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Asymmetrical configurations in Coulombic rigid rotators

P. V. Grujic and N. S. Simonovic
Institute ofPhysics, P 0 .Bo.x 57, 11000Belgrade, Yugoslauia

(Received 13 May 1993)

We investigate possible asymmetrical configurations of Coulombic three-body systems
(A" +8 ++B +), within Langmuir's rigid-rotator model. The recently found effect by Poirier
[Phys. Rev. A 40, 3498 {1989)]that in the two-electron atoms asymmetrical configurations appear possi-
ble for certain charge ratios n /m (in addition to symmetrical ones) has been generalized to constituents
of arbitrary masses. Results for realistic cases of the charge ratios 1/2 and 2/3 are presented. It is found

that these systems possess the same type of degrees of instabilities as those investigated by Poirier.

PACS number(s): 31.10.+z, 31.90.+s, 33.10.Ev, 46.10.+z

with interparticle potential functions

3
1(P;.=C;./T;. , r; = I'; (2)

In the center-of-mass system, in matrix form Eqs. (1) read

In a recent paper [1] (to be referred to as I), Poirier dis-
cussed possible configurations of two-electron rigid-
rotator atomic models. The latter was proposed as early
as 1921 by Langmuir [2], and was abandoned since the
quantum-mechanical theory was set up. This model has
been discussed, in addition to a number of other early
semiclassical ones, by Percival and Leopold [3], and was
the subject of further investigations by Dimitrijevic and
Grujic [4] (without accounting for the inertial effects}.
The rigid-rotator model was subsequently rediscovered
by Klar [5], who analyzed its stability. Poirier carried
out further analysis of the system and found, for certain
residual atoms, an electron charge ratio 0.459 & Z & 1 un-
symmetrical solutions, with an electron distance ratio
g=r1/r2 different from 1.

In the same paper, Poirier suggested that the model
may turn out to be applicable to doubly excited atoms,
with residual core charges reduced to fractions by the
screening effect. This situation, however, is hardly feasi-
ble, for the potential of V (r) =q (r)/r type (we use atomic
units) which accounts for the screening effect (the
Thomas-Fermi statistical model, for instance), or the
screening of the central body charge in %annier-type
configurations in the continuum [6],cannot be reduced to
a pure Coulomb interaction V =q/r. On the other hand,
systems of the type A" +8 ++8 +, where A and 8
are atoms, with charge ratio Z =n /m =1/2 and 2/3 ap-
pear to be good candidates for these unsymmetrical clas-
sical configurations.

In this Brief Report we calculate g for a number of
realistic triatomic systems, and evaluate a general mass-
ratio solution for g. In order to retain a parallel with the
two-electron case as much as possible, we shall closely
follow Poirier's procedure [1].

We assume that the classical dynamics applies, and
write Newtonian equations

d I'I-

m,. = Qqr;. r, , i =1,2, 3, (1)
dt

d RM""=OR, (3)

~11 912+I 13 & ~22 812+I 23 &

M 12 ™21 812

ls,, =rn, m, /m, m =m, +rrt2+m3,

«t) = [r13 r23]

@11 0 12+@13 & @22 %12+ F23 &

@12 @21 f 12 '

(4a)

(4b)

AR(Q) =0,
A11 ™11~++11 & A22 ™22+@22 &

A12=A21=M12Q +412 .

(8)

(9)

A corresponding secular equation for the angular fre-
quency yields

3 =m1mzm3/m,

13+9'23 q12'+ P'12+1223)g 13+ P12+JLc13)F23 ~ (11)

f 1%13+P12P23 +0 139 23

One distinguishes two cases.
(a) 0'%0 (nondegenerate solution}. One can show for a

system with identical particles 1 and 2 (@13=@23,
C13 C23) that a so-called Wannier configuration arises

(r13 r23), with two wing particles moving along a circle
on the opposite sides of the third one. The general case
of (quasi) Wannierian collinear three-body configurations
has been studied by Grujic [7], but without accounting
for the inertial effects and the system instabilities. We are
interested, however, in less trivial solutions.

Solutions within the rigid rotator configuration are
sought in the form

r,, (t) =r,, (Q)e'"',

with the time-independent factor satisfying
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(b) 0"=0. It is convenient to write the relative vector
as a sum of a fixed and rotating vectors:

and from (10) one has
—3/2as —CO F13 (17a)

r13(t)=f+r(t), f=const, f r=0,
r =C1COSQ't+ C2 sinQ't, C1C2=0, C1 =C2 .

