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We develop a birth-death model for a cavity-QED laser and analyze the dependence of the lasing
threshold on the fraction, P, of spontaneous emission directed into the laser mode. We define
threshold in terms of the Fano factor for the intracavity photon number. We emphasize the role
of P as a parameter characterizing the "system size" and show that the concept of laser threshold
is well-defined in the "thermodynamic" limit, P ~ oo. An ideal cavity-QED laser operates far
outside this limit and therefore, in contrast to a conventional laser, is not a threshold device. UVe

present numerical results showing how this difference affects the noise properties of the device.

PACS number(s): 42.55.—f, 42.50.Lc, 05.70.Fh

I. INTRODUCTION

There has been increasing interest over recent years
in ways of modifying the radiative properties of atoms
by changing the boundary conditions for the electro-
magnetic field [1,2]. Purcell initiated the area of study,
now known by the name cavity quantum electrodynam-
ics (cavity QED). He realized that coupling a radiative
transition to a resonant oscillator could increase, or en-
hance, the spontaneous emission rate of the transition [3];
in modern versions of the effect the resonant oscillator is
a resonant mode of an electromagnetic cavity. Kleppner
pointed out that the spontaneous emission rate could also
be inhibited by placing an atom in a cavity that is shorter
than half the transition wavelength, in which case no res-
onant cavity modes exist to carry the emitted photon [4].
The inhibition of spontaneous emission occurs for similar
reasons in photonic band gap materials —materials hav-
ing a dielectric constant with crystalline symmetry [5].
The first experimental observation of a modified spon-
taneous emission rate was performed by Drexhage, who
monitored the Huorescence from a monomolecular layer
of dye atoms placed on the surface of a mirror [6]. Sub-
sequently, several experiments have confirmed Purcell's
prediction of an enhanced spontaneous emission rate [7].
The possibility of inhibiting spontaneous emission has
also been experimentally confirmed [8].

Enhancement or inhibition of the spontaneous emis-
sion rate modifies the width of the spontaneous emission
spectrum. The shape of the spectrum may also be al-
tered. If an atom is placed in a cavity with suKciently
high q the spectrum may be split into a doublet —the
so-called "vacuum" Rabi splitting [9]. This splitting was
first observed for many atoms [10], and recently for one
atom (on average), by Thompson, Rempe, and Kimble

Another way to modify the electromagnetic environ-
rnent of an atom is to shine broadband squeezed light
onto the atom. Linewidth changes produced by squeezed
light have been discussed theoretically for atoms in &ee
space [12,13] and in cavities [14,15]. These changes have
not, as yet, been demonstrated experimentally.

As a result of all this work, it is now widely recog-
nized that the radiative lifetime of an atom is as much a
property of its environment as its heredity (the type of
atom it is), and attention has turned to applications of
cavity-QED efFects. One proposal concerns the develop-
ment of lasers. A laser "turns on" when the round-trip
gain is greater than the round-trip loss. As the gain
increases, so does the rate of spontaneous emission into
nonlasing modes (due to the increased number of excited-
state atoms). Any reduction in this spontaneous emission
rate lowers the pump power required to make the laser
lase. It has been proposed, therefore, that inhibiting the
spontaneous emission into modes other than the lasing
mode could lower the threshold pump power in semicon-
ductor lasers [16]. The rates of spontaneous emission into
lasing and nonlasing modes are conventionally stated as
fractions, P and 1 —P, of the total spontaneous emis-
sion rate. According to a rate equation analysis, when

P = 1 the mean photon number increases linearly with
pump power; the threshold pump power apparently van-
ishes, giving rise to the name "thresholdless laser, " or
"zero-threshold laser" [16—18]. We will refer to devices
approaching this ideal limit as cavity-QED lasers.

For a conventional seiniconductor laser P is a number
on the order of 10 [19]. For gas lasers, P may be as
small as 10 [20—23]. A group at ATILT Bell Laborato-
ries recently constructed microdisk semiconductor lasers
with P values as high as 0.1 [24], and it has been proposed
that cylindrical microcavities could be constructed with
a P of 0.7 [25]. In atomic systems, P values in the range
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0.3—0.5 have been achieved at optical &equencies [26,27],
although lasing in these systems has not been reported.
At microwave &equencies, P values very close to unity
have been realized [28—31].

This paper concerns the statistical mechanics of cavity-
QED lasers. It is organized around a discussion of the
laser —phase-transition analogy [32—34] and the related is-
sue of laser threshold. The existing literature on thresh-
oldless lasing presents a confusing picture of what hap-
pens to laser threshold in the cavity-QED limit. For ex-
ample, when describing their experiments with microcav-
ity dye lasers, DeMartini and co-workers speak of a "zero-
threshold laser, " suggesting a conventional laser thresh-
old translated down to zero pump power [35]. These
authors carry over the standard laser —phase-transition
analogy, describing the behavior in their system as "an
order-disorder transition at an extremely high value of
the critical temperature. " Bjork and Yamamoto, on the
other hand, define a nonzero-threshold pump power even
for P = 1. In place of the conventional definition, they
propose the pump power at which the mean stimulated
and spontaneous emission rates into the lasing mode are
equal (equivalently when the intracavity photon number
is equal to unity) [36—38]. Our view is that such am-
biguity is unnecessary. The notion of a "threshold" is
grounded in a recognizable physical process (a point to
which the designers of nuclear reactors would no doubt
attest). The small ambiguities of definition that arise
&om the lack of strict discontinuity in real systems need
not be magnified to the level of confusion one encounters
in descriptions of thresholdless lasing.

