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Angular-momentum transfer in collisional ionization
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The double-differential cross sections for ionization in e +H(nl) collisions are reported as a function
of the impact energy E of the projectile, final energy Ef, and angular momentum Lf of the ejected elec-
tron. This process is assumed to occur via an energy-changing and angular-momentum-changing binary
collision between the Rydberg electron in a prepared state (nl) and the projectile electron e or H(1s).
The atomic projectile can also be excited during this process. Systematic trends in the variation of the
classical ionization cross sections with final angular momentum Lf of the ejected electron are discussed
and are in accord with a previous quantal treatment, whereby the nondipole (Ll & 1) transitions are
much more important in the low- and intermediate-energy range of relative motion, and that the value of
the final angular momentum of the ejected electron depends mainly on the initial value of the principal
quantum number n of the Rydberg atom.

PACS number(s): 32.70.Cs, 34.80.Dp, 34.90.+q

I. INTRODUCTION

Ionization of atoms and molecules is one of the most
basic processes in physics, with fundamental applications
in such different areas as astrophysics, plasma physics,
fusion physics, surface science, etc. The primary goal of
this work is the development of a classical theory of dou-
bly differential cross sections d o IdEfdLI as a function
of Lf and Ef, the angular momentum and energy of the
ejected electron. The target atom is treated as two parti-
cles, the valence electron (labeled 1), with mass m, which
orbits an ionic core (labeled 2) with mass m2. In the
basic binary-encounter approximation to the e +H(nl)
inelastic collision, energy, momentum, and angular-
momentum changes originate mainly from a collision be-
tween the Rydberg electron in prepared state (nl) and the
incident projectile (labeled 3) with mass m&. There is ex-
tensive literature on the excitation and ionization of Ryd-
berg states of atoms by electrons (see Seaton [1],Percival
and Richards [2], Flannery and McCann [3,4], Ton-That,
Manson, and Flannery [5], Kunc [6], and MacAdam,
Rofles, and Crosby [7]). In addition, the problem of the
angular-momentum mixing of degenerate states of hydro-
genic Rydberg atoms with fixed principal quantum num-
ber n by collision with electrons and heavy particles has
been thoroughly investigated, within a semiclassical con-
text by Percival and Richards [8], Vriens and Smeets [9],
and within the Born approximation by Matsuzawa [10],
Beigman and co-workers [11—13], and Lebedev [14,15].
Although a great deal of attention (Brauner, Briggs, and
Klar [16],Berakdar et al. [17],Byron and Joachain [18],
Zhang, Whelam, and Walters [19],and Lahmam-Bennani
[20]) has recently been focused on the triple-differential
cross sections d o IdA, dQ, dEf, measured in an (e,2e)
coincidence experiments, the variations of the cross sec-
tion with the angular momentum Lf of the electron eject-
ed from the target has not been directly addressed previ-
ously. In this investigation, a basic formula for
d o /dEIdLf will be developed from the classical binary

encounter approximation. It will then be of interest to
see whether or not the systematic trends previously ob-
served [3,4] in a quantal Born approximation of angular
momentum change in e +H(nl) collision will be pre-
dicted by a classical analysis such as the present classical
binary-encounter approximation.

II. PRESENT BINARY-ENCOUNTER
APPROXIMATION

Up to the present, the binary-encounter approximation
has been developed only to provide do IdE& as a func-
tion of the energy of the ejected electron Ef for various
impact energies of the projectile. In this paper, the
binary encounter approximation is extended to provide
d o IdEf dLf as a function of the added variable Lf, the
angular momentum of the ejected electron.

A. Energy and angular-momentum changes

l. Energy change

The internal translational energy change of the (1) and
(2}system, i.e., the target atom, is given by [21,22],

a—=m&3 Vi3g cosg+m f3g I(m |+md),
p—:m&3V, sg sing .

(2)

(3)

In Eq. (1) above co =—g'Ig, where g and g' are being the
relative speed of (1)—(3}system before and after collision,
m, 3 being the reduced mass of the (1)—(3) subsystem and
V|3 the (1)—(3) center of mass velocity, where the projec-
tile is assumed to be an electron.

