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Recent work by Wolinsky and Carmichael [OSA Annual Meeting, 1989 Technical Digest Series
Vol. 18, (Optical Society of America, Washington, DC, 1989)] suggests that a superposition of
two macroscopically distinct coherent states (a "Schrodinger-cat" state) may be produced in de-
generate parametric oscillation in a transient regime. We investigate this possibility by performing
numerical simulations of quantum stochastic equations derived using the positive I' representation.
The equations allow for finite signal cavity loss. Interference fringes which indicate the existence
of the macroscopic superposition states are indeed predicted in regimes where the parametric non-
linearity is sufBciently large compared to the signal cavity losses. Experimental criteria needed for
the generation of macroscopic quantum superposition states using parametric oscillation are thus
established.

PACS number(s): 42.50.Dv

I. INTRODUCTION

The parametric oscillator has played a key role recently
in experimental investigations of various quantum prop-
erties of the radiation field. Wu et al. [1] used degenerate
parametric oscillation to obtain a significant reduction in
noise ("squeezing") below the shot-noise level. Heidmann
et al. [2] obtained a significant squeezing of the radiation
field produced &om the nondegenerate parametric oscil-
lator operating above threshold. The first experimen-
tal realization of the original Einstein-Podolsky-Rosen
gedanken experiment was achieved by Ou et al [3] us-.
ing nondegenerate parametric oscillation. Here measure-
ments of field quadrature phase amplitudes are made to
an accuracy of greater than the standard quantum limit.
These experimental achievements have been motivated
by much theoretical work [4—9].

Most previous theoretical and experimental investiga-
tions, however, have focused attention on semiclassical
regimes where the efFect of quantum noise is to perturb
about stable classical solutions. This is the regime rel-
evant to the majority of optical experiments, including
the squeezing experiments of Wu et al. [1], where the
parametric nonlinearities are small. This mode of oper-
ation is characterized by very large photon numbers at
threshold. The usual theoretical approach in this small-
quantum-noise regime is to linearize the quantum Huc-
tuations about the leading classical terms. An exception
to this is the nonlinear calculation of Kinsler and Drum-
mond [10]. The degenerate parametric oscillator above
threshold displays a bistability. One finds two stable clas-
sical field amplitudes difFering in phase by 180 . Even
in the absence of thermal fIuctuations the system may

tunnel &om one amplitude to the other because of the
presence of quantum noise. Kinsler and Drummond [10]
calculate this tunneling time due to quantum noise only.
Their calculation, however, still restricts attention to the
case of small quantum noise.

There is another mode of operation where the nonlin-
earity is sufBciently strong that threshold may be reached
at very small photon numbers. This is the regime where
quantum noise is very large and solutions deviate &om
a classical description. Previously considered unrealis-
tic such modes of operation may become accessible with
the continued development of small-scale devices. Cur-
rently, such oscillators might be achievable at microwave
&equencies using Josephson nonlinearities [11].

Although the threshold photon number would be very
small in these extreme nonlinear quantum oscillators, it is
still possible in principle to reach significant intracavity
intensities by increasing the input pump power. This
raises the question of what new physical properties such
macroscopic yet distinctly quantum devices will exhibit
and what theories might be used to model them.

Nonlinear steady-state analytical solutions valid for a
degenerate parametric oscillator of arbitrary quantum
noise strength have been derived by Drummond et al.
[5] and by Wolinsky and Carmichael [12]. These so-
lutions were obtained in the adiabatic limit where the
pump cavity decay rate is much greater than that of the
signal. The solutions were obtained using a generalized
P-representation expansion of the system density opera-
tor. Subsequent work by Carmichael and Wolinsky [13]
using the positive P representation indicates that in the
absence of all signal loss (this corresponds to the limit of
extremely large quantum noise) a signal mode originally
in the vacuum will evolve into a quantum superposition of
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two coherent states with amplitudes 180 out of phase.
For sufficient pump intensities, the intracavity photon
number becomes large and the system is predicted to be
in a superposition of two macroscopically distinct coher-
ent states. Such states are analogous to those considered
by Schrodinger in his famous "Schrodinger-cat" paradox
[14], and defy all classical interpretations. Whether or
not such cat states exist in the real physical world is
not clear. So far there has been no experimental realiza-
tion, although there have been proposals [15,16]. Quan-
tum mechanics predicts Schrodinger-cat states, but ap-
parently only in the most extreme situations where loss
is small.