We recall the fact that in equilibrium statistical me-
chanics, phase transitions, and the associated thresholds,
draw their rigorous definition &om the thermodynamic
limit. Starting &om this view, it is not possible to ex-
tend the phase-transition analogy (and the notion of laser
threshold) to cavity-QED lasers without first identifying
how one will take the thermodynamic limit. There are
many versions of the microscopic statistical theory of con-
ventional lasers in existence [21,22,39—43]. We show Chat
in this theory the "thermodynamic" limit may be ex-
pressed in the form n, i ——P -+ oo, where n, i is the
saturation photon number [43]. It follows that cavity-
QED lasers operate, by definition, far outside the "ther-
modynamic" limit; P = 1 is so far from this limit it is
misleading to think of the ideal cavity-QED laser as a
threshold device at all—it truly is a thresholdless device.
The issue is not entirely semantic. The statistical proper-
ties of conventional laser light are strongly in8uenced by
the phase-transition nature of the laser "turn on, " which
guarantees they follow a generic, or universal form. This
form does not transfer, even approximately, to cavity-
QED lasers. We illustrate this fact using a birth-death
model invented as a generalization of the standard laser
rate equations. To keep the treatment simple we deliber-
ately avoid the mathematical detail of a full microscopic
theory. A more thorough microscopic approach could be
taken by extending models that have been used to study
one-atom lasers [44].

In Sec. II we construct the birth-death master equa-
tion for a cavity-QED laser, building upon the familiar

semiclassical and rate equation theories of the laser. We
review some results &om the statistical theory of conven-
tional lasers in Sec. III, and apply them to the definition
of laser threshold. We discuss the changes that take place
in the cavity-QED limit (outside the "thermodynamic"
limit). In Sec. IV we illustrate this discussion with re-
sults computed kom the birth-death master equation. A

summary of the work and its conclusions is given in Sec.
V.

II. THREE LASER THEORIES

Laser theories may be developed with various levels
of sophistication. The discussion of cavity-QED lasers
has been carried out, for the most part, using rate equa-
tion theories [17,36]. In addressing the question of laser
threshold it is helpful to begin at a lower level, with the
semiclassical laser theory of Lamb [45]. We consider a
single-mode theory based on a four-level homogeneously
broadened gain medium. The lower level of the lasing
transition is rapidly depleted so that to a good approx-
imation it remains empty. The laser mode and lasing
transition are assumed to be exactly resonant. Math-
ematically, the model is defined by the Maxwell-Bloch
equations (in a &arne rotating at the laser frequency):

0! = —KO! + gV)

v = —(pp, /2)v+ gaN,

N = pN + I' ——g(av' + a'v).

(la)
(lb)

(lc)

a is the complex amplitude of the laser field (in photon-
number units), N is the number of carriers (atoms in the
upper level of the lasing transition), and v is the gain-
medium polarization amplitude summed over all carriers;
2ir, is the photon decay rate, p is the spontaneous emis-
sion rate to modes other than the laser mode, pi, is the
gain linewidth (full width at half-maximum), and g is the
dipole coupling constant. The steady-state solutions to
Eqs. (la)—(lc) are given by

a(APiai + A —PP) = 0,

N =P /(1+Pea['), v = (2g/~, )aN,

where A, P, and P are dimensionless parameters:

(2a)

(2b)

P = I'/p, P = 4g'/Vi V.

In a semiconductor laser carrier-carrier scattering damps
the polarization on a subpicosecond time scale. The
polarization may therefore be adiabatically eliminated.
Then Eqs. (la)—(lc) are replaced by equivalent rate equa-
tions:

q 'n= An+PnN, —

~ 'N = N+P —PnN, —
(4a)

(4b)

where n = ~a~ is the photon number.
The semiclassical theory has the status of a mean-6eld

theory in statistical mechanics. It neglects Buctuations
and provides the description of the laser approached by
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where

q-'n = An+PnN— +PN,
N = N+ P —Pn—N,

V =
W + 4a'/V~

(Sa)

(Sb)

and we have new dimensionless parameters:

the full quantum statistical theory in the "thermody-
namic" limit. The theory is used in this role by Di-
Giorgio and Scully to compare with the Weiss molecular
field theory for the ferromagnet and hence establish the
laser —phase-transition analogy [Eqs. (7) and (10) in Ref.
[32]]. Note that the order parameter in the laser —phase-
transition analogy is the complex field amplitude o. which
enters the semiclassical theory, not the photon number n
which appears in rate equation theories. This can be ap-
preciated by observing that the symmetry-breaking tran-
sition in the laser example, analogous to the choice of a
magnetization direction in the ferromagnet, is the adop-
tion above threshold of a definite phase for the electric
field. Of course, in practice, this phase diffuses due to
Quctuations, giving the laser a nonzero linewidth. Thus
the semiclassical theory is an approximate theory for real
lasers, which do not strictly operate in the "thermody-
namic" limit. It is nevertheless fundamental; it describes
the "thermodynamics" of the laser.