(12)

(13) 1+—(I+rl )(1+g3) p m 1

(17b)

Making use of degeneracy conditions and (8), one obtains
[cf. (18) in I] '9=

23
(17c)

2 =T13 = C13
2/3

f2+r2 (14a) m3p=
m1

(17d)

r23

2
,2

(1 12+1»»' + f&3+0'23

0'13%'23
P12Q

(14b)
fz=cz/3q'23' g13 4/3 -2/3

'Pz3
(18)

Relation (14a) still holds, but with new vector com-
ponents

2 =
12

2/3
12

0'12

1+ f+
%23

P13Q ++13

%1%'23
P12Q

'2

2 (14c)

01 1 lz('P13+ P23) +P'13P23 &

02 1 12('IP13+ IP23) (Viz+813)+P'1 P313 P23 ~

2 2

y4

2
2

(18a)

(18b)

(18c)

Again we restrict ourselves to the case of two identical
particles (114,3=}1423,C,3=Cz3) and distinguish (geometri-
cally) symmetrical situation.

(i) iP13=iP23. In this case, one arrives at a trivial solu-
tion

4/3 4/3
2= 2/3%23 -%13

r =C13

and (14b) and (14c) now read

(19}

(20)
r13(t) = f+r,

C 12

4C13

C12

4C13
r = 1—2

r23(t) = —f+r,

' 2/3
2
13

(15a)

(15b)

(15c}

(15d)

'2 '2
z z&1

r12 1+ f +1 13('P23 P13}
%23

r . (21)

From (18) and (21), one has

1+22) +2) + 2) (1+2) )1+p
—(1+ + )(1+rI )

/ C 2/ =() (22)

3 =P, ,3(2Piz+114i3}, D =0,
2P1H1H

+(Wz+V»)(V»+ V 23 },
V 13+V23

(16)

This is Langmuir's (Klar's in Poirier's designation) model
(see, e.g., Fig. 1 in Ref. [4]},with two identical particles
moving in phase along two identical parallel circles (a ro-
tating triangle).

(ii) ip, 3%q23. This is the case of structurally symmetri-
cal, but configurationally unsymmetrical, systems, with
two identical particles situated at vortices of a triangle
deprived of any symmetry. We note that unsymmetrical
configurations may arise within the so-called asynchro-
nous model of helium [8], as a prototype for two light
particles moving in the field of a third heavy one. How-
ever, Poirier's configuration appears remarkable in that it
is a rigid-body configuration, with an unsymmetrical sta-
tionary configuration arising from a sort of broken sym-
metry, rather than from a difference in initial conditions.

Relations (11)now read

rz3 =&Pr—
2) f, (24)

and for angle 012 between r» and r23 one obtains

2)[l —(1+@)2)+ri], (25)
(I+@)(1+q +q )

As can be verified by direct inspection, the left-hand side
of (22} appears to be a refiexive function of g, i.e.,
F(g)=F(1/ )),2as it should be, considering the definition
of 2), (17c). Equation (22) cannot be solved analytically
for q, but numerical solutions for a particular choice of C
are easy to find. In the limit p~ 00, for C & 1 one obtains
Poirier's limit rl~ 1,C~ —,'(3/2) / ( =0.459). For a finite

C=—
C12

which is to be compared with (24) in I (C—=Z, z)—=r).
Thus for C & 1 one root is g=1, and Langmuir's model is
recovered.

From (12}and (14b), one has
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FIG. 1. Distance ratio g=r»/r» vs mass ratio p=m3/ml
for two charge ratios C = —C» /C» (see text).

mass ratio, numerical solutions are found for two discrete
C values.

(i) C =1/2. In Fig. 1 we plot g against p( =m3/m, ).
A minirnurn mass ratio appears, p;„=8.080, which al-
lows for unsymmetrical configurations. As p increases, g
slowly tends to its limiting (Poirier's) value

(&2—1)' ( =0.745), attaining at Itt = 100 a value
q=0. 755. Note the steep decrease of g just above p;„.

(ii) C =2/3. This time one obtains p;„=1.25. Nu-
merical results are also shown in Fig. 1. One notices that
for this charge ratio the g curve lies mostly below that
for C =0.5, approaching a limiting value somewhat
below 0.5 [rj(1000)=0.482].

We have calculated distance ratios g for a number of
realistic atomic systems, as shown in Table I. Halogen
atoms are chosen for negative ions because they possess
the most stable configurations for an excess of one or two
electrons. Thus the electron aSnity of negative chlorine
is approximately I(CI )=3.07 eV. We include results
for Poirier's system with infinite mass ratio, for the sake
of comparison.

Here we ignore the problem of the existence of doubly
negative charged ions [9]. We also do not consider the
stability of these Coulombic systems, with respect to an
electron exchange between oppositely charged ions.