In the case of the degenerate parametric oscillator, the
efFect of increasing signal loss is to destroy the superposi-
tion efFects at least in the steady-state field. In fact it has
been shown that the steady-state solutions for arbitrary
but finite cavity loss are not coherent state superposi-
tions, but have a classical interpretation [17]. The work of
Carmichael and Wolinsky [13], however, is strongly sug-
gestive that Schrodinger-cat states may exist in a tran-
sient regime as the signal field evolves &om the initial
vacuum state.

In order to establish the predicted existence of the
Schrodinger-cat states and whether the criteria for the
macroscopic quantum superposition states can be met
experimentally, one needs to model the transient evolu-
tion of the quantum parametric oscillator in regimes of
large quantum noise. This is the prime objective of our
paper.

The calculations are performed using two methods.
The first method involves the careful application of the
positive P representation, developed originally by Drum-
mond and Gardiner [18]. The key feature of the represen-
tation is the positivity of the distribution function. This
enables direct numerical simulation of stochastic equa-
tions, which resemble classical equations for field am-
plitudes except that the dimensions are doubled. Such
quantum simulation techniques have been applied suc-
cessfully to problems involving small quantum noise. The
second method is the numerical solution of the master
equation using a number state basis. Results using both
methods are compared to confirm agreement.

It is important to realize in the positive P-
representation case that the stochastic equations used are
derived &om a master equation with the assumption that
certain boundary terms vanish. It is not always the case
that these terms do in fact vanish. The problem [19,20]
manifests itself most strongly in the large-quantum-noise
regime. Work by Smith and Gardiner [20] focused on
a system in a large-quantum-noise limit where bound-
ary terms had not been checked. They showed that the
results predicted &om the incorrect stochastic equations
used in this case were wrong. For the case of the para-
metric oscillator where thermal noise is absent, there is
a bounded manifold [12] within which the trajectories
starting originally &om the origin (an initial condition
for the vacuum state) are confined. On this manifold,
it can be shown [21] that the relevant boundary terms
vanish for arbitrary quantum noise strength. Hence if we
restrict attention to the evolution described within this

manifold, we can be sure in this case that the stochastic
equations are correct.

II. THE STOCHASTIC EQUATIONS

The interaction Hamiltonian used to model the para-
metric oscillator is

H= —ga2a —g a a +ihe a —a2~
i — t2 -~t2 t

1 2 1 2 )
2

+) atl'; + a, l't . (2 1)

Here a; are boson operators for the cavity modes at fre-
quencies u;, where uq ——2ui. The mode a2 is driven
by a resonant external driving field with amplitude pro-
portional to e. The loss of photons through the cavity
rmrrors is modeled by the last term in the Hamiltonian,
which denotes a coupling of the cavity modes to the reser-
voir modes (symbolized by I';) external to the cavity. We
will denote the cavity decay rates for modes ai and az
by pi and p2, respectively.

The stochastic equations we use have been derived
previously by Druinmond et al. [5) and Wolinsky and
Carmichael [12]. We summarize the derivation. It is pos-
sible to write down the equation for the time evolution
of the density operator p in the Markovian approxima-
tion. One may then expand the density operator in the
positive P representation as

~ ~

An equation of motion for the positive P function
may be derived on substitution of (2.2) into the mas-
ter equation with the assumption that certain boundary
conditions are satisfied so that integration by parts is
justified. Such a Fokker-Planck equation and an equiv-
alent stochastic differential equation were first derived
by Drunirnond et al [5]. In the limit where the pump
mode is much more heavily damped than the signal mode

(p2 )) pi), it is possible to adiabatically eliminate the
pump variables. The final Ito stochastic equations for
the signal 6eld are