The rate equation theory usually used to analyze
cavity-/ED lasers [17—19] is not, in this sense, funda-
mental. On the other hand, it is more accurate than the
semiclassical theory, since it includes at least some effects
of the fiuctuations. The rate equation theory generalizes
Eqs. (4a) and (4b) by including spontaneous emission
into the laser mode. The formal calculation involves an
adiabatic elimination similar to that used to derive Eqs.
(4a) and (4b); it must be carried out, however, at the
level of operator equations. Setting details aside, the fi-

nal outcome is the replacement of the photon number n
by n+ 1 in the stimulated emission term PNn. Thus we

arrive at the rate equations

and

A = 2~/p, P =r/~, (7a)

/3 = 4g /Was = 4g'/Va

V+ 4e' va' (7b)

A and P are the cavity decay rate and pumping rate,
respectively, measured in units of the spontaneous emis-
sion rate; P is the branching ratio which specifies the
&action of spontaneous emission directed into the laser
mode. The steady-state solutions to Eqs. (Sa) and (Sb)
are

n = (2AP)
' —(A —PP) + g(A —PP)'+ 4AP'P,

N = P/(1+ Pn). (Sb)

Since n cannot be negative, the positive sign is to be
taken in &ont of the square root.

By including the spontaneous emission term, the rate
equations (5a) and (5b) account, partially, for quantum
fiuctuations, as we see explicitly in the next section. They
do not, however, constitute a statistical theory. The rate
equations tell us about the intensity of the emitted light.
They cannot, however, tell us what kind of light is emit-

ted; they cannot tell us about the Huctuations in the
photon number. In order to obtain this information we

need a theory that deals with probabilities. The simplest
probabilistic theory may be written down directly from
a birth-death model invented to reproduce Eqs. (5a) and

(Sb). The model is illustrated schematically in Fig. l.
It is essentially a translation of Einstein rate equation
theory into probabilistic language for a field with uncer-
tain energy density proportional to n. The pn~ping is
included in a form that produces Poisson fiuctuations in
the carrier number. Mathematically, the model is de-

scribed by a master equation for the probability p„~ of
finding n photons in the laser mode and N carriers:

p» N = —A[np» Q (n + 1)p»+y Q] —/3[nNp» N —(n —1)(N + 1)p» y N+y] /3[Np» N —(N + 1)p» ],,Q+],]

+P[p» N 1 —p»N] —(1 —/3) [Np. » x —(N + 1)p» m+x]. (9)

Prom the master equation the average photon and carrier
numbers satisfy

~ 'n = An+ Pn(N —N—p) + PN,

N = N+ P —Pn(N ——Np),

(1la)

(lib)

(n) = —A(n) + P(nN) + P(N),
q '(N) = —(N)+P —P(nN).

(10a)

(lob)

These reproduce the rate equations (Sa) and (Sb) if we

make the factorization (nN) = (n)(N).
The model defined at the beginning of this section is

designed to realize the features of the ideal P = 1 cavity-
/ED laser, the device which shows thresholdless lasing.
A more general (and realistic) model of a semiconductor
laser must include background absorption. In this case,
the rate equations (5a) and (5b) are replaced by [17,36]

where No is the carrier number at transparency. The cor-
responding master equation has the term PNp[np-
(n+ 1)p»+z ~ q] added to the right-hand side of Eq. (9).

III. LASING THRESHOLD

The rate equation solutions for the steady-state pho-
ton number and carrier number [Eqs. (Sa) and (Sb)] are
plotted in Fig. 2 as a function of the p»mp parameter P
for various values of P, reproducing the results of previ-
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N+1

N-1

P (N+I)(

N+1) 0
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I

I

n ~ i1 (a+1)0 =
l~
I

I

()-P))v I

I

ous authors [17—19,36,38]. With increasing P the curves
approach the limiting results

n = P/), N = )P/() + P).

Thus, when P = 1, the steady-state photon number in-

10

FIG. 1. Schematic representation of the birth-death pro-
cess considered in the derivation of Eq. (9). The sketch shows
the transition rates into and out of the state with photon
number n and carrier number N.

creases monotonically with P.
Cavities with larger Q (lower A) have larger slope e%-

ciency, but not larger output power. In units of photons
per atomic lifetime, the output power is given by the
product of the photon number n and the dimensionless
decay rate A. Therefore, for P = 1 the output power is
equal to P and exactly balances the input power.

For the typical P values of conventional semiconductor
lasers ( 10 s [19]) there is a clear kink in the input-
output curve which may be used to define laser threshold.
The progression of the kink to lower pump powers with
increasing I9, culminating in its absence at P = 1, leads
to the concept of thresholdless lasing. It is apparent from
the figure, however, that as the location of the kink moves
towards P = 0, it becomes less and less well-defined. It is
not at all clear, therefore, that one can define a threshold
all the way down to P = 0. Hence the confusing picture
mentioned in the introduction:

(i) DeMartini and co-workers speak of a "zero-
threshold laser" [35].

(ii) Bjork and Yamamoto set the threshold pump
power where the mean stimulated and spontaneous emis-
sion rates into the laser mode are equal [36—38].

(iii) Definitions of laser threshold based on kinks in
other quantities, such as the variation of the degree of
polarization with pump power, are also proposed [46].

To clarify the situation, in this section we discuss what
the three theories introduced in Sec. II say about laser
threshold. Our emphasis is on the importance of fiuctu-
ations, and we bring the statistical aspects out explicitly
by using the Fano factor,

10
E = (b,n)z/(n), (b,n) = (n ) —(n), (13)

10

10
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P
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as the signature of threshold behavior. The Fano factor
defines a precise threshold pump power in the "thermo-
dynamic" limit p -I oo, and a practically meaningful
threshold when P i is large but not infinite. It shows also
that the notion of laser threshold is meaningless when

P = 1. In this conclusion we disagree with Jin et al. ,
who have recently proposed that the Pano factor always
defines a finite threshold [47].

