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We propose an alternative method for detecting the density matrix of a radiation field via optical
homodyne tomography. The method needs no assumption on the state, and the density matrix is
recovered directly from averages on data. The tomographic reconstruction is very fast arid provides
very reliable statistics on line with detection. As a test of the method we present numerical results for
a set of computer-simulated experiments, corresponding to difFerent quantum states of the radiation
source. Then a tomographic reconstruction is given for experimental data provided by Smithey et
aL [Phys. Rev. Lett. 70, 1244 (1993)].

PACS number(s): 42.50.Dv, 03.65.Bz, 42.65.Ky

In a recent paper Smithey et aL [I] developed a method
for detecting the quantum mechanical state of the field
via the so-called optical homodyne tomography. This
opened new perspectives in providing complete experi-
mental characterization of nonclassical states of radia-
tion, making all information about the quantum source
directly detectable [2].

A homodyne tomography of a single field mode a con-
sists of an ensemble of repeated measurements of the
quadratures a~ ——z~(ae '& + ate'~) for various phases

P relative to the local oscillator of the homodyne detec-
tor. Smithey et al. reconstruct the density matrix via
the Wigner function W(a, a) of the field, namely, the
quasiprobability for symmetrically ordered field opera-
tors. In this way their method needs a filtered backpro-
jection of the Wigner function, setting the resolution with
which W(a, a) is determined. In some sense the coarse-
graining cutoff corresponds to an a priori hypothesis on
the detected state, and hence it may ultimately affect
the result and the error statistics of the tomographic re-
construction (the cutoff should be tuned carefully as a
function of the total number of measurements in the to-
mographic scanning). The purpose of this paper is to
show that there is no need for backprojection 6ltering

the data, whereas the density matrix can be directly re-
covered &om averages on experimental data. This leads
to an improved method of tomographic reconstruction of
the density matrix, which greatly speeds up data anal-

ysis, and achieves very reliable error statistics on line
with detection. Before presenting our method, here in
the following we briefiy recall the procedure of Ref. [1]
for comparison.

From the probability distributions p(z, P) of the out-
comes z of a~, the Wigner function W(a, a) is recon-
structed through the formula [3]

OQ QO 7r

~(, -) = — d~l~l d* 4p(* 4)4x —oo 0

x exp(ill z —Re(ae*~) j .

The density matrix is then obtained using the Fourier
transform

(e+e'~~p(e —e') = f dyee" eW(e+iy, e —ey) . (2)

In the number representation the change of basis is ex-
pressed by the double integral

(~[pl~) = p„, = dz dz'e ( +* )H„(z)H (z') (zlplz'),
7C2 2 A m QQ QQ

where H„(z)is the Hermite polynomial of degree n.
Notice that Eq. (1) allows evaluation of the Wigner

function only when the probability density p(z, P) is
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given in analytical form. In fact, any approximation of
the average over p(z, P)dzd4) in terms of a finite sum over
experimental data is ineaningless, because the integral
over g does not converge for any datum (z, P). In order
to make the method analytic, a smoothing procedure is
required: in Ref. [I] this is accomplished by means of fil-

tered backprojection techniques, which are standard in
tomographic imaging [4].
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FIG. 1. Distribution of the tomographic outcomes for the
matrix element p33 (deviations bp33 around the average).
The computer-simulated experimental values are obtained for
a coherent state with (n) = 3. The histogram contains 5000
experiments (subensembles of data), each performed with
E = 27 scanning phases and 100 measurements for each
phase. The Gaussian curve with variance equal to the ex-
perimental rms error is superimposed.

Let us consider now a completely different procedure.
The transformation (1) can be written more generally for
any "s-ordering" quasiprobability distribution W, (a, a)

OO OO 7r

W, (a, a) = — dry ll!l dz dP p(z, (t))
4x —OO 0

x exp —8g + xg z — e ae

For s ( 0 the integral over ll converges for any (z, p), and
thus commutes with the double integral over z, qk This

FIG. 2. Normalization of the density matrix versus number
of experiments (subensembles of data) for a coherent state
with (n) = S. Each experiment has been performed as in Fig.
1. The matrix is truncated at n = 20 photons.

allows averaging on p(z, P) in terms of statistical sums
over finite sets of experimental data. For s = —1 the
quasiprobability W z(a, a) coincides with the Husimi Q
function

(a a) —= (aljola) = w-l (a a)

which itself generates the matrix elements p„ in the
nIImber representation according to the formula

(a a) " 'l (6)
gn!m! Ba"Ba~ ( & o=n=o

The derivatives in Eq. (6), with Q(a, a) given by Eqs.
(4) and (5), can be evaluated analytically. After a lengthy
calculation one obtains

p„„+d= ) —R„((](j) dz p(z, p) e z 'C
l

m —n ——d — (d+ l)2, —+—(d)2, 2z
1 1 1

where R["] (I]()) is the fixed matrix

, ~2ra+d 2jI —jI—2lI I ~—, )2jI+jI—2lIcos y) (slD p
ll!lg!(2jl + j2 —2l2)!(2n+ d —2jg —j2 —2l&)!