—x+y[A —x']
—y+x[A —y2]

A —g2z2 0
0 A-g2y2 (2.4)

Here ((a;)) = (o.i)~a2), where (a;) is a coherent state
and the n; and at are independent complex variables in
phase space. We have the c-number correspondences of
a;,aJ with a;,at, respectively. The c-number averages
over the positive P distribution are directly related to
the normally ordered operator moments. For example,
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We have used the scaled variables introduced by Wolin-

sky and Carmichael [12]. Thus z = gai& y = gai, g
g'g/2pip2, A = ]ge]/prinz, and 7 = pit We consider here
the situation where operation of the parametric osciHa-
tor is above the semiclassical threshold, corresponding to
A ) 1. In this regime, there are two stable semiclassical
solutions z = y = v A —1 and z = y = —v A —1. The
q(7) and gt(v) are independent real noise sources with
zero mean and satisfying (q, (t)gz(t')} = h;zh(t —t'). It
was pointed out by Wolinsky and Carmichael [12] that
if the initial values of the o.i,nz are real, then the incre-

ments do. q and do. z must also be real. Thus o.q and o.~
t

are restricted to move along the real axes. It is also ap-
parent that the trajectories are confined to move within
the bounded manifold z & v A and y & y A.

Equation (2.4) forms the basis of our work here. The
situation of interest is where the signal mode is initially
in a vacuum state. This initial condition may be repre-
sented by err

——o.i = 0. The stochastic equations are con-
verted to Stratonovich form and solved numerically. All
trajectories are confined to remain within the bounded
manifold. The quantum expectation values at a time t
are found by averaging over the results for the difFerent
trajectories.

Before performing simulations of the stochastic equa-
tions, it is necessary to prove that the boundary terms
vanish and thus that the averages calculated from the
stochastic solutions correspond to those obtained using
the original master equation [21].

III. REVIEW OF ANALYTICAL SOLUTIONS
WHICH SUGGEST THE EXISTENCE OF

TRANSIENT SCHRODINGER-CAT STATES

Steady-state analytical solutions for the density oper-
ator in the adiabatic limit p2 )) pr have been obtained
by Drummond et al. [5] and Wolinsky and Carmichael
[12]. By deriving the Fokker-Planck equation equivalent
to the stochastic equations one obtains the steady-state
solution [12]

Pss(ni, a, ) = [(A —z')(A —y')]'~s ' exp(2zy/g') .

(3.1)

The solution is defined over the manifold ]z~ & ~A, ~y] &

~A. The normally ordered moments (ati "ai } are ob-
tained by integration

x o'~ o-'~ do'ado't~ m

Carmichael and Wolinsky [13] have pointed out that
in the limit of large g, the steady-state distribution ap-
proaches a set of 8 functions. The corresponding density
operator can be expressed as the classical mixture

p= P+l~+)(V+I+P IV-}-(V (3.3)

where ~(pp} = ~~A/g} +
~

—~A/g} and

1 + exp[2A/g']
8 cosh[2A/g']

(3.4)

1 —exp[2A/g']
8 cosh[2A/g2)

(3.5)

The states ]y+} and ~p ) are quantum coherent state
superpositions. For large v A/g the states are superpo-
sitions of two macroscopically distinct coherent states.
Thus the parametric oscillator operating in the large-
quantum-noise and steady-state limits becomes a clas-
sical mixture of two Schrodinger-cat states. One of these
quantum states [y+}has an even number of photons. The
other ]p ) has an odd number of photons. Carmichael
and Wolinsky [13] point out that the state ]p ) is cre-
ated from ]&p+) by loss of a signal cavity photon (and vice
versa .

