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Expanding the class of conditionally exactly solvable potentials
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Recently a class of quantum-mechanical potentials was presented that is characterized by the fact that
they are exactly solvable only when some of their parameters are fixed to a convenient value, so they
were christened as conditionally exactly solvable potentials. Here we intend to expand this class by in-

troducing examples in two dimensions. As a byproduct of our search, we found also another exactly
solvable potential.
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Recently the existence of a whole class of exactly solv-
able potentials in quantum mechanics was discovered [1].
Furthermore it was observed that these potentials obey a
supersymmetric algebra [2]. In fact the potentials dis-
cussed in Ref. [1] were also discussed independently in a
previous work of Stillinger [3]. In that article the author
did not perceive that such potentials were only the first
representatives of an entire new class of potentials. What
distinguishes these potentials from the usual exactly solv-
able potentials is the fact that at least one of their param-
eters must be fixed to a specific value, because if you do
not do that the potentials no longer have exact solutions.
On the other hand, they cannot be classified among the so
called quasi exactly solvable potentials [4—10], because
these have only a finite number of exactly solvable energy
levels, and this happens only when the potential parame-
ters obey some constraint equations, so that only some of
the parameters are free, and the others are fixed in terms
of them. The continuous interest in obtaining and classi-
fying quantum-mechanical potentials is because of their
importance as a basis for expanding more realistic cases,
and also for use of their solutions to test numerical calcu-
lations. Another possibility is that of trying to use them
as a kind of theoretical laboratory, searching for new in-
teresting physical features. Some of the examples that we
will study below have, in fact, the interesting characteris-
tic of representing a kind of semi-infinite charged string,
because, as can be seen in Fig. 1, the potential is infinitely
attractive along the x semiaxis. Here in this work we in-
tend to expand the class of conditionally exactly solvable
(CES) potentials. This is going to be done through the
presentation of two examples in two dimensions. As a
byproduct of our search for CES potentials, we found
another exactly solvable potential, whose solution will
also be presented.

The potentials that will be considered here are
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where the function arctan(y/x) is defined in the principal
branch. It can be observed that the first case above has
an exact solution for any value of Go if 8 =0. Otherwise
the case 8%0 has an exact solution for Go= —3irt /32@,
and only for a restricted region of the space (x and y both
bigger or both less than zero).

The second potential has exact solutions only when
go= —5trt /32@. In this case the solution is valid along
all the x-y plane. It is not difBcult to verify that these po-
tentials are singular along the positive semiaxis x, as can
be seen from Fig. 1. So they represent a kind of "charged
string. "
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+D(x +y ) FIG. 1. Plot of the potential CES II with unitary parameters.
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with K being the separation constant and p the mass of
the particle. The subscript e in the potential stands for
its exact solvability. In the variable v we have

d
&

+ VCEs(u) Eg(v—) =0,
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with VCEs(u) having two possibilities:
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U
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The solution for these potentials can be obtained
through a suitable change of coordinates:

x =u cos(u), y =u sin(u) .

After this change of variables, and their separation, the
Schrodinger equation can be split into two others. In the
variable u we have that

like multivaluedness of the wave function. However, one
can see that this transformation is typical of a stereo-
graphic mapping, in this case of R onto 5 . This kind of
compactification can be done provided that one has suit-
able asymptotic conditions [11].In fact, this implies that
one will have a finite wave function throughout variation
of the variables, and particularly that at infinity it should
vanish. This imposes the condition that the parameter D
be nonzero, because along the positive x semiaxis the
wave function will be singular at infinity if D =0. Fur-
thermore, there is no periodicity of the wave function in
the variables x and y, as we will see later.

So we see that the original potentials were, in some
cases, reduced to one-dimensional CES potentials, whose
solutions were obtained previously. Now we proceed to
the solution of the above mentioned possibilities.