~—j.+[',"] jI+[~I]
1 l, +l,

) )
iI=0 iI=0 E )

1 1xr n+ -d —l, —l. + -(d), + I~l 6(m —lg —l2) .
2 2 )

(8)

In Eq. (8), (z)2 denotes the rest of the division z/2, [z] is the integer part of z, 6(n) is the Kronecker delta, and
4'(a, P; z) is the confiuent hypergeometric function of z with parameters a,P [5]. For F equally spaced phases Pf
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TABLE I. First few detected inatrix elements of a squeezed state with (n) = 2 and one squeezing photon (the matrix is real;
the theoretical values are given in parentheses). The detected values are obtained for 120 experiments with F =- 27 scanning
phases and 120 measurements each.

0
0.5279+ 0.0013

(0.5275)
0.1538+0.0012

(0.1547)
0.2947+0.0015

(0.2957)
0.1396+0.0016

(0.1393)
0.2006+0.0019

(0.2015)
0.1133+0.0019

(0.1145)

0.1538+0.0012
(0.1547)

0.0432+0.0021
(0.0454)

0.0848+0.0014
(0.0867)

0.0418+0.0017
(0.0409)

0.0568+0.0016
(0.0591)

0.0336+0.0015
(o.oss6)

2

0.2947+0.0015
0.2957

0.0848+0.0014
~

(0.0867)
0.1657+0.0021

(0.1658)
0.0799+0.0013

(0.0781)
0.1123+0.0016

(o.113o)
0.0666+0.0017

(0.0642)

0.1396+0.0016
(0.1393)

0.0418+0.0017
(0.0409)

0.0799+0.0013
(0.0781)

0.0387+0.0020
(0.0368)

0.0519+0.0014
(0.0532)

0.0313+0.0016
(o.osos)

0.2006+0.0019
(0.2015)

0.0568+0.0016
(0.0591)

0.1123+0.0016
(0.1130)

0.0519+0.0014
(0.0532)

0.0757+0.0022
(0.0770)

0.0440+0.0015
(0.0437)

5

0.1133+0.0019
(0.1145)

0.0336+0.0015
(0.0336)

0.0666+0.0017
(0.0642)

0.0313+0.0016
(0.0303)

0.0440+0.0015
(0.0437)

0.0271+0.0024
(0.0249)

(f = 0, ..., F —1) the experimental mean value p„„+qof the matrix element p„„+qis obtained from the following
average:

j~+ ~ ~j F—].

p„,„+q= ) —) R„(Py) e x& '4
~

m —n ——d — (d+ 1—)2, —+ (d)2,'2z1 1 1 1

m=0 f=O l 2 2 2

where ()4,~
denotes averaging over the subensemble of

data for fixed phase P = Py. Equation (9) is particularly
suited to on-line data analysis; in fact, apart from the
sum over data, the procedure requires just a single sum
over m, whereas the hypergeometric functions Ci(n, P; z)
are conaected to each other iteratively, and the matrix
R(") (Py) is stored in the machine before beginning ex-
periments.
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FIG. 3. Distribution of normalized deviations from the the-

oretical values Ap = (p —p ) /s for the first
30 x 30 matrix elements. The quantum state is a coherent
one with (n) = 4. The histogram pertains to 1000 experi-
ments (subensembles of data) with I" = 27 scanning phases
each, and 200 measurements for each phase. A standardized
(unit variance) Gaussian curve is superimposed.

We test our method on a set of Monte Carlo simulated
experiments, with the aim of evaluating both the cor-
rectaess of error statistics and the absence of systematic
deviations from theoretical values.