A method for detecting a quantum superposition of
two coherent states 180' out of phase has been proposed
by Yurke and Stoler [15]. One measures the probability
distributions P(z) and P(p) for obtaining results z and p
upon measurement of the quadrature phase amplitudes
Xi ——(ai + ai)/2 and X2 ——(ai —ar)/2i, respectively. If
the field is in the coherent state superposition ~p+}, the
distribution P(z) becomes, for the case where ~A/g is
large, two Gaussian peaks with centers corresponding ap-
proxirnately to ~A/g and —y A/g . The distribution P(p)
exhibits interference fringes, which are a consequence of
the superposition nature of the state ~p+). These fringes
are absent in the P(p) for fields which are classical mix-
tures of ~~A/g) and

~

—~A/g) . Calculation of the P(p)
for an arbitrary mixture of ~y+} and ]y ) reveals that the
fnnges are diminished and cancel when the states carry
equal weight. These efFects are illustrated in Fig. l. If we
examine the prediction (3.3) for the oscillator solution, it
is seen that for large +A/g, the probabilities P+ and P
are comparable and the steady-state Geld exhibits no sig-
nature of quantum interference in its P(p) distribution.
As v A/g approaches zero, the P+ becomes larger than
P . Although this is suggestive of the formation (at low

~A/g values) of ~y+) in the steady state, calculation of
the P(p) shows that no &inges will be observed for any
finite value of JA/g. This has been shown to be true
for the steady-state field regardless of the value of g and
~A/g [17].

Carmichael and Wolinsky [13] have pointed out, how-
ever, that the expansion (3.3) of the steady-state density
operator is suggestive of the formation. of transient su-
perposition states. The states ~y+} and ]y ) have even
and odd photon numbers, respectively. The large g limit
for which the expansion is valid corresponds also to the
limit of no signal photon cavity loss pz ~ 0. A model
Hamiltonian for the oscillator in the fast-decaying pump
limit and in the absence of single-photon cavity loss is
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FIG. 1. Plots of the momentum probabil-

ity distribution P(p) and position probabil-

ity distribution P(z) (a. ) Plot of P(z) ver-

sus z for the superposition state ly+). Here

g = 2.5 and A/g = 100 for the solid line;

g = 2.5 and A/g = 5 for the dotted line. (b)
Plot of P(p) versus p for the superposition
state ly+). Here g = 2.5 and A/g = 100
for the solid line; g = 2.5 and A/g = 5 for

the dotted line. (c) Plot of P(p) versus p for

the superposition state lp ). Here g = 2.5
and A/g = 100 for the solid line; g = 2.5
and A/g = 5 for the dotted line. (d) Plot of

P(p) versus p for the steady-state intracavity
field of the parametric oscillator state (3.3)
with g = 2.5 and A/g = 100. The same

result is obtained for a 50-50 mixture of the
superposition states ly+) and lp ).
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One has a two-photon pumping and a two-photon loss
(here I' and I't represent reservoirs), brought about by
the parametric interaction. It is seen that the sig-
nal, which is coupled only to the pump via the down-
conversion process, can absorb or emit photons only in
pairs. Thus, in the absence of cavity loss, if the signal
is initially in a vacuum state it can evolve only to the
coherent superposition lp+), which has an even photon
n»mber. The time needed for this evolution will be de-
termined by the strength of the two-photon nonlinear-
ity. The loss of signal photons from the cavity through
the end mirrors allows the formation of the odd pho-
ton number state. The final steady state formed over
a number of cavity lifetimes is thus the mixture of the
two superposition states. It might be expected, however,
that "something close to" the macroscopic superposition
state ly+) is generated in a transient regime. This is pro-
vided the signal cavity lifetime is suKciently long, which
corresponds to the regime of sufBciently large g.

We now ask whether Schrodinger-cat states exhibiting
any quantum interference &inges do in fact exist on time
scales smaller than the cavity relaxation time and for
finite values of g. To answer this it becomes necessary to
solve for the evolution of the oscillator.

