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Application of the generalized scattering amplitude in quantum potential scatterings
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The concept of a generalized scattering amplitude is introduced and applied to quantum potential
scatterings. After an outgoing spherical wave is factored out from a wave function, the remaining wave

envelope is defined as the generalized scattering amplitude. The transformed Schrodinger equation, in
terms of the generalized scattering amplitude, can be solved numerically by using a finite-difference

method over the entire scattering domain. Example problems of scatterings by a spherical potential well

and the (e,H) static field interaction potential are solved to validate the theoretical formulation and
numerical method. The far-field solutions for the ordinary scattering amplitude and difFerential cross
section agree very well with those obtained from the partial-wave analysis. The radial profiles of the
generalized scattering amplitude and particle density function over the entire scattering region are also
presented, and their properties are discussed. These results demonstrate that the method can be used to
yield a complete and accurate solution to scattering problems involving arbitrary interaction potentials.

PACS number(s): 03.80.+r, 03.65.Nk, 11.55.—m, 02.70.Bf

I. INTRODUCTION

Angular momentum is a fundamental concept in quan-
tum mechanics. The numerical solution of the
Schrodinger equation in potential scattering problems,
particularly in the low-energy regime, is usually obtained
through a partial-wave analysis. Each partial wave in the
partial-wave analysis is tied directly to the orbital angular
momentum of the scattered particle. Even when the
scattering problem is formulated as an integral equation
for the wave function, the Green's function is often ex-
panded as a sum of partial-wave Green's functions for
numerical solutions.

Though the partial-wave analysis has the advantage of
reducing a three-dimensional numerical problem to a set
of three one-dimensional problems, the radial component
of the reduced partial-wave Schrodinger equation is still
difficult to solve due to the oscillatory behavior of the
solution and the infinite radial range of the scattering
process. Only in some special cases, such as in the
scattering by a spherical potential well, can analytical
and closed form solutions be obtained. Other difficulties
for the partial-wave analysis include a slow convergence
in the high-energy regime when many partial waves are
required for convergence; moreover, each partial wave
has its own differential equation to be solved.

In principle, instead of the partial-wave analysis, the
governing three-dimensional Schrodinger equation can be
solved directly to yield the same solution. This has been
recognized for some time [l]. Sullivan and Temkin ap-
plied a finite-difference method to solve a partial
differential equation in electron scatterings by atomic and
molecular systems. The main obstacle to this direct solu-
tion of partial differential equation approach is the
infinite domain of the scattering region and the oscillato-
ry nature of the wave function. In other words, the ma-
jor difficulty lies in the enforcement of the far-field
asymptotic condition. In the partial-wave analysis, this

difficulty is avoided by choosing basis set functions that
automatically satisfy the far-field asymptotic condition.
In direct solution of partial differential equations, this
difficulty is usually dealt with by truncating the computa-
tional domain to a finite domain near the scattering
center. But since the outer computational boundary is
not at the far field, some sort of approximate boundary
conditions needs to be used. Several approximating
schemes, so-called absorbing boundary conditions, have
been proposed for atomic scatterings [2], classical acous-
tic, and electromagnetic scatterings [3].

In this paper, the concept of the generalized scattering
amplitude is introduced to overcome this difficulty and to
avoid using absorbing boundary conditions. The formu-
lation of potential scattering problems in terms of the
generalized scattering amplitude allows the transformed
Schrodinger equation to be solved exactly over the entire
scattering domain without truncation. In this approach,
the potential scattering problem is treated as a boundary
value problem. The transformed Schrodinger equation is
the governing equation. It couples with the far-field
asymptotic condition in terms of the generalized scatter-
ing amplitude to yield the solution to the scattering prob-
lem.