We begin the discussion by noting from Fig. 2 that as P
increases, the kink defines threshold with fewer and fewer
photons in the cavity and smaller and smaller numbers
of carriers. Hence it would appear that, with increasing
P, quantum fiuctuations must play a larger and larger
role. This conclusion follows in a more quantitative way
from the equations. Equation (Sb) gives the steady-state
solution for the saturated carrier number ¹ This equa-
tion is central to the "thermodynamic" properties of the
laser because it provides the nonlinearity which underlies
the laser phase transition. From it we see that P i has
the significance of a saturation photon number; we may
rewrite Eq. (Sb) as

FIG. 2. Steady-state solutions to the rate equations (5a)
and (5b) for A = 1 and (i) P = 10, (ii) P = 10, (iii)
P = 10, (iv) P = 10, (v) P = 10, (vi) P = 10, and
(vii) p = 1.

N= With n~~I = p1+n/n, , ' (14)

Even without a statistical analysis it is apparent from
Eq. (14) that the saturation photon number determines
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the importance of Buctuations. The saturation photon
number provides the measure of "system size" which
governs the scaling between extensive and intensive vari-
ables, hence determining the typical numbers of quanta
present in the operating device. Thus it is the intensive
variable

sat (15)

not the extensive variable n, which controls the gain sat-
uration and the operating conditions of the laser above
and around threshold (in the nonlinear regime). Stated
another way, the nonlinearity which produces threshold
behavior in a laser depends on the electromagnetic en-

ergy density seen by the gain medium, not on the total
energy content of the laser mode. The importance of fiuc-
tuations then follows &om the photon number needed to
reach energy densities which "turn on" the nonlinearity.
This number depends on n, q. If n, q is large (P is small)
typical photon numbers are large and the relative Buc-
tuations are small; if n, t, is small (P is large) typical
photon numbers are small and the relative Buctuations
large.

From these observations we see that the cavity-QED
limit, P ~ 1, is unavoidably tied to increased quan-
tum fiuctuations; the limit moves in the opposite direc-
tion to the "thermodynamic" limit, n, q

——P ~ ~ oo.
The larger Buctuations convert the "thermodynamic, "
threshold behavior of conventional lasers, into a smooth,
thresholdless evolution in the properties of a nonlinear
noise process. Unexpected noise properties may arise as
demonstrated in the cavity-QED limits of optical bista-
bility [48—51] and parametric oscillation [52].

The argument based on Eq. (14) is a qualitative
one. For something more quantitative we must turn
to the full quantum statistical theory. For conventional
lasers there are many versions of this theory in existence
[21,22,39—43], and there is no need to reproduce their
detail here. We simply review how the simple theories
of Sec. II are tied together by the quantum statistical
approach.

Quantum statistical treatments of the laser fall into
two categories: phase-space treatments, which aim at
a description in terms of a Fokker-Planck equation
[21,22,41—43], and treatments built around density ma-
trix equations [39,40]. The phase-space approach is more
suitable for our purpose because it gives a clear view of
the "thermodynamic" limit. The theory assumes that
n, q is large (P is small) and establishes the "thermody-
namic" equations underlying the laser —phase-transition
analogy in the limit n, t, ——p -+ oo. The assumption of
a large saturation photon number justi6es a perturbative
calculation: a linearization of Buctuations below thresh-
old, lowest-order nonlinear treatment of Buctuations at
threshold, and quasilinearization above threshold. Tech-
nically, an expansion is performed in inverse powers of
n, t. By this device a separation is made between a set
of "thermodynamic, " or mean-value equations describ-
ing nonlinear deterministic physics, and a Fokker-Planck
equation which describes small (on the scale of n, q) fiuc-
tuations about the mean.

The "thermodynamic" equations are those of the semi-
classical theory [Eqs. (la)—(1c)]. These equations yield
the most commonly quoted de6nition of laser threshold.
The definition follows from Eq. (2a), which has two so-
lutions for the steady-state photon-number density:

n = O and n = (1 P)—(P/Pg„—1),

where the second solution holds above the threshold
pump power

P;„'„=A/P = A/P.

We may write Eq. (17a) in the alternative form

PZ,„=(1 —P)P&

where

pea. = &/p;

(i7a)

(17b)

n = i —(1 —P/P, I,„)

+g(l —P/Pg/, ,„)z + 4PP/Ptg„

we may take the "thermodynamic" limit in the form p -+
0, A -+ 0, with Pqh,„——A/p finite. In this way we recover
the semiclassical solutions (16) (for P -+ 0).

Outside the "thermodynamic" limit, Eq. (19) gives cor-
rections due to Buctuations. Thus, at the "thermody-
namic" threshold, P/Ptg = 1, we find

+a. = p'Z/2. (2o)

expanding the square root to lowest order, below and
above, but not too close to threshold (~P/Pqg„— 1~ &&

P~i2 —„-'~'), w, find

P/&a~.
(21a)

note that P;&„-+ Pqq„ in the "thermodynamic" limit.
At the semiclassical threshold the round-trip stimulated
emission gain is equal to the round-trip loss. Above
threshold, the gain exceeds the loss and the solution
n = 0 becomes unstable. Thus in the "thermodynamic"
limit there is a single stable steady-state solution for the
photon-number density. The solution changes contin-
uously as a function of P with discontinuous slope at
P/Ptg„= l.