IV. SIMULATION OF THE STOCHASTIC
EQUATIONS

In this section we present results obtained from the nu-

merical simulation of the stochastic equations. We eval-

uate the quadrature phase amplitude probability distri-
bution functions P(z) and P(p), defined in the preced-

ing section. These probability distributions are obtained
from the positive P function as

P(z) = (z~p~z) = JP(a„a,) t
d a, d a, .t (zl~i)(~ilz) ~

Al 0'1

(4 I)

Similarly

P(s) = 8 I~lni = f P( .)t (pl~i)(&alp) 2 & i'

0'1 0'1

(4.2)

We have used the following coordinate and momentum
representation results for the coherent state:

2 2

(zl&, ) = ~- / exp ——+ ~2z~, ————1 4 Z /- &1
V 2

(4.3)
' p'

(plni) = x exp& ———i&2poi +
2

(4.4)

Here lz) and lp) are position and momentum eigen-
states, respectively. One may evaluate P(z) and

P(p) by averaging over all trajectories the quantities

(zl~i)(~ilz)/(~il~i) and (pl~i)(~alp)/(~il~i) respec-
tively.

The numerical simulations of the stochastic equations
were performed using the weak semi-implicit method of
integration, the stochastic equations being first rewritten
to include Stratonovich correction terms. The relative
merits of this integration technique have been discussed
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in depth by Drummond and Mortimer [22]. A boundary
condition was incorporated into the numerical algorithm
to ensure that trajectories did not escape the manifold.
Because the size of the noise terms scaled as g, large
ensemble sizes were required to obtain convergence for
the larger g values. In order to estimate the sampling
error associated with the finite limitation of ensemble
sizes, a calculation was performed with n subensembles
of N trajectories each. This enabled error bounds to be
placed on averages calculated [10].

V. NUMBER STATE CALCULATIONS

p„= (nlplm) (5.1)

An alternative method for obtaining the transient so-
lutions of the degenerate parametric oscillator is to solve
the master equation directly in a number state basis. For
systems where the mean photon number is not too large,
the number state method provides another technique for
solving the nonlinear system. Let us expand the density
matrix in the number state basis as

dp A

d7. 2
ai —ag) p

I

2

+—2aipa~ —ag aip pa

+ 2ai pai —alai p —pa~aqt t t (5 2)

Here the last term in square brackets (proportional to
pi in real time) represents the signal cavity loss. The
remaining terms proportional to A and g2 are the two-
photon pump and two-photon loss terms, respectively,
resulting from the coupling via the parametric nonlin-
earity to the adiabatically eliminated pump cavity mode.
The validity of this master equation has been investi-
gated rigorously by Mortimer and Risken [23], and the
correspondence to the stochastic equations (2.4) may be
established by expanding (5.2) in terms of the positive
P representation using standard procedures. The two-
photon loss and pump terms associated with the above
master equation are derivable from the model Hamilto-
nian (3.6). Now expanding over the number state basis
we may express the time evolution of the system as

The signal field of the degenerate parametric oscillator
in the limit where the pump is adiabatically eliminated
is described by the master equation

p = &; p m =~~ pnm)
D7

!
(77

where this supermatrix l:,"~ is given by

(5.3)

= —Qi(i —1) b,
"+ ' + —gj(j —1) 8,

"' + ——g(i+ l)(i+2) P,
' ——g(j +1)(j+2)b,". '.

(i +j]b,"'+ 2$—(i+. 1)(j+1) b,
" ' —g [i(i —1) +j (j —1)]h,". '.

+2/(i + 1) (i + 2) (j + 1) (j + 2) 8,". (5.4)

Here the Dirac b function is

[ 1 ifi=n, j=m
0 otherwise . (5.5)

which can be written in terms of the density matrix el-
ement p„(obtained by solution of the master equation
in the number state basis) as

P(z) = &zlplz)

P(p) = (plplp)

(5.6)

(5.7)

Rigorously, the master equation corresponds to a matrix
of infinite order. Technically, to allow numerical approx-
imations, one must establish a finite cutoff by putting a
finite limit on the number of number states used in the
basis. Such a procedure is practical for systems of small
or moderate photon number. The number of number
states needed as a basis is chosen so that the effect of
increasing the number of states is insignificant. We need
to determine the probability distribution functions P(p)
and P(z) in order to establish evidence for a superposi-
tion state. We may write

P(z) = ) ) (zln) p„(mlz),
n m

P(p) =) ) (pin)p-(mlp).

