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I. INTRODUCTION

In this paper we develop a succinct and compact form
of the solution for certain special but interesting cases of
the Gel’'fand-Levitan [1] and Marchenko [2] equations.
These are best known in the context of inverse scattering
theory [3]. However, Abraham and Moses [4] applied
the Gel’fand-Levitan equation to the problem of isospec-
tral Hamiltonians for quantum mechanics in one dimen-
sion, while Moses and Tuan [5] rediscovered continuum
bound states while using the Gel’fand-Levitan equation
to study potentials with zero scattering phase shifts. In a
pedagogically oriented work, Meyer-Vernet [6] used the
Gel’fand-Levitan equation to generate continuum bound
states, recreating the Moses-Tuan work, but with a
different emphasis. Luban and Pursey [7-9] have pub-
lished an extensive treatment of isospectral Hamiltonians
in one-dimensional nonrelativistic quantum mechanics
and their work is readily generalized to apply to the radi-
al equation of the three-dimensional problem. Pursey [8]
used the Marchenko equation in the study of isospectral
Hamiltonians. The special cases of the Gel’fand-Levitan
and Marchenko equations that we consider belong to the
latter contexts.

In the next section we shall develop the notational con-
ventions to be used throughout the paper. Section III
will develop the solution of the Gel'fand-Levitan equa-
tion. The Marchenko equation is treated in less detail in
Sec. IV since our development closely parallels that of the
Gel’fand-Levitan equation. In Sec. V we consider the
effect of iterating the Gel’fand-Levitan-Abraham-Moses
procedure and demonstrate the result to be equivalent to
a single application of the procedure. The results
presented here are used in the study of continuum bound
states in the following paper [10].

II. NOTATIONAL CONVENTIONS

We shall consider the radial equation of nonrelativistic
single-particle quantum mechanics with a spherically
symmetric potential. We choose units such that 2m =1
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and #i=1. For simplicity, we shall consider only states
with zero angular momentum; however, the theory is
readily generalized to states with arbitrary angular
momentum. The time-independent radial Schrodinger
equation can be written

2
424 4 y)—E|R(rnE)=0 (1)
dr? r dr
or
d2
—— tV(r)—E |¢¥(r,E)=0, (2)
dr
with
Y(r,E)=rR(r,E) . (3)

We assume that V(r) possesses a Laurent expansion

about r =0 with the coefficient of r 2 greater than —1

and that

lim 7|V (r)| <o . 4)
Then physically acceptable solutions of Eq. (2) must satis-
fy

limr ~ 12 Y(r,E)| < 0 (5)

r—0
and

lim |(r,E)| < o . (6)

One can always find a solution of Eq. (2) which satisfies
either Eq. (5) or (6), but not both unless E belongs to the
physical energy eigenvalue spectrum. If E is a bound
state energy, then

[ Tdee B < )
which implies that
lim r/2|y(r, E)| =0 . (®)

r— oo
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We denote a solution of Eq. (2) which satisfies Eq. (5), but
does not necessarily satisfy Eq. (6) by ¢(7,E), and a solu-
tion which satisfies Eq. (8), but not necessarily Eq. (5) by
Y(r,E).

In the forms in which we shall use them, both the
Gel’fand-Levitan and Marchenko equations relate the
solutions of Eq. (2) to those of a Schrédinger equation

2
~ 4 i V(nN—E

o ¢(r,E)=0, 9)

using a comparison potential V(7). We assume that the
solutions of Eq. (9) are known for arbitrary E. We use
¢(r,E) and §(r, E) to denote the solution of Eq. (9) which
satisfy the same boundary conditions as ¥(r,E) and
¥(r,E), respectively.

III. THE GEL’FAND-LEVITAN EQUATION

The Gel’fand-Levitan equation as used in inverse
scattering theory [3] may be written as

K(r,r)=g(rr)— [ dEK(rE)(&r") . (10
The kernel g (r,7’) has the form of a Stieltjes integral
g(r,r')=fdh(E)(p(r,E)zp(r',E) , (11

where the functions ¢(r,E) are solutions of Eq. (9) with
the boundary condition ¢(0,E)=0. The weight function
h(E) is related to the scattering data (that is, scattering
phase shifts together with “norming constants” of bound
states) associated with the Schrodinger equations of Egs.
(2) and (9), where

V(n=V,(n—2%K(rn . (12)
dr
In the context of inverse scattering theory, the solutions
of Eq. (9) are assumed to be fully known, but the poten-
tial ¥V (r) is unknown. If the scattering data are known
(possibly from experiment) for the Schrodinger equation
with the unknown potential ¥ (r), then h (E) can be con-
structed, Eq. (10) solved for K (r,r’), and the previously
unknown potential found from Eq. (12).
The solution ¥(r, E) of Eq. (2) corresponding to the en-
ergy E is expressed in terms of the solution to Eq. (9) by