Equation (17b) provides the reason for speaking of a
"zero-threshold" laser when P = 1 [35]. It is derived,
however, from "thermodynamic" equations, and there is
no justification for applying it outside the "thermody-
namic" limit.

Superficially, the rate equations (5a) and (Sb) com-
pletely change the picture of laser threshold. They give
one positive solution for n which varies continuously as a
function of P with continuous slope [Eq. (Sa)]. We must
remember, however, that these equations are not "ther-
modynamic" equations. They do, on the other hand,
contain the "thermodynamic" limit. If we rewrite Eq.
(Sa) as
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n) ——(P/P, s„—1) + P
P/Pg p,„

P pt,h„—1
(21b)

1 1 P/Pgg~ + 1

4 P/P „—1 2P/P, „
It follows from Eqs. (15) and (20) that nba„= P

a number much larger than unity in a conventional laser.
The notion that the laser "turns on" when the rate
of stimulated emission exceeds the rate of spontaneous
emission is therefore clearly a misnomer. From Eq. (21a),
the stimulated emission rate already greatly exceeds the
spontaneous emission rate below threshold, the rates be-
ing equal at the pump power

Compared with the rate equation results, in these ex-
pressions the photon number at threshold is smaller by a
factor g2/z, and above threshold the incoherent contri-
bution n) —(P/PqI, „—1) is smaller by a factor 1/4. To
characterize the photon-number Huctuations we calculate
the Fano factor [Eq. (13)]. The quantum statistical the-
ory gives the following results: at the "thermodynamic"
threshold, P/Pth, „=1,

P„g ——Pga„(1+p)/2, (22) +~a, = p "' (v'~/2 —v'2/~Ii ' (25)

one-half the threshold pump power in the "thermody-
namic" limit. A more accurate description is that the
turning on of the laser is caused by an explosion of stim-
ulated emission, an explosion held in check below thresh-
old by the cavity loss. Since the photon number increases
smoothly with P, it is important to consider the inten-
sive variable n in the "thermodynamic" limit in order to
recognize the explosion. In the "thermodynamic" limit
n is zero for P/Pg, „(1; it is also zero for P/Pqh, „=1,
even though n is now infinite [Eq. (20)]. For P/Pq~, ) 1,
n becomes nonzero [Eq. (21b)]. This is the explosion.

For P = 1, Eq. (22) gives P„q ——Pqs„— This p.ro-
vides a rationale for the position of Yamamoto and co-
workers, who define the threshold pump power of cavity-
/ED lasers by the condition that the mean stimulated
and spontaneous emission rates into the laser mode are
equal [36—38]. The position has two arguments against it,
however. As noted, the "thermodynamic" threshold oc-
curs at twice the pump power defined by the condition of
Yamamoto and co-workers; also, as before, the proposal
arbitrarily extrapolates a "thermodynamic" concept far
outside the "thermodynamic" limit.

We have now seen how the rate equations (5a) and
(Sb) are connected to the "thermodynamic" laser equa-
tions. What is their connection to the full quantum sta-
tistical theory, including QuctuationsY As was noted in
Sec. II, adding spontaneous emission at the level of rate
equations gives only a partial account of the Buctuations.
Some of the results we have derived from Eq. (19) are not,
therefore, correct. More important for our purposes is the
fact that the rate equation theory provides no informa-
tion about the photon-number variance. The behavior
of this quantity as a function of P/P&&„provides a par-

- ticularly clear view of the threshold region and how it
changes with P.

The results we now quote were obtained &om the
phase-space version of the quantum statistical theory
[53]. They could be reproduced, however, from the birth-
death master equation (9).

In place of Eqs. (20)—(21b), the full quantum statistical
theory gives

below and above, but not too close to threshold

(I PIP~.- —1I » P'" = n..'t")

P/Pts„
1 —P/PCR, „'

1 P/Pgg„+ 1

P/Pt p,„—1 2P/Pt, p,„

(26a)

(26b)

+ pl/2

The behavior of the Fano factor as a function of pump
power is illustrated schematically in Fig. 3. In the "ther-
modynamic" limit it shows a singularity at threshold:
well below threshold, where the field is in a weakly ex-
cited thermal state, I'& ——1; well above threshold, where
the field is in a coherent state, F& —— 1; at thresh-
old, I' ~ oo. Conventional lasers do not strictly op-
erate in the "thermodynamic" limit. Nevertheless, with
P 10 —10 (n, q 10 —10 ) the Fano factor
shows a well-localized peak in the vicinity of the "ther-
modynamic" threshold. In practical terms, a threshold
pump power can still be defined with a relative precision
of at least a few tenths of a percent. If, however, we ex-
trapolate the P ~ peak width to P = 1, the notion of
a threshold pump power becomes meaningless; the un-
certainty in locating Pqg„becomes as large as Pzp„ itself;
moreover, the sense of dramatic change (singular behav-
ior) that is carried by the word "threshold" clearly no
longer applies.

