigner potential on the basis of its
asymptotic form. Unless P=O and y= 1, there exists
another potential V(r) whose asymptotic form includes
oscillating terms with an amplitude decreasing no faster
than r ' as r~00 and which supports a physically ac-
ceptable state with energy E

&
only if P=0 and —,

' & y & 1,
but when this state exists it is neither a bound state nor a
conventional scattering state; one might term it an imper-
fectly localized state. If P=O and y = 1, then for large r
the difference V(r) V, (r) decreases at leas—t as fast as
r and therefore V(r) supports a conventional scatter-
ing solution with energy E, .

J(s) [J(s)]' .
Therefore

V(r) —V, (r) —4(y —1)k, r 'sin[2(k, r+5, )]

(60)
V. TWO EXAMPLES

In this section we present two examples designed to il-
lustrate the theory presented in the preceding section.
For both examples, we shall choose

+O(r ') . (61) V, (r)=0 (64)
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and

yi(r) =2k
&

sin(kir),

so that

s= J d([gi(r)] =2kir —sin(2kir) .
0

Example 1. For the first example, we choose

f(s)=(l+s) '~ exp[1 —(1+s)'~ ],

(65)

(66)

(67)

The von Neumann —Wigner potential is given by

V(r)= —4k, [2(l+s) '~ +(1+s) ']

Xsin(k, r}cos(k,r )

+k, [4(1+s) '+8(1+s) +5(1+s) ]

Xsin (k&r), (70)

so that

J(s)=—f dg'~f(g)~ =exp[2 —2(1+s)'~ ]
S

and

I(s)=l —exp[2 —2(1+s)'~ ] .

(68)

(69)

P(r) =2k i (1+s) ' exp[1 —(1+s)' ]sin(k, r) . (71)

If this state is now removed by the Gel'fand-Levitan
method, the new potential is

while the von Neumann-Wigner bound-state wave func-
tion is

V(r) = V(r) —2 ln[ J(r) ]
d2

p
2

=4k~[2(1+s) ' —(1+s) ']sin(k&r)cos(k&r)+ki[4(1+s) ' —8(1+s) +5(1+s) ]sin (k&r) . (72)

This differs from Eq. (70) only in the signs of two terms. The wave function g(r) of the von Neumann —Wigner state has
been transformed into

g(r)= =2k' (1+s) '~ exp[(1+s)' —1]sin(k r),(r)
J(s)

(73)

which clearly oscillates with a diverging amplitude as r ~~. Since g(r) satisfies the physical boundary condition at the
origin and no other solution can do so, the Schrodinger equation with potential V(r) has no physically acceptable solu-
tions with energy E, =k i.

If the von Neumann-Wigner state is removed using the Marchenko method, the potential becomes

d2
V(r) = V(r) —2 in[I (r) ]2

= —4k& [2(1+s) ' coth[(1+s)' —1]+(1+s) ']sin(k&r)cos(k, r)

+ki{8(l+s) 'coth [(1+s)' —1]—4(1+s)

+8(1+s) coth[(l+s)' —1]+5(1+s) ]sin (kir) . (74)

pared in Fig. 1.
Example 2. For the second example, we choose

This potential is readily seen to satisfy Eq. (54) with p =0.
The Marchenko procedure transforms the von
Neumann —Wigner wave function P(r) into

f (s) =(2n —1)' (1+s) ", n ) —,',
so that

J(s)—:J dg[f(g)] =

and

1I(s}=1—
( 1+ )zn —i

Then the von Neumann —Wigner potential is

y(r) k', ~ (1+s) ' sin(k, r)
y(r)= = . in (75)

sinh[(1+s}'~ —1]
Since s is of order r for small r, the function f(r)'
diverges like r i as r~0 and y(r) is not normalizable.
For very large r, f (r) behaves like
r ' exp( r' )sin(kir). Th—e second solution of the
Schrodinger equation with potential V(r} must behave
for large r like r'~ exp(r'~ )cos(kir) in order that the
Wronskian of the two solutions be a constant. Hence the
Schrodinger equation with potential V(r} has no physi-
cally acceptable solutions with energy E, =k &. The three
potentials V(r), V(r), and V(r) of example 1 are com-

(76)

(77)

(78)
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FIG. 1. Comparison of three potentials for example 1. The
von Neumann-signer potential is V(r), the potential that re-
sults from eliminating the continuum bound state using the
Gel'fand-Levitan method is V(r), and the potential that results
from eliminating the continuum bound state using the Marchen-
ko method is V(r). Unlike V(r), neither V(r) nor V(r) supports
a continuum bound state.

FIG. 2. Comparison two potentials for example 2. The von
Neumann-signer potential is V(r) and the potential that re-
sults from eliminating the continuum bound state using the
Marchenko method is V(r). Unlike V(r), V(r) does not support
a continuum bound state.