W(r,E)=g(r,E)— fo’dr'mr,r')q»(r',m : (13)

Clearly ¥(0,E)=0 and E belongs to the physical spec-
trum of the new Hamiltonian if ¥(»,E) is bounded as
r— . Even if ¢(r,E) is bounded as r— «, the new
wave function ¢(r,E) need not be, so that even if E be-
longs to the spectrum of the comparison Hamiltonian
with potential V_(r), it need not be part of the spectrum
of the new Hamiltonian. Likewise even if ¢(r,E) is not
bounded as r — w0, so that E is not part of the spectrum
of the comparison Hamiltonian, ¥(r,E) may still be
bounded so that E may belong to the spectrum of the
Hamiltonian with potential ¥V (r) given by Eq. (12).

In the context of quantum mechanics on the infinite
line — o <x < o, Abraham and Moses [4] considered a
special case in which g(x,x'), was a finite sum of prod-
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ucts of wave functions satisfying Eq. (9). In adapting the
Abraham-Moses work for the radial Schrodinger equa-
tion, we choose

girr)= 3 A lgi(rg;(r'), (14)
i=1
where
@i(r)=@(r,E;) (15)

and the parameters A; are arbitrary apart from certain
constraints which will become clear shortly. With
g(r,r') given by Eq. (14), the Gel’fand-Levitan equation
Eq. (10) is readily solved for the function K (7,7’) in terms
of the symmetric n X n matrix A(r) defined by

Aij(r)=ki8ij+fordé‘cp,-(é‘)q)j(g), Lj=1,...,n. (16)

Provided that the parameters A; are chosen so that the
matrix A(r) is nonsingular for 0<r < o,

K(r,r)= 3 @n[A~1n];er), 17
ij=1

as may be verified by direct substitution. Alternatively,
by using Egs. (10), (13), and (14), one finds that

K(nr)= 3 A7 (e (r) (18)

i=1

where ¢;(r)=y(r,E;). The new potential is

Vin=v.(n—22% S gn[a"in],e, 0
dr;j=1
d2
=Vc(r)—2Fln|detA(r)| ; (19)
r

while the wave function of the new Schrodinger equation
corresponding to energy E is

WrE)=¢(r,E)— 3 @.(n[A'(n)];
Lj=1

x [[dEq,(Opl&E) . (0)

The normalization integral for ¥(r, E) is of interest. By
using the identity

kz 1 [A_1(")]ij4’j(’)4’k(’)[A_l(’)]kI
k=

—_d A
dr[A (nNly @D

and performing an integration by parts, one finds that

fod§[¢(§)]2=f0d§[¢(§)]2
= 3 [ [lacoreno |1a7in,

ij=1

x|[lasson 0], @

where for clarity we have suppressed the argument E in
and ¢. If E#E;, i=1,...,n, the second term on the
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right-hand side of Eq. (20) vanishes in the limit as 7 — o0.
Hence ¢(r,E), E¥E;, corresponds to a bound state or a
continuum state with energy E of the new Schrodinger
equation according to whether @(r,E) corresponds to a
bound state or a continuum state of the comparison
Schrodinger equation. If, however, E =E; for some i,
then

U(N=YrE)= 3 @;(N[ATHN]iA, (23)

j=1
and
Jaety O P=n,—AHA TP, . 4)

Thus the normalizability of ;(r) depends on the
behavior of the ii diagonal element of A~!(r) as r — .
A simple consideration shows that
[Aij(r ) ]2

lim —————=0, 25

r— A”(r)A”(r) (25)
even if one or both of ;(r) and @;(r) are unbounded as
r— oo. It is then easy to show that

lim [A™Yr)];[A(N]; =1 . (26)

From this, if [F@Xr)ddr=c and A,>0, then
lim, , [A7'(r)];=0 and ¥;(r) is normalizable, so that
E; is a bound-state energy eigenvalue of the new Hamil-
tonian with potential given by Eq. (12). In particular, if
E; is a continuum energy eigenvalue of the comparison
Hamiltonian, then the procedure has created a new Ham-
iltonian whose spectrum contains E; as a bound-state en-
ergy. This is the basis of the Meyer-Vernet method of
creating bound states embedded in the continuum. If
@;(r) is normalizable with

Jdgle O =N, @7
then

fwd§[¢-(§)]2=—)LNi (28)
0 ’ A, +N?