Figure 3 gives an unconventional view of laser thresh-

and

n,„„=p'~2/2/n. , (23) 0.5 1.5

P/Pgi, „
p p/p (24a) FIG. 3. Schematic variation of the Fano factor with pump

power for a conventional laser (large n, ~ and small P).
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old. Historically, it has been the practice (with one or
two exceptions [54]) to characterize the photon-number
fluctuations by the reduced factorial moment (n(n—
1))/(n) 2 —1 = (E —1)/(n) [20,22,55—57]. This quan-
tity decreases monotonically through the threshold re-
gion, &om unity below threshold to a number on the
order of P i above. We use the Fano factor rather than
the reduced factorial moment because it scales with sys-
tem size in the same way as the fluctuations in the or-
der parameter. As stated earlier, the order parameter
in the laser —phase-transition analogy is the complex field

amplitude a = cx/n, i, not n = n, /n, i. From the full
quantum statistical theory, fluctuations in the order pa-
rameter scale below, at, and above threshold, according
to the scheme [43]:

I»l& - (l~l) & - /3"

l&~l« - (l~l)«. -&'"

(Alai)) P' and (lal)) - 1.

1.2

0.8

0.6

2 4 6 8 10

Thus the fluctuations increase at threshold, by a factor
of P x~4, and decrease again above threshold as the laser
chooses a well-defined phase and the magnitude of the
order parameter acquires a nonzero value. The photon-
number fluctuations are related to the fluctuations in the
order parameter by

0.4

0.2

0
0

(b)

10

(&n)& - (n)& - (I»l&)'-/3

(& ) a. - (n) a. -(l&
l x,)'-P'~',

(&n)) - (l&l))(&l~l)& -&"' and (n) & -1.
(28)

Note that above threshold, n is calculated from [(lcxl) & +
(b, ]xx])&]2. It follows from Eqs. (27) and (28) that PF
scales in the same way as the square of the fluctuations
in the order parameter.

The system size expansion is not valid for P = 1. We
have therefore solved the birth-death master equation (9)
numerically to illustrate what happens in the cavity-QED
limit.

IV. NUMERICAL RESULTS

Since the birth-death master equation only reproduces
the rate equations under a factorization assumption, it
is not necessary that the exact averages for the steady-
state photon number and carrier number agree with Eqs.
(8a) and (Sb). Figure 4 shows the behavior of these av-
erages as a function of the pump power P for P = 1 and
A = 1. We see that the average photon number does
agree with the rate equation result, but the average car-
rier number difFers substantially throughout the satura-
tion region; although it eventually saturates at the value
given by the rate equations ((N) = A = 1). It is clear
from Eqs. (10a) and (10b) why the average photon num-
ber agrees with the rate equation result. For P = 1, Eq.
(10b) may be solved for (N) + (nN) = P; Eq. (10a) then
gives (n) = P/A. The same procedure carries through

FIG. 4. Average photon and carrier numbers in the steady
state as a function of pump power for P = 1 and A = 1. The
solid lines are the results obtained by numerical solution of
the truncated birth-death process. The dashed lines are the
rate equation results plotted from Eqs. (Sa) and (Sb). For the
average photon number the two sets of results overlap.

whether or not the factorization (nN) -+ (n) (N) is xnade.
Of course, physically, the linear relationship (n) = P/A
must hold for energy to be conserved.

The disagreement for the average carrier number is an
indication of the importance of fluctuations in the cavity-
QED lixnit. More precisely, it indicates the importance of
correlations between photon-number and carrier-number
Huctuations —(nN) g (n) (N). Correlations exist be-
cause fluctuations on the scale of just one photon cause
significant carrier saturation when P = 1/n, i ——1; such
fluctuations have no afFect on the carrier number in the
"thermodynamic" limit. Focusing on the fluctuations, in
Fig. 5 we plot the photon-number distribution for vari-
ous values of the pump power P. Qualitatively, the dis-
tribution undergoes a similar evolution with increasing
pump power to that observed in the threshold region of
a conventional laser [22,39,43,55,57,58]. The similarity is
superficial, however, and does not amount to a transla-
tion of the conventional laser threshold to either P = 0
[35] or P = 1 [36—38]. Of the two suggestions, perhaps
the second receives the stronger support &om the figure.
In a conventional laser, at threshold the photon-number
distribution has zero slope at n = 0 [39,43]. The distri-
butions plotted in Fig. 5 do evolve to the zero-slope form
at some nonzero pump power. The condition is not met,
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FIG. 5. Photon-number distribution for P = 1, A = 1, and
P = 0.5 (solid circles), P = 1.0 (squares), P = 1.5 (dia-
monds), and P = 2.0 (open circles).

FIG. 6. Variation of the Fano factor with pump power for
P=1 andA=1.

however, at P = 1, but somewhere between P = 1 and
P = 1.5. Moreover, there is nothing of the sudden change
associated with a threshold phenomenon in Fig. 5; if, for
the sake of argument, a "threshold" is defined to lie at
P = 1, the change in the photon-number distribution is
far less dramatic over a range extending &om 100'%%uo below
"threshold" to 100'%%uo above "threshold, " than it is over
a range within 0.1% of threshold in a conventional laser
(»I

With more thought it is not even reasonable to favor
a threshold at, or near, P = 1, over one at P = 0 on the
basis of Fig. 5. Consider the possibility that the laser Geld
is in a coherent state for all pump powers. The photon-
number distribution is then a Poisson distribution, which
evolves &om a monotonically decreasing distribution to
a peaked distribution, passing through a form with zero
slope (po

——pq) when (n) = 1. For the parameters of
Fig. 5, the zero slope condition would be met at P = 1;
but there would clearly be no justification for speaking
of a threshold at this pump power. The use of the zero-
slope condition to locate threshold in a conventional laser
relies on the fact that the mean photon number is large
near threshold. Then something as simple as the slope at
n = 0 can distinguish a Bose-Einstein distribution (below
threshold) &om a broadened Poisson distribution (above
threshold) .

