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Two-electron systems: Stability analysis of the Wannier ridge
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%'e examine the stability of classical two-electron systems with an electron moving along elliptic orbits
on the %'annier ridge. Lyapunov exponents are evaluated analytically for circular orbits within the
first-order perturbation theory. In the case of the helium atom, these results compare favorably with nu-

merical values obtained by means of the monodromy matrix method.

PACS number(s): 31.50.+w, 03.20.+ i

Since Wannier's seminal work [1] it has become clear
that electronic correlations play a crucial role in the
structure of two-electron systems [2]. For the past two
decades extensive e8'orts in the classification of double ex-
cited states of two-electron systems have been made [3].
These studies suggest that collective quantization of two-
electron systems is more valid than quantizing the indivi-
dual angular momenta of each electron, as emphasized in
Berry's paper [4]. Leopold and Percival [5] recognized
that the failure of the old quantum theory was not due to
the semiclassical approximation itself but rather due to
its incomplete implementation. Modern semiclassical
quantization introduced through invariant tori and
Maslov indices is known as Einstein-Brillouin-Keller
(EBK) quantization [6]. The EBK quantization formal-
ism is applicable to the case of integrable systems, more
generally, to systems whose motion is confined to an in-
variant torus. The Kolmogorov-Arnold-Moser theorem
says that if a system is not too far from integrable (so-
called quasi-integrable systems), most tori survive. The
helium atom is a notorious nonintegrable system and a
rigorous torus quantization is possible only for a stable is-
land around periodic orbits. Gutzwiller [7] has shown
how the spectra for nonintegrable systems can be ob-
tained through the analysis of periodic orbits. It is this
feature that underlies the importance of finding stable
periodic orbits.

The stability of orbits is measured by the Lyapunov ex-
ponents, which for periodic orbits can be defined as loga-
rithms of eigen values p, of a monodromy matrix
A,; =1np;/T, where T is the period. The monodromy (sta-
bility} matrix JK connects arbitrary infinitesimal varia-
tions in the initial conditions, with the corresponding
changes of the orbits after one period. Since JR is sym-
plectic [8], all eigenvalues of A, occur in pairs of inverses

[9]. This leads to two possible cases. In one case, the ei-
genvalues have unit modules and are complex conjugates
(e ' ), so the Lyapunov exponents are zero or imaginary.
This is the stable case. In the other case, the eigenvalues
are real and the Lyapunov exponents are larger than
zero. This is the unstable case. Alternatively one consid-
ers trace Tref, and finds that two-particle planar orbits
(eight-dimensional phase space) are unstable if TrJK (—4
or Tref &8.

The fundamental role of electronic correlations is re-
vealed through the inherent instabilities which various

semiclassical helium models imply. In this paper, we re-
port the study on the stability of two-electron
configurations with electrons moving symmetrically
along elliptic orbits in a common plane. If r&2 and r, 3 are
electron radius vectors relative to the nucleus, we define
an angle 6 between these two vectors and a "mock" angle
a =arctan( r» /r, z ). In this case we have motion on the
Wannier ridge (a =m /4) with 0= tr, so two-electron exci-
tations with this configuration are often called "%annier
ridge states. " In independent-particle models we have
stable motion for arbitrary configurations. For example,
excluding the interaction between electrons for this
configuration, we obtain Trent=8 (all p;=1). After in-
cluding the interaction this becomes TrJK) 8, with this
value and Lyapunov exponents depending on eccentrici-
ties of ellipses e (i.e., angular momenta Iz=lz of each
electron).

In the case of circular orbits (E=O), Lyapunov ex-
ponents can be obtained analytically, calculating small
variations around the solution on the Wannier ridge, as
shown for the case of gravitational interaction [10]. (A
similar method has been used before to calculate thresh-
old exponents for three-body fragmentation processes
[11])

Newton equations for a Coulombic three-particle sys-
tem with identical particles 2 and 3 (m i =M,
mz=m3=m, q, =Zq, and qz=q3= —q) in the center-
of-mass reference frame read

m(M+m ) .. m
r&z r13M+2m ' M+2m

Zq riz+ z (riz —riz), (la)
12 13

m .. m(M+m). .
M +2m M +2m

Zq
13 3 ( 12 13)

where r„=r,—r; (i =2, 3) are radius vectors of identical
particles relative to the particle 1. The rigid-rotator solu-
tion is

r&2= —rI3=r, r =const,

which upon substituting into (la) and (lb} gives, in polar
coordinates,
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ly different from those in the approximation of infinitely
heavy nucleus (rn/M=0). In Fig. 1(b) A,;/Q against Z
is shown in this approximation. As can be seen from (12)
only Z & —,

' are allo~ed. This is a characteristic feature of
all configurations on the Wannier ridge, for both bound
and continuous states. Analogous analytical results [Eq.
(12) in the limit M~ ~ ] have been obtained by Poirier
[12] by analyzing linearized equations of motion in the
rotating frame of reference.

Let us first consider one unusual case of two-electron
systems that cannot be treated in the approximation of an
in6niteiy heavy nucleus: e e+e system (Z=1 and
rn /M =1). In this case (12) reduces to

Thus A,
&

z/Q =+0.616077, A,
& 4/Q =%1.112067i, and

Try=53. 531912. (Exact values for the helium atom by
taking m /M = 1.371 X 10 are i., 2/0=+0. 616 698,
A, i 4/Q =+1.112271 i, and TrJkt =53.717 876. )

From (13) we have

c ' Q 21y28&2 + 2. 358 60S
+2.033 334i .