and ¥,(r) is normalizable provided |2A;+N?|> N7, but
with a “norming constant” different from that of ¢;(r).
If Eq. (23) holds and A; = —N?, then ¢(r,E;) is not nor-
malizable and in general the energy eigenvalue E; of the
comparison Hamiltonian does not belong to the spectrum
of the new Hamiltonian. The only exceptions occur if

@;(r)
J delgi©F

in which case v¥;(r) given by Eq. (23) remains bounded as
r— . Equation (29) is not satisfied if ¢,(r) decreases ex-
ponentially as r — o, as would be true of a conventional
bound state. However, Eq. (23) is satisfied if
@;(r) —> O(r7) with 1 <y =1. As we show in the fol-

r—

lim <o, (29)

lowing paper, such exceptional cases can arise if E;, the
energy eigenvalue associated with the normalizable func-
tion @;(r) is embedded in the continuous spectrum of Eq.
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(9), in which case @;(r) represents a continuum bound
state of the kind first proposed by von Neumann and
Wigner [11].

IV. THE MARCHENKO EQUATION

The form of the Marchenko equation given by Newton
[3]is

A(rr)=h(r+r)+ [“dEn(r+£A(rE), (30)

where A (r,r') is related to the Jost solution of Eq. (2)
with energy E =k?2 by

' 1 *® —ikr’ ikr
Alrnry=o— [ dke ™ f L (r—e®], (D

h(r) is defined in terms of the S matrix S (k) associated
with Eq. (2) together with any bound-state energies and
bound-state norming constants for this equation, the Jost
solutions of Eq. (2) are

fotkr=e®+ [“dg A(r,£)e™¢, (32)
and V' (r) is given by
Vin=—22A(rn . (33)
dr

If, however, the potentials V' (r) and V_(r) satisfy suitable
constraints, one may use the completeness relations for
and orthogonality of the solutions of Eq. (9) to find an
equivalent equation

R(rr)y=g(rr)+ [ “dER(rEB (&), (34)
where g(r,r’) is of the form
g(r,r)= [dR(EXp(r,E)p(r',E) (35)

the potentials are related by

V(r)=VC(r)-2~d—K(r,r) , (36)
dr
and the solutions of Egs. (2) and (9) are related by

#rEy=g(r,E)+ [ "dER(r,E)p(r.E) . 37

Indeed if V.(7)=0, then Egs. (30)—(33) are recovered as a
special case of Egs. (34)-(37). The tilde over the symbols
in the new equations indicates the importance of the
boundary conditions at infinity.

It will turn out that the conditions on V(r) and V,(r)
required for Newton’s proof of Egs. (30)—(33) and for the
details of the derivation of Egs. (34)-(37) from Egs.
(30)—(33) are of no importance for the present work. In
the context of inverse scattering theory, one would com-
pute & (r) of Eq. (30) or g(r,7’) of Eq. (35) from scattering
data, solve either Eq. (30) for A4 (r,r’) or Eq. (34) for
K(r,r’"), and obtain V(r) either from Egq. (33) or (36).
However, as with the Gel’fand-Levitan equation one can
construct a new Schrddinger equation with potential
V¥ (r) by making any suitable choice for g(r,r’'). By analo-
gy with Eq. (14), we choose
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glr,r)= 2 A '@(r,E)p(r' E;)= 2 A e (np(r),
i=1

i=1
(38)
where for convenience we write
Pr,E ) =9(r) . (39)

In this case, one may directly verify that §(r,E) given by
Eq. (37) is a solution of Eq. (2) with ¥V (r) given by Eq.
(36) provided K (r,r’) satisfies Eq. (34). Apart from some
notation changes, Egs. (34)-(37) are the form of the
Marchenko theory which was used [8] in the context of
one-dimensional quantum mechanics.

The solution of Eq. (34) is

R(rnr)= 3 @A), (40)
hj=1
where
By(n=X8;— [ "dep,(&)p;(&) . @1)

The need for stringent boundary conditions at infinity is
clear from Eq. (41). The functions §,(7) must satisfy Eq.
(8) rather than the less stringent Eq. (6). In particular,
none of the @,(r) may be scattering solutions of Eq. (9).
One should note, however, that there need be no restric-
tions on the behavior of the @;(r) at the origin.