In order to evaluate the statistical errors, we have pre-
liminarily studied the distribution of the tomographic
outcomes for each matrix element around its averaged
value, checking that it is perfectly Gaussian for every ma-
trix element, independent of the kind of considered quan-
tum state. We have considered coherent, squeezed, and
general quaatum superpositions of number states (within
this paper F = 27, with at least 100 measurements for
each phase; the resolutioa F = 27 is used for comparison
with Ref. [1], but one can get satisfactory results already
for F = 12). Due to the normal distribution of deviations
bp„,the error s„ofthe matrix elemeat p„canbe
evaluated as usual, namely, by dividiag the ensemble of
data into subensembles (here also called "experiments"),
and thea calculating the rms deviatioa of the subensem-
ble average with respect to the global average. In Fig. 1,
we report a typical distribution of outcomes for a fixed
matrix element, with the source in a coherent state: the
agreement with the Gaussian probability is remarkable.

As regards the reliability of detection of the whole
matrix, two significant tests have been performed: (i)
the matrix normalization, aad (ii) the y2 test. In
Fig. 2, a sample of the normalization is given ver-
sus the number of data subensembles, for a highly ex-
cited coherent state (less excited states —coherent or
not "xhibit a more rapid convergence). The distribu-
tion of normalized deviations from the theoretical val-
ues 6p„=(p„—p„)/c„, follows a standardized
Gaussian curve. A sample histogram for the first 30 x 30
matrix elements is given in Fig. 3, for a coherent state
with (n) = 4. Notice that about 68% of the deviations
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FIG. 4. Number probability distributions for various states (the thickness of horizontal lines corresponds to error bars). (a)
Coherent state with (n) = 10; (b) squeezed vacuum with (n) = 2; (c) squeezed state with (n) = 2 and 1 squeezing photon. [For
all plots F = 27 scanning phases are used; there sre 400 experiments (subensembles of data) and 300 measurements for each
phase in plot (s), and 100 experiments and 100 measurements for each phase in plots (b) and (c).]
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FIG. 5. Tomographic reconstruction from homodyne experimental data kindly provided by Beck and Raymer. Data have
been grouped into 40 subensembles of 100 points for each of the I" = 27 scanning phases. (a) Number probability distribution
as in Fig. 4: the small squares correspond to evaluations provided by Beck and Raymer according to the original reconstruction
method of Ref. [1]. (b) Ideal phase probability distribution: the full line is from the present method and the dashed line is
from Beck and Raymer (see also Ref. [2]).
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lie within one standard deviation, corresponding to an
optimal y2 slightly greater than one. Analogous results
have been obtained for all other kinds of states here con-
sidered.

We now present some Monte Carlo tests for different
kinds of quantum states. In Table I the first few matrix
elements are reported and compared with the theoret-
ical values for a squeezed state with (n) = 2 and one
squeezing photon. The maximum index for the matrix
elements is limited by both machine memory and preci-
sion (we compute matrix elements p„upto n, m = 31).
In Fig. 4 we show the number probability distribution
for a coherent state with (n) = 10, and for two highly
nonclassical states: a squeezed vacuum with two squeez-
ing photons, and a squeezed state with (n) = 2 and one
squeezing photon. All plots reproduce theoretical values
with great accuracy

In Fig. 5, we compare our method with the original
one [1]on the basis of a tomographic reconstruction from
the same homodyne experimental data (kindly provided
by Beck and Raymer). The quantum state is a weakly
squeezed vacuum; due to nonunit quantum efficiency, the
even-odd alternance in number probability is lost. The
ofF-diagonal matrix elements here are synthetically rep-
resented by the resulting ideal phase distribution (for a
recent review on phase detection see Ref. [6]). There
is a qualitative agreement between the two methods; a

precise quantitative comparison cannot be given, since
error bars for the original reconstruction [1] are not avail-
able. However, a careful analysis shows that discrepan-
cies larger than our estimated error bars are present, thus
inferring that the original method either is affected by
larger inaccuracy, or it suffers systematic errors due to
filtering backprojection cutoff.

In conclusion, we have proposed an alternative method
for detecting the density matrix of the radiation field via
homodyne tomography. The method avoids filtered back-
projection or any other smoothing procedure on experi-
mental data, with no a priori assumption on the detected
state. The density matrix is recovered from simple av-
erages on data. The procedure allows very fast on-line
data analysis, and leads to very reliable error statistics. A
set of simulated experiments for various quantum states
exhibit excellent quantitative agreement between theo-
retical and experimental matrix elements.

Without any doubt the tomographic detection repre-
sents a powerful tool for investigating quantum proper-
ties of radiation; we believe that with the present im-
proved features —speed, precision, matrix dimension lim-

its, and statistical reliability —this technique already can
be used as a probe also for measuring internal parameters
of quantum nonlinear optical devices, in other words, for
experimentally characterizing efFective quantum interac-
tion Hamiltonians of optical media.
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