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One-dimensional coherent-state representation on a circle in phase space
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The representation of the states of a single electromagnetic field mode by coherent states of an
identical mean number of photons, i.e., the representation on a circle in phase space, is presented.
The connection between the circle representation and the analytic representation is given.
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I. INTRODUCTION

Recently, much attention has been devoted to the one-
dimensional representation of various nonclassical states
of a single mode electromagnetic field. A wide class of
states can be expanded into the continuous superposition
of coherent states lying on a one-dimensional manifold in
the a plane. For example, the superposition of coherent
states with a complex Gaussian amplitude function on a
straight line produces a squeezed coherent state [1], and
a similar Gaussian distribution on a circle leads to an
amplitude squeezed state [2].

The coherent states have features as classical as possi-
ble. On the other hand, even the most simple discrete su-
perpositions of coherent states can realize quantum fields
with nonclassical properties due to the quantum interfer-
ence [3-6]. The one-dimensional coherent representation
of quantum states can be arbitrarily well approximated
by discrete superpositions. The quantum interference
emerging in a discrete superposition that approximates a
given state can reveal the origin of characteristic nonclas-
sical properties of the state. Amplitude squeezing and
quadrature squeezing has been analyzed in this manner
(3,4].

Recently, various experimental schemes have been pro-
posed in quantum optics, where discrete superpositions
of coherent states are generated. Nonlinear optical pro-
cesses [6,7], quantum nondemolition, and back-action
evading measurements [8,9] lead to discrete superposition
of coherent states. Atomic interference methods seem
to be especially promising ideas for generating required
superposition states. Appropriately prepared Rydberg
atoms sent through a microwave cavity can transform
the initial coherent state into the superposition of coher-
ent states having the same amplitude as the initial one
[9], i.e., they are on a circle in the a plane. An analogous
experiment can be envisioned in the optical domain [10].
The required superposition of coherent states on a circle
can be generated by designing the parameters of the ap-
paratus [11]. In order to determine the required discrete
superposition approximating a given quantum state, we
need its one-dimensional representation.

Previously, the one-dimensional representation forms
of various nonclassical states have been found intuitively.
In a recent paper [12], a complete orthonormal basis set
on a straight line has been presented, which makes it pos-
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sible to obtain the coherent-state expansion on a straight
line for a given state. In this paper, we give the system-
atic construction of the circle representation of quantum
states.

The paper is organized as follows: The circle represen-
tation is defined in Sec. I and we determine the subset
of the Hilbert space of which elements can be represented
by the given form. The question of unicity of the circle
representation is also considered in this section.

The main result of our paper is to present the connec-
tion between the analytic and the circle representations of
a state in Sec. III. Additionally, we obtain an equivalent
condition for the subset of the Hilbert space of which ele-
ments can be represented on a circle. In order to describe
more general states of the field by coherent states with
identical amplitude, the circle representation of density
operators is considered. We conclude by summarizing
our main results in Sec. IV.

II. CIRCLE REPRESENTATION

It was shown that there is a one-to-one correspondence
between the states of the quantum harmonic oscillator
and the entire functions, i.e., the complex functions that
are analytic in the whole complex plane. Every quantum
state of the harmonic oscillator can be expressed as a
superposition of coherent states in the form [13,14]

1) == / e F f(a*) | @) da, (1)

where the expansion function can be derived in an arbi-
trary representation

lal?

fle’)=ez{a]f), (2)

which is a complex entire function. The coherent state
representation defined by Eq. (1), including the expan-
sion function in (2), is called the analytic representation.

The coherent states form an overcomplete set in the
Hilbert space, hence, there is an infinite way of expand-
ing an arbitrary state in terms of them. Being confined to
some given class of expansion functions, a unique repre-
sentation of the states can be constructed. For example,
in the case of the analytic representation, the expansion
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function was required to be an entire complex function.
Cahill’s theorem [15] implies that the coherent states ly-
ing on a one-dimensional manifold in the o plane form a
complete set in the Hilbert space. Thus we can consider
expansion functions that differ from zero only on a one-
dimensional manifold of the a plane. Such a manifold,
being of interest, can be a circle around the origin with
radius R, where the coherent states have an identical
mean number of photons equal to R2.