The remainder of the development follows closely that
of Sec. III. The potential ¥ (r) is

2
V(r)=Vc(r)—2:id—2—1n| det A(r)| . 42)
r
The solution of Eq. (2) constructed from @(7, E) is

$rnE)y=p(r,E)+ 3 @,(N[A"n];

ij=1
x [TdepeplE,E)  @3)
and

J Taggerr= [ agpe)r
-3 frwd§¢i(§)¢(§)[z-l(r)]ij

ij=1
x [ Tdgp;©p(e) . @4

Once again, if E#E,, i=1,...,n, the function ¥(r,E)
corresponds to a bound state or a continuum state of Eq.
(2) according to whether @(r, E) corresponds to a bound
state or a continuum state of Eq. (9). One should note
that if @(r,E) corresponds to a continuum state so that
@(r,E) is asymptotically a sine wave for large r, the con-
dition Eq. (8) satisfied by each of the @;(r) is still

sufficient to ensure convergence of the integral
[ 2dER(E)p(E). If E =E, for some i, then
— ~ n -~
H(N=UrE)= 3 ;A7 1N],X; 45)

ij=1

and
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[ g =R 5" |, %, 6)

This time, the normalizability of ¥;(r) depends on the
behavior of [A~!(r)]; at the origin. One can easily show
that lim,_o[A~!(r)];4,(r)=1, in analogy with Eq. (26).
If lim,_ o[ 7'/%p,(r)]70, so that §,(r) is not normalizable,
and if also A; <0, then ¥;(r) is normalizable and E; be-
longs to the eigenvalue spectrum of Eq. (2), although it
does mnot Vbelong to that of Eq. (9. If
[odE[@i(£)P=N}<» and [|2X,—N}|>N?, then

:d§[$i(§)]2=(7~kiN,-2)/(X,-—N,-2)>0 and E; belongs to
the spectra of both Schrodinger equations. If X; =N2, the
function #;(7) is not normalizable and although E; be-
longs to the eigenvalue spectrum of Eq. (9), it does not
belong to that of Eq. (2).

In Ref. [8] it was shown that the Gel’fand-Levitan-
Abraham-Moses procedure and the analogous procedure
based on the Marchenko equation lead to different poten-
tials ¥ (r) (although the Hamiltonians are unitarily
equivalent) when used to insert a single new energy eigen-
value or to delete a single eigenvalue from the spectrum
of Eq. (9), but that both procedures yield the same V(r)
when used to “renormalize” a single state. This result is
readily generalized in the context of the present formal-
ism. The potentials ¥V (r) produced by the two pro-
cedures will be identical only if detA(r)=const X detA(r).
Since the definitions of ¢;(7) and @;(r) differ only in the
prescribed boundary conditions, a necessary condition for
the existence of both detA(r) and detA(r) is
@;(r)=c;®;(r), i=1,...,n, where the c; are constants
which may be chosen to be 1 without any loss of generali-
ty. This is not possible if the procedures are to be used to
insert one or more new energy eigenvalues into the spec-
trum: hence the procedures must yield different poten-
tials ¥ (r) in this case. Because of the boundary condi-
tions satisfied by the two functions, ¢;(r)=@;(r) implies
their normalizability; as before, we denote the normaliza-
tion integrals by N2 If in addition X,=A,+N?
i=1,...,n, with [2X;,—N?|=[2A,+N?} >N?, then
A, (r)=A;(r), i,j=1,...,n, so that the potentials pro-
duced by the two methods are identical. This corre-
sponds to a renormalization of one or more of the bound
states. If, however, X;=—A,=N} for some i, then
A,(r)=N?+A;(r) so that the two procedures generate
different potentials ¥ (r) when used to delete one or more
energy eigenvalues.

V. ITERATIONS

Either of the two procedures discussed above can be
iterated. We shall present the discussion only for the
Gel’fand-Levitan equation; an analogous treatment works
for the Marchenko equation. Starting from the
Schrodinger equation Eq. (2) rather than from Eq. (9),
one can form the Gel'fand-Levitan equation

K(r,r')=g(r,r')— fo’dgf(r,g)g(g,r') @7

with
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=3 X '(ny(r), (48)

i=1

glrr

where the ¥;(r)=y(r,E;) are given in terms of the
@(r,E;) by Eq. (20). The solution for K(r,7’') in terms of
the ¥(r,E;) and a symmetric m Xm matrix A(r) is given
by the obvious substitutions in Egs. (16) and (17). The
new potential is

2
Vir)= V(r)—2d—21n|detK(r)|
dr

2
= V(=22 FlnldetA(r)detB(r)] (49)
r

while the energy eigenfunctions of the new Schrodinger
equation are

x(r,E)=y(r,E)—
=@(r,E)— fodr k(r,r

fordr’l?( r,r' W(r',E)
Jp(r,E) , (50)
where

R(r,r’)

Remarkably, R (r,r") is the solution of a Gel’fand-Levitan
equation

=K(r,r)+K(r,r)— [[dER(nOK(Er) . (51)

R(rr)=g(r,r')= [ dER(rEEEF) (52)
with
n+m-—p
gnr)= 3 A lgi(ne(r), (53)

i=1

where p is the number of energies common to the two sets

(E;,i=1,...,n} and {E,, i=1,...,m}, which we as-
sume to be ordered so that the common energies are
numbered from i =n—p+1 to i=n and E, ;,=E,
fori=1,...,m —p,
¢, (N=@(rE;), i=1,...,n+m—p (54)

and

Ajy i=1,...,n—p
A= xiXi_,,+,,(x +k,_n+p) Li=n—-p+1,...,n

X,-_n+p_ i=n+l,...,n+m—p.