V(r) = 16nk, — sin(k ir)cos(k, r)
1

1+s

We illustrate the use of the Marchenko method to
eliminate the von Neumann-Wigner state for the special
case n = 1. The new potential is

(n+1) . 4(k
(1+s)

and the von Neumann-Wigner wave function is

(79)
V(r)=16ki ——sin(kir)cos(kir)+ —sin (kir)1 2 o 4

s $2

(83)

sin(k
&
r)

y( r) —2(2a 1 )1/2k 1/2

(1+s)" (80)

This potential behaves like 6r as r ~0, as required by
Eq. (54) with p=0. The solution of the Schrodinger
equation with this potential, for energy E, =k „is

Use of the Gel'fand-Levitan method to remove the von
Neumann-Wigner state yields the potential

sin(kir)

s
(84)

V(r)=16(n —1)k, sin(k, r)cos(kir)I+s

(n —2)+ sin (k, r)
(1+s)

(81)

which clearly diverges at r =0. However, any other solu-
tion with this energy behaves like r cos(k, r) for large r,
which is unacceptable for a physical solution. Hence
once again we have a potential which has no physically
acceptable solutions for energy ki. The two potentials
V (r) and V(r) for example 2 are compared in Fig. 2.

This vanishes as it should if n =1, for then the saine po-
tential and wave function could be obtained by the
Meyer-Vernet method. The von Neuxnann —Wigner wave
function is transformed into

g(r)=2(2n —1)'/ k', / (1+s)" 'sin(k, r) . (82)

If n =1, then (apart from a constant factor) this reduces
as it should to y, (r) of Eq. (65). If n & —,', as is required
according to the work of Sec II, then g(r) is.not normal-
izable. If, however, —,

' & n & 1, the function g(r)
represents neither a bound state nor a conventional
scattering state: instead, g(r) oscillates with an amplitude
which decreases monotonically as r increases, but not fast
enough for it to be normalizable. This illustrates the ma-
terial of Sec. IV.

VI. METHODS BASED ON SUPERSYMMETRY

Supersymmetry in nonrelativistic quantum mechanics
was first considered by Witten [19]. Fairly soon, it was
recognized that the techniques of supersymmetrical
quantum mechanics are a direct application of a theorem
due to Darboux [20]. We refer to Luban and Pursey [21]
for a simple exposition of the Darboux procedure and to
Dutt, Khare, and Sukhatme [22] for an elementary intro-
duction which emphasizes supersymmetry. The cited
references include extensive bibliographies.

In supersymmetric quantum mechanics with unbroken
supersymmetry, the ground state is nondegenerate, but
all of the remaining energy eigenvalues are doubly degen-
erate. The state space can be divided into two sectors,
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sometimes misleadingly referred to as the boson and fer-
mion sectors. Transitions between the sectors are
achieved using the generators of the supersymmetry. For
convenience we shall refer to sectors 1 and 2, with sector
1 containing the ground state. Within each sector, the
dynamics is described by a conventional nonrelativistic
Schrodinger equation. If the potential in the sector con-
taining the nondegenerate ground state is V, (r)= V, (r),
then the potential in the other sector is

V2(r)= V, (r) —2 [inpo(r)],
dl'

(85)

(86)

[Eq. (4) of Ref. [13], translated into the notation of the
present paper] while the new potential is

V(r)= V, (r) —2 ln A, +f dg~tp&(g)
GT

(87)

[Eq. (2) of Ref. [13]]. Apart from the normalization of
g, (r), these are identical to Eqs. (36) and (37}of this pa-
per, respectively. Hence the Pappademos-Sukhatme-
Pagnarnenta method for creating a single continuum
bound state is exactly equivalent to the Meyer-Vernet
method. This should be no surprise in view of the analo-
gous result for the ground state [21].

Pappadernos, Sukhatme, and Pagnamenta introduce
several continuum bound states by applying their tech-
nique a number of times in succession. As we have just
demonstrated, this must be equivalent to successive appli-
cations of the Meyer-Vernet procedure for n = 1. Howev-
er, we have shown in Ref. [16] that I Meyer-Vernet

where po(r) is the ground-state wave function. The
second sector potential may be regarded as the result of
using the Darboux method to eliminate the ground state
in the first sector. The first sector potential may be
recovered from V2(r} by using the Darboux method to
reintroduce a ground state, but as noted by Nieto [23]
this process is ambiguous: more than one potential in sec-
tor 1 can be a supersymmetric partner to the same poten-
tial in sector 2. As shown by Pursey [24], the different
sector 1 potentials are related by "renormalization" of
the ground state. Exactly the same effect may be
achieved by use of the Darboux method to first delete the
ground state and then reintroduce a new ground state or
using either the Gel'fand-Levitan-Abraham-Moses ap-
proach [21] or the Marchenko equation [25] to directly
renormalize the ground state.