Case I for 8 =0 and Gu arbitrary The fi. rst example is

that of an exactly solvable potential. In this case the po-
tential V, (x,y) is mapped into a harmonic oscillator with
centrifugal barrier in the variable u, and a Coulomb plus
centrifugal barrier in the variable U. So we only need to
identify the corresponding parameters, substitute them in
the equation for the "energy, " which in the transformed
equation is the parameter K, and solve it for the original
eAergp

and

VCEs(u) = Av + +II 2/3 (4b)
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The wave function can be obtained by returning
%(u, u) =u ' 4(u)y(u) to the original variables.

At this point, we shall observe that the transformation
used leads us to a mapping into an angle variable
u =arctan(y /x ), which can, in principle, create problems

I

where a& —= (I+8pGO/fi )'~ . It can be seen that the
above spectrum is a kind of mixing of the Coulomb and
harmonic oscillator spectra. The normalized wave func-
tions are
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and L„'(x,y) is the generalized Laguerre polynomial. It is

remarkable that, as can be seen from Eq. (5), the domain
of validity of the parameter C is defined through t
equation

in order to keep the energies real. So, as the left hand
side of the above equation has its minimum value when
m =0 (n arbitrary), we must have C ~ 2@A /(a

&

+1)A' .
Apparently if C is less than this we should impose the
condition that

where Int( ) stands for taking the first integer greater
than or equal to the argument. This is a strange feature
because, in this case, the ground state would have nodes
looking like an excited state. This characteristic should
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with
' 1/2
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As we are looking for 8'„,we see that it is necessary to
solve a third order polynomial equation for E, and then
use this solution in the expression for the energy

' 1/2
2A D=+2&D (K +C)' + (2n +1);

be verified through numerical calculation. Perhaps we
would need some kind of analytical continuation for the
energy in such cases. Now, the next case.

Case Ifor 8%0 and Go= —3A' /32p. In this case we
have our first example of a two-dimensional CES poten-
tial. After repeating the previous procedure we get the
following equation for the energy eigenstates:

pB4i' (m+ —,')K +2pA K +pAB K + =0, (10)
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once more we have a limitation on the parameter C. The
solution of the equation for the parameter E is obtained
following the procedure appearing in Ref. [1]. This gives
us

(12) The wave function is given by
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where we defined
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and H (x,y) is the Hermite polynomial.
It is easy to verify that the wave function, being pro-

portional to arctan(y/x), vanishes along the positive x
semiaxis. This should be expected due to the singularity
of the potential in this region. Moreover, it is easy to see
from the wave function (14) that, as observed previously
when we presented the potential, one must restrict the re-
gion of space such that x and y are both positive or both
negative. Furthermore, the inverse tangent function is
defined in the principal branch, as said previously. Final-
ly we treat the second case.

Case II (go= —5R /72p). Now we present the last ex-
ample of a two-dimensional CES potential that will be
discussed in this work. If we repeat once more the same
procedure we get the following equation for the energy in
this last case:

1/2 1/2

+4CD +
p

(2n + 1) . (15b)
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in order to include m =0 in the solution. Besides, the pa-
rameter C is also restricted by

C) 4&A
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This time we need to do a careful analysis of the range
of validity for the potential parameters. In the case of
the parameter B, we have the restriction

1/2
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So we see that the negative solution (positive in the above
equation) introduces a limit on the number of bound
states. The positive case (negative above) is such that we
only need impose that C is bigger than the left hand side

of Eq. (17) with m =0.
After this brief analysis of the region of validity of the

potential parameters, we present the corresponding wave
functions:
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This finishes the presentation of examples of CES poten-
tials, now in two-dimensional space. The principal
feature presented by these potentials, besides belonging to
the CES class of potentials, is that a stringlike singularity
of the potential appears. This is corroborated by the fact
that the probability of finding the particle over this singu-
larity is zero. This accounts for the interest in doing fur-
ther investigations of the characteristics of such poten-

I

tials. It would be interesting to study the behavior of
their corresponding coherent states, and also see what
happens with wave packets around the linear singularity
of the potential.

Furthermore, in analogy with what has been done with
the exact potentials [12,13], and also with the quasiexact
ones [8,9], it is our intention to look for the dynamical
algebra behind the solvability of the CES potentials. This
study is presently under development and we hope to re-
port on it in the near future.
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