(5.8)

(5.9)

In Eqs. (5.8) and (5.9), (zln) and (pin) are given by

1

(zln) = (2"n!) ~ — exp ——i)z H„{z+g) i

( )
(5.10)

. „&n2'! '
(pin) = (2"n!)~ (—i)" —

l

exp —— H„
I ~g) i 2 g (~g)

(5.11)
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FIG. 2. Plot of the evolution of (a)
the momentum probability distribution P(p)
and (b) the position probability distribution

P(z) H.ere g = 2.5 with A/g = 10 and v is
the cavity decay time for the signal mode.
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FIG. 3. Plot of (a) the momentum proba-
bility distribution P(p) and (b) the position
probability distribution P(z) for the stochas-
tic simulations at times t = 0.0025m (dot-
ted), t = 0.0050' (dashed), and t = 0.01007'
(solid). Here g = 10.0 and A/g = 5.
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FIG. 4. Plot of (a) the momentum proba-
bility distribution P(p) and (b) the position
probability distribution P(z) for the stochas-
tic simulations at times t = 0.015m (dotted),
t = 0 0207 (.dashed), t = 0.025' (solid). Here

g = 5.0 and A/g = 5.
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FIG. 5. Plot of (a) the momentum proba-
bility distribution P(p) and (b) the position
probability distribution P(z) for the stochas-
tic simulations at times t = 0.050' (dotted),
t = 0.100' (solid), and t = 0.200' (dashed).
Here g = 2.5 and A/g = 5.
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FIG. 6. Plot of (a) the momentum proba-
bility distribution P(p) and (b) the position
probability distribution P(z) for the stochas-
tic simulations at times t = 0.125 (dotted),
t = 0.250 (solid), t = 0.500m (dashed). Here

g = 1.45 and A/g = 5.
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I"IG. 7. Plot of (a) the momentum proba-
bility distribution P(p) and (b) the position
probability distribution P(z) for the stochas-
tic simulations at times t = 0.1257 (dotted),
t = 0.2507. (solid), and t = 0.500' (dashed).
Here g = 1.35 and A/g = 5.

where q = "& and H„z is t e Hermite polynomial.
Hence once our master equation has been solved numeri-
cally in the number state basis to give p„, one can eas-
ily deternune the probability distribution functions P(p)
and P(z).

VI. DISCUSSION OF RESULTS

For a comparison with the oscillator results, we first
examine (Fig. 1) the quadrature phase amplitude distri-
butions P(z) and P(p) for the (ideal) quantum superpo-
sition state [y+). The plots for the ideal state ~y } are
similar, except for a shifting of the positions of the in-
terference maxima and minima which occurs in the P(p)
distribution. Figure 1(d) shows the momentum proba-
bility distribution P(p) calculated for a 50-50 classical
niixture of ~p~} and ~p ). In this case, no &inges are
observed. Also shown is the distribution for the steady-
state niixture given by (3.3), for A/gz = 100.

The results obtained for P(z) and P(p) upon simula-
tions of the stochastic equation (2.4) are shown in Figs.
2—7. These represent the predictions for the signal field
of the degenerate parametric oscillator in the adiabatic

1.5

~ ------ Mean

0.0

FIC. 8. Plot of the error estimate for the momentum prob-
ability distribution P(p). Here g = 2.5 and A/g = 5. The
time has been set to t = 0.1&. The thick curve corresponds
to the mean of 10 subensembles of 100000 runs. The thin
curves correspond to the standard error in this mean.

limit with p2 &) pq, where the signal is initially in a
vacuum state. As predicted &om analytical calculations
[17], the steady-state or long-time distributions for the
parametric oscillator reveal no interference &inges. The
formation of &inges with the evolution of the signal field
&om the vacuum state is clearly evident in Fig. 2, where

g = 2.5 and A/g2 = 10. The first minimum appearing
at approximately p = xg/~8% is consistent with the for-
mation of the state ~p+}. Also evident &om Fig. 2 is the
washing out of the interference pattern as the oscillator
evolves further. The ~y } state, which is generated &om

~p+} with the loss of a cavity photon, contributes more
significantly as time increases, and the &inges are lost in
this case after only O. lw. The long-time distribution com-
pares well with the probability distribution [Fig. 1(d)}for
the steady-state solution (3.3) predicted analytically for
the large g limit.