Let us consider the circle representation of an arbitrary
state | g) in the form of a complex path integral along a
circle with radius | z |= R in the a plane

R?

9= 57 §,_,9) |21z 3)

211

where g(z) is an analytic function in the vicinity of the
circle in order to ensure that the integral can be eval-
uated. First we consider the question of unicity of the
circle representation. The coherent states | z) lying on
a circle (| z |= R) still form an overcomplete set, hence
several analytic expansion functions g(z) in Eq. (3) can
produce the same state | g). A restrictive condition has
to be imposed on the class of circle expansion functions
in order to construct an unique representation.
Due to the analicity of g(z) on the circle,
expanded into a Laurent series

it can be

9= =S L+ S gt (4)

We prove that setting the regular part of this Laurent
series

greg

ngz (5)

into the circle integral in Eq. (3) produces the zero ele-
ment of the Hilbert space

?{greg(z) | z)dz = 0. (6)

This can be proved by applying simple transformations

as follows:
) dz

j[greg(z) | 2)dz= y{ (gogkzk> ( Z

=YY )}{z’”"dz

=0, (7)
where we have made use of the well-known identity

L famda—s (8)

2mi T

and in our case k + n cannot be —1, thus the circle inte-
grals in Eq. (7) are zero.

As a consequence, an infinite number of weight func-
tions that differ only in the regular part of their Laurent
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series produce the same state by the circle integral in
Eq. (3). The addition of an arbitrary function h(z) to a
given weight function g(z) leaves the integral in Eq. (3)
invariant provided h(z) is analytic inside the circle since
in this case its Laurent series contains only the regular
part.

Due to the uncertainty of the representation defined
by Eq. (3), we have to specify a class of weight functions
where there is only one function representing a given
state. We show that unique representation can be con-
structed if the regular part of the Laurent series of the
weight function is required to be zero. This restriction
means that we cut out that part of the weight function
that produces the zero element of the Hilbert space in
accordance with Eq. (6). Only the main part of the Lau-
rent series is retained. That is the weight function g(z),
which can be written in the form

g(z):zz—: . (9)

k=1

To prove the unicity of the representation in this class
of weight functions it is enough to verify the unicity of
the expansion of an arbitrary number state.

Let us suppose that the state | n) is represented on the

(m
circle by g™ (z) = 3°7° % in accordance with Eq. (9).

Then
vl g™ (2) | 2)dz
21

r2 1

:“’rzm%gw ( Z\/_U)dz (10)

Inserting the Laurent series of g(™)(z) and exchanging the
order of integration and summation we obtain

Z\ﬂ >Zg("’ : f‘zl“"dz. (11)

Using the identity in Eq. (8) we find

oG

(n)
=Y =T
= /(k-1)!
Consequently, the coefficients in the Laurent series can
be recognized to be

(n) = 5k n+1f'

which provides the circle representation of the number
state | n) without uncertainty

RrR2
€2 \/_.
In) =+ lezR o+l | 2)dz

2m

lk—1). (12)

(13)

(14)

Thus if the class of weight functions of the form deter-
mined in Eq. (9) is considered, the unique circle repre-
sentation of an arbitrary state | g) = > ¢, | n) has the
weight function

o Cn+/M! -

n=0
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We note that the complex path integral representation
form in Eq. (3) can be transformed into an integral with
respect to an angle 8 by using the substitution z = Re®
and the differential element along an arc dz = iRe®df.
On evaluating this transformation, Eq. (14) furnishes the
well-known expression for Fock states on a circle [3,16]

2 27
|n)=S—R™"Val / e~ | Re®)dp.  (16)
0
It may be surprising that an arbitrarily large photon
number state can be produced by superposition of co-
herent states comprising arbitrarily small mean numbers
of photons.

The circle representation function belonging to a state
of which the number state expansion is known has been
determined. Inversely, the circle representation can fur-
nish directly the coefficients of the number state expan-

sion
1
P— g z
2m .?I{ZI=R ( ) f\ =R{

zle+1 \/—

=cp. (17)

This expression can be considered the inverse transfor-
mation of Eq. (15).