The concept of the generalized scattering amplitude
[4,5] was first introduced in solving analogous classical
scatterings of acoustic and electromagnetic waves. The
similarity between quantum and classical scatterings can
be evidenced by the fact that the whole mathematical
machinery of the partial-wave analysis was developed and
applied [6] to scatterings of acoustic and electromagnetic
waves by spheres in the nineteenth century, well before
the founding of quantum mechanics. The common
thread linking quantum potential scattering with classical
scatterings is the Helmholtz equation in the form of the
time-independent Schrodinger equation or the reduced
wave equation governing these physically similar phe-
nomena.
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The key to the concept of the generalized scattering
amplitude is the recognition that the outgoing spherical
wave modulates the scattered wave. By factoring out the
outgoing spherical wave in the scattered wave part of the
wave function, the encompassing wave envelope, defined
as the generalized scattering amplitude, is not oscillatory
in the radial direction. It varies smoothly, though rapid-
ly, near the scattering center, and approaches the ordi-
nary scattering amplitude asymptotically in the far field.
Because of this behavior, by using stretching coordinates
in the radial direction, one needs only a finite number of
radial grid points to resolve the radial variation of the
generalized scattering amplitude along the infinite radial
range. The oscillatory wave function can be reconstruct-
ed by first recombining the generalized scattering ampli-
tude with the outgoing spherical wave and then with the
incident plane wave.

II. THEORETICAL FORMULATION

In this section, a quantum potential scattering is for-
mulated as a boundary value problem in terms of the gen-
eralized scattering amplitude. The problem under con-
sideration is that of an incident beam of particles of ener-

gy E scattered by a potential of the form V(r). The
scattering process is governed by the time-independent
Schrodinger equation,

g2
Vz+(r)+ V(r)%(r) =E+(r),

2m

or

[V +ko —U(r)]%(r)=0,

with E =irt ko/2m and U(r)=(2mhri )V(r). The wave
function %(r) is regular at the scattering center,

is valid not only in the far field, but also in the exterior
scattering region outside a certain range parameter a.
The range parameter specifies the range of the potential
outside which the potential is small and diminishing.
The choice of values for a is arbitrary. For a square well

potential, it can be conveniently chosen so that r =a
coincides with the boundary of the well. In the remain-

ing spatial domain, defined by r a, the wave function is

assumed to have the form

iko

%,(r)= f, (r, 8,$) for r ~a,
k, r

where f, is the generalized scattering amplitude in the
interior scattering region. The absence of the plane wave
in the wave function %,(r) in the interior scattering re-

gion is sometimes referred to as due to the extinction
theorem [7j. In the scattering of electromagnetic waves

by a dielectric sphere, which is physically similar to the
scattering of particles by a spherical potential barrier, the
extinction theorem states that the distribution of the in-
duced internal field inside the sphere is such that the in-
cident field is exactly cancelled out everywhere inside the
dielectric sphere, i.e., the plane wave cannot penetrate
the sphere.

To maintain a regular solution at the scattering center,
the generalized scattering amplitude in the interior region
vanishes there, i.e.,

f, (r, 8,$)=0 at r =0 .

The choice of Eq. (5) as the functional form of the wave
function in the exterior scattering region leads to a very
simple outer boundary condition. In terms of the gen-
eralized scattering amplitude, the far-field asymptotic
condition becomes

limni(r) =finite .
r~0

(3) dfo
lim (r, 8,$)=0,
phoo r

With the incident beam particles represented by a plane
wave, the wave function assumes the asymptotic form

lkof

lim %(r)=e ' + f (8,P),r- kor
(4)

where the incident wave vector ko is assumed to lie in the
positive z axis.

The potential scattering problem is thus defined by the
governing partial differential equation, Eq. (2), and
boundary conditions, Eqs. (3) and (4), over the entire
physical space. This constitutes a boundary value prob-
lem. The asymptotic form of the wave function in Eq. (4)
is valid only in the far-field limit, and the far-field scatter-
ing amplitude f(8,$) is independent of the radial dis-
tance variable r. The range of validity of Eq. (4) can be
extended inward by introducing the radial distance
dependence into f, so that a new unknown function
fo(r, 8,$), defined as the generalized scattering amplitude,
can be substituted for f (8,$) in Eq. (4). The new func-
tional form,

lko p

Vo(r)=e + fo(r, 8,$) for r ~a,
or

for electromagnetic scattering where E' is the scattered
electric field and by

lim r V'—ikV' =0,s . s

r~ oo Br
(l0)

for acoustic scattering where V' is the scattered wave
part of the acoustic pressure. When V' and the angular
components of E' are factored into outgoing spherical

indicating the independence of the generalized scattering
amplitude on the radial distance variable in the far field.
The vanishing of the first derivative with respect to the
radial distance variable also is manifest in flat radial
profiles of the generalized scattering amplitude in the far
field, as will be shown in Sec. IV.