In Fig. 2, we show two examples of asymmetric
configurations from Table I. As can be seen from Fig. 2,
as one goes from smaller to larger mass and charge ratios,
configurations become more symmetric with respect to

FIG. 2. Rigid-rotator asymmetric configurations for tvvo

Coulombic quasimolecular systems.

r,, =(p, +5; }e +5&; e&+(z~j+5„"}e,.

After expanding potential functions (2) and retaining
linear terms, we substitute it into the equation of motion,
written in the form

P12+Pi3 '3 P'12 j3 0 3 l3+'P12 Ij

jPi —1 2

Writing deviations in the form

5(t) =5(A, )e"',

(27)

(28)

we set down equations for the deviations in matrix form:

A,5=0,
~l2+ ~13 ~12

~12 ~12+~23

(29)

(30)

p ~A, A~ 2p jQX

2p;QA, p;A, —C,

8; 0

0

p;A, —D;-

the horizontal (r) axis, and less symmetric with respect to
the rotation ( f) axis.

We now address the problem of dynamic stability of
such rotorlike systems, as has been done for the two-
electron case [5,6, 1]. We write perturbed relative vectors
in the cylindrical coordinates:

System

Poirier's sys.
I +2He'+

+2»g~+
Cl +2He~+
I' +2 Li'+
I~ +2Kr'+

0&z (deg) a)' (a.u. )

TABLE I. Numerical results for asymmetrical configurations
of systems [A" +2B +].

A p 0++

0 0
I ig

sg 0'ij
ij

31.964
11.619
8.8601

21.270
1.5615

1/2 0.7454
1/2 0.778 05
1/2 0.854 66
1/2 0.9198
2/3 0.498 62
2/3 0.771 01

107.34
106.72
105.716
105.250
99.694
93.371

1.2872
1.5504 X 10
9.9603 X 10
1.7395X10 '
2.2878 X 10
8.4185 X 10

Pig+ +0'~g ~
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System

TABLE II. Numerical values for squared Lyapunov exponents.

A,3 4/0

Poirier's sys.
I +2He2+
I-+2»g2+
Cl +2He +

+2Li+
I2 +2Kr3+

—3.094 53
—3.201 97
—3.393 26
—3.488 51
—1.965 77
—2.729 25

—0.27473+i XO. 170 14
—0.239 66+i XO. 148 62
—0.17447+i X0.057 094
—0.239 29,—0.041 56
—0.578 83+i XO. 17460
—0.245 46+i X0.18446

—1.3 X 10
—4.3X 10-"
—1.7X 10
—6 1X10
—2.7X 10
4.3X10

0.64400
0.681 29
0.742 20
0.769 37
0.123 44
0.220 17

and Lyapunov exponents A, are obtained from the secular
equation

detA=0 . (33)

Numerical results are shown in Table II.
%'e note first that the trivial solutions corresponding to

the eigenproblem (29) assume corresponding numerical
values up to 14 significant figures (Az= k, i Q, As=0,) Th.e
first of these Lyapunov exponents corresponds to the ro-
tational invariance of the system, and the second to the
dilatational invariance. All A, /Q with negative real
parts indicate a stable (oscillatory} mode. On the other
hand, in all cases one squared exponent (A,6) turns out to
be positive, indicating one stable and one unstable mode
(for negative and positive signs of the root, respectively).
All systems examined thus appear unstable with respect
to radial directions, as is the case with asymmetrical sys-
tems (both Langmuir's and Wannier's). We note that the
degree of instability, as compared with Poirier s case, ap-
pears comparable, except for the last two cases in Table
II, which possess smaller A,s/0 values. Evidently, sys-
tems with larger C values are less unstable, which is in
accordance with Poirier's findings that systems with
Z~l tend to become stable. Finally, comparing A,&/0

values in the two last rows, one sees that as the system
possesses more equally distributed masses (p closer to 1),
their stability has decreased. This is understandable, for
in the case of an infinite mass constituent the system is
merely a spectator, whereas with a mass comparable to
the masses of the other two particles correlations play a
much more prominent role, disturbing the overall stabili-
ty.

We note in passing that the present asymmetric
configurations could not appear in a quarkonium model,
even if one disregards the non-Coulombic part of the in-
terquark interaction, because of the mass ratio restric-
tion. Thus for the proton system u(350 MeV, 2/3)
+u(350 MeV, 2/3) +d(350 MeV, —1/3), one has p, =l,
C= 1/2 (e.g., Ref. [10]},whereas we have )I;„=9.080.
For the same reason the lightest negative ion H cannot
enter an asymmetric Coulombic system, since it would in-
volve p & 1.

How realistic the present quasimolecular model is is
diScult to estimate at this stage of investigation. In par-
ticular, one should first estimate quantum-mechanical
probabilities for electron tunneling from negative to posi-
tive ions, as the presumably principal mechanism for
nonmechanical system instability.
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