By this point of our analysis we could derive a weight
function g(z) in its Laurent-series form exploiting tacitly
that an appropriate function associated with the state
| g) exists at all. For being self-consistent the obtained
form of g(z) in Eq. (15) must be analytic in the vicinity
of the circle. A necessary and sufficient condition is that
the series on the right side of Eq. (15) is required to be
absolutely convergent for every value of the variable z,

ie.,
‘/—— | Cn [ (18)
Rn+1
Thus, Eq. (18) serves as a condition for the existence of

the circle representation: if the number of state coeffi-
cients ¢, of a state satisfy this condition, then the state
has the circle representation of the form of Eq. (3) with
the weight function appearing in Eq. (15). This condition
for the convergence of the series c,, is stronger than the
condition for the normalization " _ | ¢, |2= 1. Hence not
all the states in the Hilbert space have the circle represen-
tation form of Eq. (3). The subset depends on the radius
of the circle. For any state there exists a circle with large
enough radius on which the state can be represented. In
the R — oo limit, every state can be represented by a
g(0) function given by Eq. (3).

III. DERIVATION OF THE CIRCLE
REPRESENTATION

An expression for the circle representation based on the
number state expansion of the state has already been pre-

sented in Eq. (15). Unfortunately, sometimes the sum-
mation in Eq. (15) cannot be evaluated to obtain an ex-
plicit closed form. The analytic coherent representation
of a state is shown to be sufficient to derive the circle rep-
resentation. The analytic representation is a very conve-
nient tool to describe the states of the harmonic oscilla-
tor, since the expansion function is analytic in the whole
complex plane and it can be derived easily according to
Eq. (2). The circle representation can be transformed to
produce the analytic one, which is also presented in this
section.

First, the analytic representation is transformed to ob-
tain the circle representation. Let us substitute the num-
ber state expansion of coherent states and the circle rep-
resentation of the number states into the analytic repre-
sentation of a state | f),

- / e F f(a*) | )da
(5 o)
x <e%’—1— v |z)dz> (19)

| f)=

27 |z|= Rz"+1

After exchanging the order of integration and summation

we find
™
zn+1 d Cl)

|f>=e"72mflﬂ(ﬂ2/ e’y

x | z)dz . (20)

The expression in the brackets in Eq. (20) has to be the
circle representation g(z) of the state | f). Let us eval-
uate the integral with respect to the variable a in the
entire complex plane in a polar coordinate system. With
the substitution a = pe’¥ and with the correspondent
differential element d?a = pdpdy, the expression in the

brackets in Eq. (20) becomes
0? € —i
Z / pan flpe™*)pdpdp . (21)

We can use the number state expansion of the analytic
representation f(z) [13], which is

flpe™) = ch%e-“w : (22)
5 !
so it follows that

2 pn oo pk
n_o‘/; ntl ch\—/_ﬁ

k=0

27
X (/ ei("_k)"’dw) pdp . (23)
0

Since foz" e(n=*)¢dy = 218y, , the integral with respect
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to ¢ and the summation with respect to k can be carried
out

2 [ _ 1 pzn
= - p —_—— —
ae=7 [ e e i P

2 [ _» 2
:—z—/)‘ e_pf(%> pdp . (24)

On substituting the positive, real variable p by its square
root z (z = p?) we get the final expression of transform-
ing the two-dimensional analytic weight function f(a*)
into a one-dimensional circle weight function

9z) = = / Tep(2)ae, (25)

z

which is one of the main results of this paper. This trans-
formation formula serves for determining the circle rep-
resentation of an arbitrary state, where Eq. (2) can be
used

1(E)=em (0. (26)

This derivation leads to the same circle representation
as has already been presented in Eq. (15). It is sufficient
to verify the equivalence in the case of the number state

[ m),

o0 n |
gn(z) = ! L etdz = ! n! = vl ,
Z fo Z"\/TT! Z"+1\/'I“L_i Zn+l
(27)

where we have inserted the analytic representation
f(%)= ‘/% (f)" of the state | n) and we got back the
circle representation given by Eq. (14).