It is interesting to note that in treating classical acous-
tic and electromagnetic scatterings, the far-field asymp-
totic condition is called the Sommerfeld radiation condi-
tion. Rather than expressing the field quantities in their
asymptotic forms as in Eq. (4), the far-field boundary con-
dition [8] is instead given by

lim ( r X V XE'+ ikr E')=0,
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waves and the generalized scattering amplitude as in Eq.
(5), and their expressions substituted in Eqs. (9) and (10),
the Sommerfeld radiation condition reduces to a form
identical to Eq. {8}for the corresponding electromagnetic
and acoustic generalized scattering amplitudes [4,5].

For simplicity and without loss of generality, the in-
teraction potential will be assumed to be spherically sym-
metric, U(r)= U{r}. The wave function becomes in-
dependent of the azimuthal angle P. Since the plane
wave satisfies the free space wave equation, substitution
of Eq. (5) in the Schrodinger equation, Eq. (2), results in
the transformed Schrodinger equation,

f0+2k f0+cote f0+ 1 f0
U( )f ( g)gr'

' ' ar r' ae r' ge'

=(k0r)U(r}e

for the exterior region, r ~ a. The potential is assumed to
vanish faster than the Coulomb potential in the exterior
scattering region, so that the right-hand side of Eq. (11)
vanishes in the far field Sim. ilar substitution of Eq. (6) in
Eq. (2) results in the transformed Schrodinger equation

fl +2.k fl + cote fi + 1 fi
U( )f ( g

gr'
' ' ar r' &8 r' ge'

( ) if ( g)idn
(15)

The optical theorem that can be used as a numerical
check is still valid and is given by

These two relationships can be transformed into corre-
sponding relationships between f0 and f, by using Eqs.
(5) and (6). The potential scattering process now becomes
a boundary value problem defined by the governing equa-
tions, Eqs. (11), (12), (11'), and (12'), and boundary condi-
tions, Eqs. (7), (8), (13), and (14).

Being defined as the wave envelope of the scattered
wave in the exterior scattering region and dictated by the
far-field boundary condition, the exterior region general-
ized scattering amplitude f0 is expected to be nonoscilla-
tory in the radial direction. Its radial profiles should
reach certain plateaus in the far field. These expectations
are borne out in previous applications in classical acous-
tic and electromagnetic scatterings. This is also shown to
be the case in quantum potential scattering to be dis-
cussed below.

Since the generalized scattering amplitude approaches
the ordinary scattering amplitude in the far field, the
differential cross section is given by

=0, (12) cr, = 0= Im 0 06,0do 4n.

dQ
(16)

+2ik0 + —U(r)f0(r, e)gr'
' ' ar r' ae'

=(k0r)U(r)e, r &a (11')

a'f, af, 2 a'f
2 +2ik0 +

2 2
—U(r)f, (r, e)=0, r &a

Br ~& r 882

(12')

at 8=0 and m. No singularity exists in the governing
equations at any 8 angle.

At the boundary between the interior and the exterior
scattering regions, r =a, the wave functions and their
Srst-order radial derivatives are required to be continu-
ous across the boundary,

and

%', {r,e) =4'0(r, e) at r =a

Vi(r, e}= %0(r, g) at r =a .8
ar ' ar

(13)

(14)

for the interior region, r & a.
Along the forward and backward scattering directions,

at 8=0 and m, respectively, it can be shown [5] that

af, a'f, Bf, B~f,
cot(8) = and cot(8)

ae' ae'

to the symmetry property of the transformed
Schrodinger equation and boundary conditions under the
transformation 8~—8 at 8=0 and n Therefore. the
transformed Schrodinger equation assumes the particular
forms

where the total cross section o., can be obtained either by
integrating the differential cross sections over all scatter-
ing angles or by multiplying the imaginary part of the
forward scattering amplitude with a constant.