All of these comments spring &om the fact that the
threshold concept becomes meaningless once the Quctu-
ations about "thermodynamic" values, caused by a finite
system size, are no longer confined to a well-defined tran-
sition region, as they are in Fig. 3. For comparison with
Fig. 3 we plot the Fano factor as a function of pump
power for a P = 1 cavity-QED laser in Fig. 6. A peak
still exists, but it is very broad, and it rises a mere 20%
above the background, a rather insignificant remnant of
the divergence that occurs in the thermodynamic" limit.
The peak appears at P —2.5. This is different &om the
pump power at which the photon-number distribution
has zero slope at n = 0 (Fig. 5), and different again &om
the pump power at which the average photon number is
equal to unity. In fact, the location, width, and height
of this peak changes with the cavity decay rate A. This
is shown in Fig. 7, where we plot the Fano factor as a

1.03

1.02

1.01

1 I I I I

0 0.2 0.4 0.6 0.8 1

2.4

1.6

0.8 I I I I

20 40 60 80 100
P

FIG. 7. Variation of the Fano factor with pump power for
P = 1 and (a) A = 0.1, (b) A = 10.

function of pump power for cavity decay rates that are
ten times smaller and ten times larger than in Fig. 6.
The peak position does not move in direct proportion to
A, as does the thermodynamic" threshold. In Fig. 7,
peaks appear at P 1.9A and P 4.5A, both different
&om the position P —2.5A in Fig. 6. The trend in the
peak height, moving &om larger to smaller values of A,

appears to be approaching a limit in which I" = 1 for
all pump powers. This good-cavity limit may be under-
stood by making an adiabatic elimination in the master
equation (9). For P = 1 and A « 1, the pumping tran-
sitions (vertical arrows in Fig. 1) reach an equilibrium
with the spontaneous and stimulated emission (diagonal
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arrows in Fig. 1) in a time much shorter than the cavity
decay time. Then, setting

Pp, w i —= (n+ 1)Np, w

in Eq. (9), and summing over carrier numbers, we obtain
the photon-number master equation

~ 'p-= —A[ &- —( +1)p-+ ]+P(p- —-&-) (3o)

in Eq. (12). We are able to solve for (n) exactly because
only one moment other than (n) appears in Eqs. (10a)
and (10b); inoreover, this moment —((n+ l)N) enters
both equations and can therefore be eliminated between
them. A similar simplification occurs in the equations
for second-order moments which enables us to derive a
simple expression for the Fano factor. From the master
equation (9) we obtain the moment equations (P = 1)

Equation (30) describes a damped cavity mode pumped
at the constant rate pI' = I'. In steady-state it is solved
by the Poisson distribution

(2p) —(n(n —1)) = —A(n(n —1)) + (n(n+ l)N),
dt

(P/A)"
n! (31)

(2p) —(N(N —1)) = —((n+ 1)N(N —1)) + P(N),
dt

(35b)
Using Eq. (29), the full distribution, over photon and
carrier numbers, is ~

—' —((n —1)N) = —A(nN) + ((n+ 1)N(N —n))dt

(32) +P(n —1). (35c)

where p~~„ is the conditional distribution

[P/(n+ 1)1" —p/( +i}
PN~n (F —1)/A = (N)/N„—1. (36)

Solving these equations in the steady state and using Eq.
(34), we find the relationship

(n) = n„, (N) = N„—((nN) —n„N ),

where n„and N„are the quantities denoted by n and %

Apparently the goo c(-cavity limit produces the ideal
thresholdless laser. Not only does the average photon
number grow linearly with the pump power, the photon-
number distribution is also a Poisson distribution. The
appearance may be misleading, however. Without ana-
lyzing the phase Quctuations, we cannot conclude that
the field is in a coherent state. Perhaps the direct pump-
ing of the cavity mode randomizes the phase, in which
case this good-cavity device produces light with the cav-
ity linewidth; then, if it is a laser at all, it is a laser whose
hnewidth is dominated by a power-independent compo-
nent [60].

Semiconductor lasers operate in the bad-cavity limit.
Therefore the super-Poissonian statistics of Fig. 7(b) are
more relevant to these devices than the Poisson limit
suggested by Fig. 7(a). Typical values of A are 10s

[36,38,47]. For A as large as this, Figs. 7(a) and 7(b)
could be extrapolated to a relatively high peak. Perhaps
the Fano factor then reveals a well-defined transition re-
gion in a similar fashion to Fig. 3; but with an inverse
power of A acting as the small parameter in place of P ~2.

To check on this possibility it would be useful to have an
approximate solution for the bad-cavity limit analogous
to the good-cavity solution given by Eqs. (31)—(33). Un-
fortunately, we are not able to find such a solution unless
P/A « 1, and this restriction excludes the range of pump
powers over which the Fano factor peaks. Some headway
can be made, however, by working directly with the mo-
ment equations.

We have noted that for P = 1 the rate equation solu-
tion for the mean photon number is exact (Fig. 4); thus,
from the equations for first-order moments [Eqs. (10a)
and (10b)], we have

This does not provide an exact solution for the Fano fac-
tor since (N) is still undetermined. The dependence of
I" on A can, however, be understood with the help of Eq.
(36).