The transformation formula in Eq. (25) holds if g(z),
i.e., the circle representation of the state described by
its analytic coherent representation f(a*) exists at all.
Otherwise, the integral in Eq. (25) cannot be evaluated.
Since all the states have analytic coherent representa-
tion, the convergence of the integral in Eq. (25) deter-
mines whether the state can be represented on a circle or
not. This condition for the existence of the circle repre-
sentation is equivalent to that given by Eq. (18) in the
preceding section.

It is interesting to apply Eq. (25) in the case of a
coherent state | 3). Setting its analytic representation

f(2)= exp(—‘%ﬁ + 21) into Eq. (25) we find

z

= ¢ i / eV(l_")zdIE
z 0
1842 1 8,,1%
= E —(1-%)z
=e 2 e z y 28
[ﬁ_z ] (28)

where the limit in the infinity can be evaluated for arbi-
trary z provided | 8 |<| z |= R. In this case we get the

representation form of coherent state | 3)

ﬁ;_#ij{ L 2. (29)

) =e wmi P 2—p

In the case of | 8 |> R the integral divergent for some
phase of the complex number z, i.e., the state cannot be
represented by complex function belonging to the pre-
viously specified class. Consequently, only the coherent
states inside the circle can be represented on it.

The analytic representation of a state | g) = 3~ ¢, [ n)
can be derived from its circle representation g(z). The
number state expansion of the analytic representation
can be exploited, where the coefficients are expressed by
using Eq. (17),

o o a*n _ a*n 1 zn
)= Sen U = 3 Vaa ) Vi

- = e <Z “‘;j’”) dz, (30)

where the order of summation and integral has been ex-
changed. The summation in the brackets provides the
Taylor series of an exponential function, therefore,

1

= 5= g(z)e** dz . 31)
mi B9 (

fla7)

This formula and its inverse transformation given by
Eq. (25) determines the connection between the circle
and the analytic representation.

The entangled states of a quantum system, which are
more general than the pure ones considered above, can be
described by a density operator. The analytic representa-
tion can be generalized to represent any density operator
in a unique way. The expansion function is required to
be a function of two complex variables R(a*,3) which is
analytic throughout both of the finite @ and 8 complex
planes [13]. Then we find the following one-to-one cor-
respondence between such entire R(a*, ) functions and
the density operators

p= % / | Q)R(a",B)(8 | e 3l +18Md2ad?s | (32)

R(a*,B) = eI+ 0 | 5| B) . (33)

The representation of density operators on a circle can
be constructed according to the preceding methods,

. 1
p= W% ‘ Rﬁ ‘ RG(Zl,Zg) | Zl><22 l d21d22 .
Z1|= 21i=

(34)

The same derivation leads to the connection between
the circle and the analytic representation of density op-
erators as in the case of pure states. The transformation
formula between the two representations is
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G(zlaZZ) = _1-' R ﬂv 2 e—zl—zzdmld:EZ )
2122 Jo 0 21 22

(35)

and its inverse is

1 .
R(a*,B) = ———== G(z1, 25)e5r > T8
( ) (27rz)2 ﬁzﬂ:R ﬁzu:R ( 1 2)
Xd21d22 . (36)

These formulas make it possible to describe the more
general states of an electromagnetic field mode by co-
herent states with identical numbers of photons. Such
a field can be prepared in optical processes, or in an in-
teraction with an environment which leads to entangled
states of the quantum system. Every density operator
has an analytic representation form but the transforma-
tion in Eq. (35) cannot be evaluated in some cases. In
these cases a circle having a large enough radius has to
be chosen to represent the state.

4297

IV. CONCLUSIONS

In conclusion, a one-dimensional coherent representa-
tion was constructed that can be widely used in quantum
optics. The significance of the circle representation is
that there are several proposed experiments where super-
position of coherent states on a circle is generated. The
set of states has been specified, which can be expanded
into the superposition of coherent states lying on a circle
in phase space. Considering a special class of functions
the circle representation was proved to be unique. The
derivation of the circle representation from the number
state and the analytic representation has been presented.
The inverse transformations associated with these deriva-
tions was also given in the paper.
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