III. NUMERICAL METHODS

The boundary value problem for the potential scatter-
ing process as defined in Sec. II can be solved by a finite-
difference method. The radially nonoscillatory, smoothly
varying behavior of the generalized scattering amplitudef0 in the exterior region allows one to make suitable
coordinate transformations to map the infinite physical
domain outside the r =a boundary onto a finite computa-
tional domain. Tangent and inverse hyperbolic tangent
functions are examples of such coordinate transforma-
tions. The finite-difference discretization of the govern-
ing partial differential equation and boundary conditions
converts the boundary value problem into a large simul-
taneous algebraic equation that can be written in a band-
ed matrix equation form. This banded matrix equation
can then be solved by conventional direct matrix inver-
sion methods. Examples and details of this procedure are
given in Refs. [4,5].

For quantum potential scattering, in addition to the
infinite exterior scattering region, there is the interior
scattering region to contend with. The scattering in the
interior region is dominated by the interaction potential.
The generalized scattering amplitude can have radial os-
cillations in this region. Fortunately, the interior region
is of finite size, limited by the r =a boundary. A
sufficiently dense grid can be provided to resolve the radi-
al oscillation if necessary. The matrix inversion method
can be extended to include the interior region with the in-



438 R. T. LING 50

corporation of continuity relationships for the wave fun-
tion and its radial slope, Eqs. (13) and (14), at the regional
boundary, r =a. The numerical results presented in this
paper are obtained by such a direct matrix inversion
method.

In the following, two possible alternatives to the direct
matrix inversion method are suggested and described.
These two alternatives have not been applied to quantum
potential scattering, but they have been successfully
demonstrated in classical acoustic and electromagnetic
scatterings which have similar numerical problems. In
classical scatterings, though the banded matrix derived
from finite-difference discretization of Helmholtz equa-
tion is sparse, major difficulties often arise in using the
direct matrix inversion method due to large computer
memory requirement and round-off error when the ma-
trix becomes large in the high-energy and three-
dimensional scattering regimes. An alternative to the
direct matrix inversion method is the iterative method.
However, due to the nonpositive definite property [9] of
matrices resulting from the Helmholtz equation, many
iterative methods are shown to give divergent results.
Only the normal-equation-type methods such as the con-
jugate gradient method [10] can handle the nonpositive
definite matrices. Other disadvantages of iterative matrix
solvers include slow convergence, particularly when the
matrix s condition number is large. Several precondition-
ing schemes [11] to speed up the convergence have been
proposed.

Another alternative to the matrix inversion method of
solving the time-independent boundary value problem is
to transform the problem into a time-dependent initial
value problem. The transformation is accomplished by
introducing a time dependence into the generalized
scattering amplitude for classical scatterings and starting
with the wave equation instead of the Helmholtz equa-
tion to derive a time-dependent partial differential equa-
tion for the new time-dependent generalized scattering
amplitude. This procedure transforms the original ellip-
tic boundary value problem involving only spatial coordi-
nates into a hyperbolic initial value problem involving
both spatial and temporal coordinates. The time-
harmonic steady state solution is obtained when the
time-stepping process reaches convergence. An example
is given in Ref. [12] where a time-marching scheme is

used to reproduce the results for the classical acoustic
and electromagnetic scatterings by infinitely long circular
cylinders and spheres that were previously obtained using
the direct matrix inversion method. Recently this time-
marching method was generalized and applied to the
three-dimensional acoustic scattering by an almond-
shaped obstacle [13]. The time-dependent iterative
method is very efficient in computer memory storage.

As indicated above, these two alternatives to the direct
matrix inversion method have not been applied to quan-
tuxn potential scatterings. For quantum scattering in-
volving arbitrary interaction potentials, the inclusion of
the interior scattering region and additional constraints
on the wave function, Eqs. (13) and (14), may affect the
convergence and numerical stability of these two alterna-
tive numerical schemes.

IV. RESULTS AND DISCUSSION

The theoretical formulation presented in Sec. II and
the finite-difference approach using the direct matrix in-
version method described in Sec. III are applied to two
quantum potential scattering problems. For convenience,
atomic units are used throughout the computations. The
unit of length in this system is the Bohr radius ao.