In the goad-cavity limit, the distribution (32) gives

(N) = A(1 —e i"). (37)

we then find (A « 1)

+ / (1 —.-~~") —1.
P/A

According to this expression (E —1)/A rises to a max-
imum, (I" —1)/A = 0.3, at P/A = 2. For large P/A,
it approaches zero with (I" —1)/A A/P. This behav-
ior agrees well with the numerical results of Fig. (7a)
(A = 0.1). The trend with increasing A follows from Eq.
(36). Numerical results show that (N) approaches N„as
A increases. The approach is nonuniform with respect
to the variable P/A, proceeding most rapidly where the
difFerence between (N) and N„ is largest. It follows that
the peak in (F —1)/A becomes both smaller and broader
as A increases. The development is illustrated in Fig. 8.

Figure 8(b) shows that the peak in E actually grows
rather slowly with increasing A. At A = 10, the max-
imum value of the Fano factor is I" = 6. By plot-
ting logF versus logA, for large A it appears that
I'~~~ = 0.6A / . At A = 10 this gives I'~~~ 19. We
can also estimate how the width of the peak changes for
large A. Since (N) saturates faster than N„[Fig. 8(a)],
Eq. (36) tells us that (F —1)/A approaches zero asymp-
totically as A/P. The peak therefore falls to half its max-
imum value when F A /P 0.3Ai~z. This condition
gives a peak width, (AP)/A 3.3A ~ . Finally, we esti-
mate that the peak maximum occurs at a pump power
slightly less than P/A = (b,P)/A 1.6Ai~2. —



PHOTON STATISTICS OF A CAVITY+ED LASER: A. . . 4327

(i) (ii) (iii)
1.0—

0.5-

0.0 I

10

P/A

I

15

(a)

(b)

20

Jin et al. also use Scully-Lamb laser theory, which adia-
batically eliminates the atomic variables. This approach
cannot address the A dependence contained in the master
equation (9).

A strong model dependence is actually to be expected
in the cavity-/ED limit. This is just one more indi-
cation of the failure of the laser laser —phase-transition
analogy. Results obtained from conventional laser theo-
ries (P (( 1) do not depend on the details of the model
used, a consequence of the universality associated with
phase transitions. But there is no phase transition in
the cavity-/ED limit; the usual threshold behavior is
replaced by a gradual evolution —with increasing pump
power —of a nonlinear noise process. It is to be expected
that the properties of this noise process vary as details
of the physical model are changed.

0.2

I

0.1

0.0
0 10

P/A

15 .20

FIG. 8. Numerical results illustrating the relationship be-
tween the saturation of the average carrier number (a) and
the peak in the Fano factor (b). The upper dashed lines are
the bounds set by the good-cavity limit [Eqs. (37) and (38)].
The lower dashed lines are the bounds set by the rate equa-
tion approximation. The solid lines show numerical results
for (i) A = 0.1, (ii) A = 1, (iii) A = 10, and (iv) A = 100.

timates may not be very accurate since we do not have
numerical results for very large values of A. It is clear,
however, that there is no sharply defined transition re-
gion resembling that in Fig. 3. As A increases the peak
in the Fano factor becomes less, not more, well defined.
Note also that for A && 1 the maximum value of the Fano
factor occurs when the mean photon number is quite
large —(n) = P/A 1.6Ai/2; this is very far from the
"threshold" at (n) = 1 proposed by Yamamoto and co-
workers [I—38).

The behavior we have described as a function of A is
different Rom that obtained by Jin et al. , who also cal-
culated the Fano factor near the P = 1 limit [47]. The
dHFerences can be accounted for by difkrences in the un-
derlying models. Jin et al. use a model in which the lower
lasing level is a ground state. In this situation absorp-
tion kom the populated ground state plays an important
role. We have eliminated absorption, assuming that the
lower laser level rapidly decays to a lower state (and set-
ting No ——0), in order to treat the ideal P = 1 laser.

V. CONCLUSIONS

The analogy with a second-order phase transition cap-
tures the physics of the "turn on" of a conventional laser.
We have discussed how the analogy is to be applied to
cavity-/ED lasers, in particular, to the ideal P = 1 laser.
We have shown that P is the inverse of the saturation pho-
ton number n, t It fol.lows that the cavity-/ED limit,
P -+ 1, moves in the opposite direction to the "thermo-
dynamic" limit, n, t ——P -+ oo. One cannot therefore
extrapolate the "thermodynamic" phase-transition anal-
ogy to the cavity-/ED limit. A corollary to this result
is that the ideal P = 1 laser is a thresholdless device.
The de6nitions of a threshold which exist in the liter-
ature are arbitrary, and not grounded in an underlying
phase-transition-like phenomenon.

Our discussion has been developed around an anal-
ysis of photon-number fluctuations. We showed how
the Einstein rate equations used to model semiconduc-
tor cavity-/ED lasers account partially for the fluctua-
tions, but do not provide a full statistical treatment. As
a simplest statistical model we introduced a birth-death
master equation, constructed &om a probabilistic inter-
pretation of Einstein theory. We then characterized the
photon-number Buctuations using the Pano factor which,
for a conventional laser, reveals the enhanced threshold
fluctuations of the order parameter (the complex field
amplitude). We calculated the Fano factor by solving
the birth-death master equation numerically. The results
show clearly that the ideal P = 1 laser is a device without
a threshold —a threeholdle88 device.
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