In order to establish the orders of g required to obtain a
clear &inge pattern, the P(z) and P(p) distributions are
shown in Figs. 3—7 for a range of g and for fixed A/g2 = 5.
For g greater than or of the order of 1.45, interference
&inges become clearly apparent in the transient evolu-
tion of the oscillator. The fringes (for fixed A/g2) be-
come more pronounced as g increases. This is consistent
with the earlier analytical conclusions, which were based
on calculations performed in the large g limit where the
strength of the two-photon nonlinearity is much greater
than the single-photon cavity loss rate. The results of
the simulations indicate the appearance of quite visible
&inges for g 5. Figure 8 shows typical error bounds
for the simulation method for g = 2.5 and A/gz = 5.
All results here have, however, also been obtained using
number state expansion of the master equation.

The plots in Figs. 3—7 are for relatively low photon
iiumber determined here by the magnitude of A/g . The
analytical results of kolinsky and Carmichael indicate

~y+} formed at arbitrary A/g for sufficiently large g. In
order to answer the question of what values of g are re-
quired to obtain superposition effects for higher A/g21.

we present in Fig. 9 results of an extensive numerical
calculation where g = 2.5 and A/gz = 100. The larger
A/g2 value represents a larger separation in phase space
of the two coherent states and hence is closer to a "true
Schrodinger cat." %e observe clear evidence of the for-
mation of [y+}, even for the relatively low g value of

g = 2.5. A similar &inge pattern is obtained if one con-
siders an 80-20 classical mixture of the ~p+} and [p }
states.
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FIG. 9. Plot of (a) the momentum proba-
bility distribution P(p) and (b) the position
probability distribution P(z). These calcu-
lations are plotted for g = 2.5, A/g = 100,
and t = 0.01r. We have also plotted (dotted
line) in (a) the pure superposition state ]pi).

VII. CONCLUSION

We have obtained numerical predictions for the evolu-
tion from a vacuum state of the intracavity signal mode
of the degenerate parametric oscillator. The solutions
are obtained in the adiabatic limit where the decay of
the pump cavity mode is much greater than that of the
signal. Above the semiclassical threshold, and for suffi-

ciently large A/g2, the probability distribution for one of
the quadrature phase amplitudes (z say) becomes clearly
bimodal. For sufBciently large g (g ) 1), the correspond-
ing probability distribution for the orthogonal quadra-
ture phase amplitude (p say) develops transient inter-
ference fringes. The experimental observation of such
fringes would be evidence for the formation of a quan-
tum superposition of two coherent states well separated
in phase space. Such states, for very large A/g2 values,
are analogous to the "Schrodinger-cat" states discussed
by Schrodinger in his famous paradox. Our results have
been limited for practical numerical reasons to values
for A/g2 of the order 100. Nevertheless the observation
of such superpositions of mesoscopically distinct states

would be a significant advance.
The analysis given by Carmichael and Wolinsky of sys-

tems with arbitrarily large A/g2 applies only to the large

g limit. Our complete solutions indicate that values of
g 2.5 will give clear interference fringes for A/g2 100.
In this case the probability distribution for the quadra-
ture phase amplitude z is clearly bimodal with minimal
overlap between the two peaks. Typical optical degen-
erate parametric oscillators to date have very small g
values, at least several orders of magnitude smaller than
those considered here. The nonlinearity to cavity loss
ratio is thus much too small to anticipate observation
of the &inges discussed here. Nevertheless our work
showing clear &inges to be predicted for g values not
much greater than 1 is encouraging. Systems obtain-
ing values of g of this order would not seem out of the
question. Such values may be obtainable using Joseph-
son nonlinearities [ll]. While the distinction in phase
space between the two states associated with z must (for
A/g2 = 100) be considered mesoscopic, the observation
of such fringes would be a first step towards the observa-
tion of true Schrodinger-cat states, where the two states
of z are macroscopically separated.
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