A. Square well potential scattering problem

In this problem, the incident particles are scattered by
an attractive square well potential of well depth
U(r) = —10 and well radius ro = 1. The incident particles
are assumed to have an incident wave number ko equal to
3.1 so that their de Broglie wavelengths are roughly equal
to the diameter of the well. The range parameter a is set
to unity so that the boundary between the interior and
exterior regions coincides with the well's outer boundary.
Representative results based on the solutions of interior
and exterior region generalized scattering amplitudes fo
and f, are given. The radial profiles of the generalized
scattering amplitudes in the forward (8=0), vertical
(8=n/2), and. backward (8=m ) scattering directions are
shown in Figs. 1 and 2. Perspective three-dimensional
surface plots of the interior and exterior region general-
ized scattering amplitudes as functions of radial distance
and scattering angle are shown in Figs. 3—6.

The radial profiles of the exterior region generalized
scattering amplitude outside the potential well as shown
in Figs. 2, 5, and 6 are similar to those of classical acous-
tic and electromagnetic scatterings [4,5]. They change
smoothly and rapidly near the well boundary and ap-
proach some asymptotic plateaus in the far field without
oscillations. The characteristics of these profiles allow
the numerical solution to be carried out with larger and
larger grid spacings in the far field without resorting to
truncation of the computational domain and without us-

ing approximate absorbing boundary conditions. Some
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FIG. 1. Radial profiles of the generalized scattering ampli-
tude f, (r, 8) in the interior scattering region. Square well po-
tential scattering, ko =3.1, U = —10. The radial distance r is in
units of ao, the atomic unit for length.
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FIG. 4. Perspective 3D surface plot of the imaginary part of
the generalized scattering amplitudes in the interior scattering
region. Square well potential scattering, k0=3.1, U = —10.
The radial distance r is in units of ao, the atomic unit for length.
The scattering angle is denoted by 8.

FIG. 2. Radial profiles of the generalized scattering ampli-
tude fo(r, 8) in the exterior scattering region. Square well po-
tential scattering, ko =3.1, U = —10. The radial distance r is in
units of ao, the atomic unit for length.

researchers [14] divide the whole physical space in a
scattering process into inner regia and outer regia in order
to separate the region of rapid changes from the asymp-
totic plateau area. The radial profiles of the generalized
scattering amplitude in the exterior region shown here
offer a clear view of the division.

The far-field values of the exterior region generalized
scattering amplitude as a function of scattering angle are
shown in Fig. 7. The di8'erences between the present
computation and the partial-wave analysis are less than
0.4% for all angles. The two solutions are indistinguish-
able in the graph shown in Fig. 7. Twelve partial waves
are sufBcient for convergence at kc=3. 1. The general-
ized scattering amplitude computation uses a grid net-
work of 180X65, with 80 grid points uniformly distribut-
ed in the radial direction in the interior scattering region
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FIG. 5. Perspective 3D surface plot of the real part of the
generalized scattering amplitudes in the exterior scattering re-
gion. Square well potential scattering, k0=3. 1, U = —10. The
radial distance r is in units of ao, the atomic unit for length.
The scattering angle is denoted by 8.
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FIG. 3. Perspective three-dimensional (3D) surface plot of
the real part of the generalized scattering amplitudes in the inte-
rior scattering region. Square well potential scattering,
k0=3. 1, U= —10. The radial distance r is in units of ao, the
atomic unit for length. The scattering angle is denoted by 8.

FIG. 6. Perspective 3D surface plot of the imaginary part of
the generalized scattering amplitudes in the exterior scattering
region. Square well potential scattering, k0=3. 1, U= —10.
The radial distance r is in units of ao, the atomic unit for length.
The scattering angle is denoted by 8.
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FIG. 7. Angular distribution of far-field scattering ampli-
tude. Square well potential scattering, ko =3.1, U = —10. The
scattering angle is denoted by 8.