(55)

Thus the result of applying two Gel'fand-Levitan-
Abraham-Moses operations in succession is equivalent to
a single operation, with modified A parameters for any
energies which are used in both procedures. We note
that if 7&,_,,+p+k =0 for some i, then A, = oo and @;(r)
no longer contributes to g(r,r’).

We now prove these results. Since the solutions of a
Schrodinger equation are completely determined by the
potential, it is sufficient to prove that

detA(r)detA(r)=const detA(r) . (56)

We begin with m =1. In this case,
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detA(r)=X,+ fo’dg[zp(g,is', ). (57)

If E,E;,i=1,...,n, then by Eq. (22), with X, =4, ,,
and by making use of the formula for the inverse of a ma-
trix,

~

detA(r)= A, 41, +1(r)detAlr)

1
detA(r)

- 2 An+11(r)M1]( rA ]"+1(I‘)
ihj=1

(58)

where M;;(r)=M(r) is the signed minor of A;(r) in
detA(r). A little thought now shows that

detA(r)
detA(r) ’

and Eq. (56) is proved for this special case. Now let us
suppose that E,=E,. Then from Egs. (24) and (57),

detA(r)= (59)

detBr) =, + A, — A2 o 7) (60)
A detA(r)
If X, +A, =0, then
detA(r)detA(r)=—AiM,,(r) (61)
and M,,,,(r)=det3(r), where A(r) is now the

(n —1)X(n —1) matrix obtained from A(r) by deleting
the nth row and column. Thus the contribution of the
state with energy E, has been deleted from the
Abraham-Moses procedure as a result of the iteration.
Finally, if A, + A, 70, then Eq. (60) yields

detA(r)detA(r)
2

-—M,(r)|. (62

=(A,+A,) |detA(r)— ——
A,

If we now consider the expansion of detA(r) by the nth
row, it is apparent that

2
detA(r) , 63)

detA(r)— M, (r)=

1 n

where A(r) and A(r) differ only in that A, has been re-
placed by

~ X‘lkn

R, == (64)
XA,

This completes the proof for the special case m =1.

If m > 1, the special case just proven allows us to re-
place the second Abraham-Moses procedure by a se-
quence of procedures performed in succession, each with

m =1. At each application of a new m =1 transforma-
tion, we obtain a new matrix A(r), corresponding new
functions K (r,r’ ) and g(r,r’), and a new potential ¥V (r),
with parameters )L given by Eq. (55). This completes the
proof in the general case.



50 FORMULATIONS OF CERTAIN GEL’FAND-LEVITAN AND... 477

[1] 1. M. Gel’'fand and B. M. Levitan, Am. Math. Soc. Trans. (1980).
1, 253 (1951). [5] H. E. Moses and San Fu Tuan, Nuovo Cimento 13, 197
[2] V. A. Marchenko, Dokl. Akad. Nauk SSSR 104, 695 (1959).
(1955). [6] N. Meyer-Vernet, Am. J. Phys. 50, 354 (1982).
[3] See, for example, Roger G. Newton, Scattering Theory of [7] Marshall Luban and D. L. Pursey, Phys. Rev. D 33, 431
Waves and Particles, 2nd ed. (Springer-Verlag, New York, (1986).
1982), Chap. 20; Z. S. Agranovich and V. A. Marchenko, [8] D. L. Pursey, Phys. Rev. D 33, 1048 (1986).
The Inverse Problem of Scattering Theory (Gordon and [9]1 D. L. Pursey, Phys. Rev. D 33, 2267 (1986); 36, 1103
Breach, New York, 1963); K. Chadan and P. C. Sabatier, (1987).
Inverse Problems in Scattering Theory (Springer-Verlag, [10] T. A. Weber and D. L. Pursey, following paper, Phys.
New York, 1977). Rev. A 50, 4478 (1994).

[4] P. B. Abraham and H. E. Moses, Phys. Rev. A 22, 1333 [11] J. von Neumann and E. Wigner, Z. Phys. 30, 465 (1929).