At first sight, it would seem that this procedure could
be applied only to the ground state since the potential
V2(r) defined by Eq. (85} has double poles at the zeros of
the wave function qr(r). However, Pappademos,
Sukhatme, and Pagnamenta [13] discovered that these
singularities vanish when the deleted state is replaced in a
second step by one with the same energy. When the
two-step process is applied to the scattering state with
wave function y&(r}=p(r, k&), this function is replaced
by

transformations with n = 1 applied in succession are
equivalent to a single transformation with n =m. Hence
the supersymmetry procedure for constructing continu-
um bound states developed by Pappademos, Sukhatme,
and Pagnamenta is in every respect equivalent to the
Meyer-Vernet procedure and the decision of which for-
malism to use is a matter of personal preference only.

VII. CONCLUSION

O~a, & —,
' . (88}

Then Atkinson's theorem shows that this potential sup-
ports scattering solutions for krak;, i =1, . . . , n, and
therefore can support at most n continuum bound states.
However, we are unable to determine whether or not the
potential does indeed support as many as n continuum
bound states or even if it supports any at all. Indeed in
Secs. IV and V we were able to construct potentials
whose asymptotic form is given by Eq. (88) either with
n =1 or with a=O, but which do not support either a
scattering state or a bound state with energy k, .

The problems encountered with the von
Neumann —Wigner procedure are overcome either by the
Meyer-Vernet [12] method based on the Gel'fand-Levitan
equation and discussed above in Sec. III or by the exactly
equivalent method of Pappademos, Sukhatme, and Pag-
namenta [13]based on the Darboux transformation in the
guise of supersymmetric quantum mechanics and dis-
cussed in Sec. VI. These equivalent procedures generate
a restricted class of von Neumann-Wigner potentials.
Starting from a comparison Schrodinger equation whose
solutions are completely known, potentials may be con-
structed which support an arbitrary number of bound
states at arbitrary energies embedded in the continuum
with no additional changes in the energy spectrum of the
comparison Hamiltonian, while the methods yield expli-
cit analytic expressions for the complete set of energy
eigenfunctions. These advantages make these methods
particularly suitable for formal investigations. However,
the range of von Neumann —Wigner potentials which can
be constructed in this way is quite limited. While the
methods of Meyer-Vernet and Pappademos, Sukhatme,
and Pagnamenta are exactly equivalent, the compact no™
tation for the Meyer-Vernet method, which we develop in
Ref. [16],offers advantages for formal investigations. For

The von Neumann —Wigner [1] method described in
Sec. II allows the construction of a wide range of poten-
tials which support a single continuum bound state, but
provides no analytic procedure for constructing the com-
plete energy spectrum or the energy eigenfunctions for
states other than the continuum bound state. For many
of the von Neumann-Wigner potentials, a theorem due
to Atkinson [14] demonstrates that scattering solutions
exist for any krak, , so that the potential supports only
the one continuum bound state.

This conclusion may be generalized. Suppose that we
are given a potential with asymptotic form

n

V(r) — g A, r ' sin(k, r+5, )+o(r '),
f~oo
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practical calculations involving just one continuum
bound state, however, the advantage may lie with the su-

persymmetry method. Both methods rapidly become
unwieldy for practical calculations when the number of
continuum bound states is increased.

In a diS'erent context, Pursey [26] showed that more
complex "renormalizations" of the ground state (assumed
bound) could be achieved by using any one of the
Abraham-Moses procedure, any analogous procedure
based on the Marchenko equation, or the Darboux trans-
formation to eliminate the original ground state, and then
using a difFerent one of these three procedures to reintro-
duce a new ground state. Can similar mixed procedures
be used to construct new kinds of continuum bound
states? The answer is no. The Gel'fand-Levitan-
Abraham-Moses procedure cannot be used as in Sec. III
to eliminate a scattering state without replacing it by a
continuum bound state by the Meyer-Vernet procedure.
From Ref. [16], this would require the choice
A, = —fo"dg[p, (g)] = —ee since scattering states are

not normalizable. The Marchenko equation with an an
satz analogous to Eq. (30} can be used instead of the
Gel'fand-Levitan equation only for wave functions P, (r},
which satisfy lim„„r'~ |I),(r) =0, eliminating the use of
scattering solutions. Thus a procedure based on the Mar-
chenko equation cannot even be used to "renormalize" a

scattering state into a continuum bound state. The only
remaining option is to use the supersymmetry approach
to eliminate the scattering state, then attempt to use ei-
ther the Gel'fand-Levitan equation or the Marchenko
equation to introduce the continuum bound state. For
the latter step, one must use in g (r, r') a function

p;(r}=[y;(r)) '
A, +, lj.,f dg[qr, (g)] (89)
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where the parameters A, , and A,z must be chosen such that
fodg[qr, (g)) exists (for the Gel'fand-Levitan equation)
or f "dg[tp;(g)] exists (for the Marchenko equation}.
Neither of these conditions can be met if tp, (r) possesses
zeros in the range 0&r & oe, as is true if tp, (r) corre-
sponds to a scattering state. We conclude that mixed
procedures, which can generate new classes of isospectral
Hamiltonians when applied to the ground state, cannot
be used to generate Hamiltonians supporting bound
states embedded in the continuum.
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