(0& r & 1), 100 grid points distributed tangentially along
the radial direction in the exterior scattering region
(1 & r & eo ), and 65 grid points distributed uniformly over
the range of scattering angles (0&8&@) The .distribu-
tion of the differential cross section, as a function of
scattering angle and computed using Eq. (15), is shown in
Fig. 8. Again the generalized scattering amplitude
method yields values nearly identical to the partial-wave
analysis. The difference between the two solutions is too
small to be distinguished in Fig. 8. The total cross sec-
tion 0, obtained from the integration of differential cross
sections is equal to 10.864 while it is equal to 10.922 from
the optical theorem, Eq. (16). The exact partial-wave
analysis yields 10.863 for the total cross section.

The computational results presented for the 180X65
grid network were obtained from a run on a Cray Y-MP
C90 machine that took 72 seconds of single processor
CPU time and 24 megawords of core memory. The com-
puter code was neither vectorized nor optimized. The

180X65 grid was deemed sufficient when doubling the
number of grid points in either r or 8 direction, i.e., with
a 360X65 or a 180X129 grid, yielded identical results in
five digits. The phase shift computation using analytical
expressions of the partial-wave analysis, which provides
the far-field scattering amplitudes and differential cross
sections for comparison with the present generalized
scattering amplitude computation (Figs. 7 and 8), can be

performed in a fraction of a second on the Cray machine.
However, it is understood that the phase shift results pro-
vide only the wave function solution in the far field, in
contrast to the global wave function solution afforded by
the generalized scattering amplitude method. No at-
ternpt was made in using the analytical expressions of the
partial-wave analysis to compute the near-field wave
function in the square well potential scattering. There-
fore no computational efficiency comparison is available.
For arbitrary interaction potentials other than the square
well potential, no closed form analytical solutions are
available for the phase shift and radial part of the wave
function in the partial-wave analysis. The computation
would involve solving a series of orbital angular-
momentum-dependent ordinary differential equations.
No specific comments on the numerical efficiency in this

type of computation can be made.
Figure 9 shows the radial profiles of the particle densi-

ty function, p(r, 8), defined as l+(r, 8)l, in the forward,
vertical, and backward scattering directions. Figure 10 is
a perspective three-dimensional plot of the particle densi-

ty function for all scattering angles and for radial dis-
tances up to 20 Bohr radii. In the interior region, the
particle density function is given by p(r, 8)
= [(Ref

&
) + (Imf

&
) ]/(kor ), for all angles. In the exte-

rior region, the expression for the particle density func-
tion in terms of the real and imaginary parts of the gen-
eralized scattering amplitude varies according to 8 angle
due to different interference patterns between the scat-
tered wave and the incident plane wave at different an-

gles. In the forward, vertical, and backward scattering
directions they are given as follows:

(')
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FIG. 8. Angular distribution of differential cross section.
Square well potential scattering, ko =3.1, U = —10. The
scattering angle is denoted by 0.

FIG. 9. Radial profiles of the particle density function pt, r, 8).
The radial distance r is in units of ao, the atomic unit for length.
Square well potential scattering, ko =3.1, U = —10.
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FIG. 10. Perspective 3D surface plot of the particle density

function p(r, 8) Squ. are well potential scattering, k0=3. 1,
U = —10. The radial distance r is in units of ap, the atomic unit

for length. The scattering angle is denoted by 8.
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tude f, (r, 8) in the interior scattering region. (e,H) static field
interaction potential scattering, kp =0.8, 8=m /2, vertical
scattering direction. The radial distance r is in units of ap, the
atomic unit for length.

0..2 I I I I I I I I I I

0 20 40 60 80 100 120 140 'l 60 180

e (deg)

0.45-

0.40
0

I

10
I

20

real part

I

30 40
I

50 60
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tude. (e,H) static field interaction potential scattering,
kp =0.8. The scattering angle is denoted by 8.
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FIG. 14. Radial profiles of the generalized scattering ampli-
tude fo(r, 8) in the exterior scattering region. (e,H) static field
interaction potential scattering, kp =0.8, 8=m /2, vertical
scattering direction. The radial distance r is in units of ap, the
atomic unit for length.
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FIG. 12. Angular distribution of differential cross section.
(e,H) static field interaction potential scattering, kp =0.8. The
scattering angle is denoted by 0.