'-=+

The general solution (8) now takes the explicit form

XI E ~1 A.
~

t A,~l6,(r)=cie '+c~e '+c,e '+c~e

52(t)= —2.358605(c,e ' —c2e '
)

(15) +2.033 334i(c&e ' c4—e '
) . (18b)

—3+4&2
Q

(16)

giving A, i i/Q=+2. 508287, A, i 4/Q=+2. 071 594i, and
TrJN, =6.990 29 X 10, so it is clear that the configuration
considered for this system is highly unstable.

We consider now the most interesting case of helium
(Z =2 and M —+ 00 ) in more detail. It follows that

Radial and transversal variations of the electron impulses
are

5p„=5,—M2, 5p =5~+05, . (19)

According to (4a) and (4b), variations for both electrons
are the same. Introducing vectors of small variations in
the two-electron phase space

Z(r) = [5',"(r),5',"(r),5p,"'(r),5p"'(r), 5',"(r),5',"(r),5p„"'(r),5p"'(r)], (20)

2= k 1 ~ 886 735 k3 4 +3.405 706i

with the corresponding eigenvectors

(21)

Z1, 2

Z 3,4

1.0
+2.358 605
+9.109963
—1.387 563

1.0
+ 2.358 605
k9. 109963
—1.387 563

1.0
+2.033 334i
5 2.821 379i
—3.862 438

1.0
S2.033 334i
-+ 2.821 379i
—3.862 438

(22}

These analytical results appear in remarkably good

and by taking successively single nonzero c; one obtains
eigenvectors Z, —=Z;(0) of the monodromy matrix for the
corresponding eigenvalues p, (i =1,2, 3,4).

For a circular orbit with the ground-state energy
(E= —3.0625 a.u. ), the angular frequency is Q= —",, a.u. ,
which yields

agreement with the numerical results shown in the first
row in Table I. Using the so-called monodromy method
[13](originally developed for the case of a single particle},
extended for the case of two particles [14],we have evalu-
ated two-electron orbits with e ~ 0 and their monodromy
matrices. One starts with an approximate discretized
periodic orbit and finds an exact (also discretized} orbit of
a given period T using an iterative procedure which is a
variant of the Newton-Raphson method. Discretization
consists in dividing each orbit into N segments with a
constant step b, t =T/¹ The eigenvalues and trace of
the monodromy matrix, and the Lyapunov exponent k&,
the single one, which corresponds to unstable degrees of
freedom (others are zero or imaginary), are shown in
Table I for these orbits with dilerent eccentricities c. and
the same energy (E = —3.0625 a.u. ) and nuclear charge
(Z=2}. Orbits are calculated with %=1500 segments,
which gives in that case sufficient numerical accuracy up
to a=0.9 (a convenient test for this can be the check of
the accuracy of the four eigenvalues equal to 1). Extrapo-
lating the function Ai(E) to e&0.9, it is clear that A. ,
diverges for @=1.

The eccentricity E=&3/2 corresponds to the orbit
with individual angular momenta of each electron
l2=1&=—,

' (implying zero orbital quantum numbers of
each electon, within the quantization procedure of indivi-
dual angular momenta). Eigenvectors of the monodromy
matrix are also calculated numerically and are in good
agreement with those given by (22). The agreement be-
tween analytical and numerical calculations for the case
~ =0 confirms that the monodromy matrix method is use-
ful for such calculations. On the other hand, it is shown
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TABLE I. Stability parameters for elliptic two-electron orbits with Z =2 and ground-state energy
E= —3.0625 a.u. (period T=2.051 65 a.u.) as functions of eccentricities c..

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8

v 3/2
0.9

p&(p2 ')

47.987
49.286
53.492
61.682
76.356

103.31
157.68
288.43
725.22

1890.8
3868.9

P3,4

0.7622+0.6474i
0.7610+0.6487i
0.7575+0.6529i
0.7511+0.6602i
0.7411+0.6714i
0.7259+0.6878i
0.7025+0.7117i
0.6647+0.7472i
0.5963+0.8027i
0.5110+0.8596i
0.4361+0.8999i

jM5(P6

1.0001
1.0061
1.0001
1.0002
1.0047
1.0034
1.0064
1.0156
1.0438
1.1849
5.3000

p7(VS ')

1.0000
1.0001
1.0000
1.0000
1.0002
1.0000
1.0001
1.0001
1.0005
1.0001

1.0000+0.0018i

53.5319
54.8288
59.0254
67.2005
81.8513

108.771
163.094
293.768
730.415

1895.86
3877.31

1.8867
1.8998
1.9397
2.0091
2.1131
2.2605
2.4666
2.7602
3.2103
3.6774
4.0264

that the first-order perturbation theory is suIcient to ob-
tain analytically exact values (as is expected due to the
infinitesimal variations).

As for the physical meanings of these results, note that
all orbits are unstable, but the orbit with s=O (circular)
appears less so. For c,~1, ellipses degenerate to straight
lines, so in that case we have a collinear symmetric two-
electron configuration (so-called "symmetric-stretching
mode"), which is extremely unstable. As a consequence,
this implies that this kind of two-electron configuration
cannot be associated with resonant structures in quantum

spectra. This conclusion is in agreement with inferences
due to Richter and Wintgen [15]. Recent studies indicate
that intrashell resonances of heliumlike systems should be
associated with the "asymmetric-stretching mode" rather
than the symmetric one [16]. This suggestion could be
extended to the corresponding planar configurations.
The results of these investigations will be presented else-
where.

I would like to thank Dr. P. Grujic for his interest and
useful discussions.
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