FIG. 15. Radial profile of the particle density function
p(r, 8). (e,H) static field interaction potential scattering,
kp=0. 8, 8=m/2, vertical scattering direction. The radial dis-
tance r is in units of ap, the atomic unit for length.
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[I+Refo/(kor)] +[Imfo] /(kor) for 0=0

p(r, 8)= 1+[(Refo) +(Imfo) ]/(kor) +2[ cos(kor)(Refo) —sin(kor)(imfo)]/(kor) for 8=sr/2

1+[(Refo) +(Imfo) ]/(kor) +2[ cos(2kor)(Refo) —sin(2kor)(imfo)](kor) for 9=m.

(17)

(18)

(19)

Since the real and imaginary components of the gen-
eralized scattering amplitude in the exterior region are
not radially oscillatory in any direction, it is readily seen
that the forward direction is the only direction in which
the particle density function is not oscillatory. The oscil-
lation in the wave function and thus the particle density
function, due to the interference between the plane wave
and the scattered wave, increases from the forward direc-
tion to the backward direction (Fig. 10}. Since the radial
oscillation extends to the far field, this clearly explains
the difficulty in methods which attempt to solve the wave
function directly from the Schrodinger equation. In Ref.
[15], the same pattern of radial profiles for the particle
density function has been obtained for both a square well
potential and a square barrier potential using the partial-
wave analysis.

The present numerical method provides a global solu-
tion for a scattering problem. In addition to the all im-
portant far-field scattering amplitude and differential
cross section, it provides detailed information regarding
the scattering process in the near field. The generalized
scattering amplitude can be used to reconstruct the glo-
bal wave function from which relevant physical informa-
tion can be extracted. As an example, it is interesting to
note the sharp peak (Figs. 9 and 10}in the particle densi-
ty function in the forward direction at r =0.8875, indi-
cating a high concentration of particles during the
scattering process at that location.

B. (e,H) static field potential scattering problem

The static field interaction between an electron and a
ground state hydrogen atom is given by
U(r}=—2(1+I/r)exp( —2r). Representative results for
the scattering by this potential at ko=0. 8 are shown in
Figs. 11-15. The boundary between the interior region
and the exterior region is placed at r =a =1. Figures 11
and 12 show the close agreement between the generalized
scattering amplitude solution and the partial-wave
analysis for the far-field scattering amplitude and
differential cross section. Three partial waves are includ-
ed in the partial-wave analysis, with the phase shift
values provided by Ref. [16]. The present computation
uses the same radial grid as in the square well computa-

I

tion, but because of lower ko value, the angular grid is re-
duced to 33 grid points distributed uniformly in the angu-
lar range. The total cross section 0., obtained from the
integration of differential cross sections is equal to 13.557
while it is equal to 13.612 from the optical theorem. The
three partial waves yield 13.577 for the total cross sec-
tion.

The radial profiles of the generalized scattering ampli-
tude and the particle density function in the vertical
scattering direction are shown in Figs. 13-15. They ex-
hibit similar behavior as those in the square well potential
scattering. It is noted that Eqs. (17)—(19},based on Eq.
(5), are valid for arbitrary potentials. Since the property
of the generalized scattering amplitude, as dictated by the
far-field condition, Eq. (8), is universal, the pattern exhib-
ited by the particle density function is also universal in
nature and it is independent of the form of the interaction
potentials

V. CONCLUSION

The application of the generalized scattering amplitude
to quantum potential scatterings has shown that, as in
classical acoustic and electromagnetic scatterings, the
generalized scattering amplitude is a fundamental quanti-
ty underlying the scattering process. It exhibits a
behavior which is universal in nature, independent of the
type of scatterings, the geometry of obstacles, and the
form of interaction potentials. Specifically for quantum
potential scatterings, the generalized scattering amplitude
solution method is applicable to arbitrarily varying in-
teraction potentials that vanish faster than the Coulomb
potential in the far field. The theoretical formulation and
numerical methods can be generalized and applied to
three-dimensional scattering problems involving non-
spherical interaction potentials, as demonstrated in the
three-dimensional acoustic scattering problems [13].
Since complex atomic and molecular scattering processes
often can be reduced to scatterings among composite
scattering centers interacting via interatomic potentials
or potential surfaces, the method described in this paper
may be applied as a part of the overall theoretical and nu-
merical method for complex scattering processes.
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