Ef; =ef e; =coP sing cosf a( 1 co coslj/),

where e; and ef are the kinetic energies of the Rydberg
electron before and after the collision respectively, where
g is the scattering angle, the angle of rotation of the
(1)—(3) relative velocity vector g, and where a and p are
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2. Angular-momentum change

Let L; and Lf be the initial and final angular momenta
of the orbiting electron. The change in angular momen-
tum due to the (1)—(3) collision is written as

L =Lf —L;= m ]3RX ( g' —g ),
where g' is

(4)

g'= (g cos]t )n]]+(g sing)n

and the unit vectors n and no are defined by

(v, —v3)

(5)

(6)

(v, Xv3)

( V]3g)
(7)

R is the radius vector of the valence electron. Therefore,

L=m ]3g R X [(cosp —1 )no+ sin/a ],
and since the rate coeScient depends on L, then the
latter is explicitly written as

L =m, 3g [(cos]t(t—1) A +(sing) B
V3

+2sing(cosg —1)[A 8]] .

The vectors A and 8 are

A=[RXno],

8=[RXn],

(9)

(10)

and V» and g satisfy the following relations,

m, v, +m3U2+2m]m3U]U3cos8]32 2 2

V
(m, +m3}

g v ] +v3 2v]v3cosg]32= 2 2

(see Fig. 1}.

(12)

(13)

B. Rate coefBcient and cross section

The validity of the semiquantal treatment of electron-
Rydberg atom collisions has been discussed extensively
(Flannery [21,22], Vriens [23], Young and Mark [24],
Percival and Richards [26], Burgess and Percival [27],
McDowell and Coleman [28], Bates and Kingston [29],
and Bates [30]), hence only a summary is required here.
Therefore, in the present case the weakly bound electron
in a highly excited state (nl}, is assumed to follow a clas-
sical orbit. This assumption follows from the four points
enumerated below.

As the principal quantum number n increases the elec-
tron becomes more and more localized in phase space,
and its trajectory follows a classical orbit for which the
quantal imprecision ER„and EP„are such that
AR„«R„and EP„«P„.

The reduced wavelength of the projectile fi/p3 must be
very small compared to R„, so that the projectile in-
teracts only with one particle at a time (binary collision),
thereby minimizing the simultaneous overlap of the

FIG. 1. The geometry of the collision.

valence electron and the core of the target atom with the
wave packet of the projectile. The (1)—(3} collision must
be instantaneous, thus permitting the (1}and (2) potential
energy to remain unaffected. The (1)—(3) collision time
1 ]3 must be very much less than the typical time ( r„b;, )

for the orbital electron to complete one orbit around the
ionic core.

All contributions to the rate coefficient arising from (2)
and (3) collisions are negligible with respect to those of
the Rydberg electron-projectile collisions. This is main-

ly due to the inertiality of the ionic core. In the case
where the projectile is a neutral atom or a molecule, the
interaction between the atomic core and the projectile
has a substantial contribution to the l-changing collision,
especially at very low relative energies where the projec-
tile and the core could form a bound state, and, therefore,
a nonadiabatic energy exchange between the excited elec-
tron and the quasimolecule would result in an ionization
of the Rydberg electron. The validity of this last criteria
for atom —Rydberg atom collisions has been discussed
previously, (Flannery [25,31], Matsuzawa [32,33], Hick-
man [34], Hahn [35], and Peach [36]). Therefore, the rate
of collisions between the Rydberg electron in the state
(nl) and the projectile, in the (1)—(3) center-of-mass
frame, into the solid angle d 0 at a given speed v 3 of the
projectile oriented with respect to particle 1 with speed
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v& is given by

R;tdl', dl f= Imp. (R)l dRdI, .

d (cos8,3)
X ger(g, g)d(cosltl)dp

(14)

The expression in the square brackets was previously re-
cast [21] in terms of P, g, and Ef and reduces to

o(P)dPdg dEf
(22)

vl 3[(g g —)(g+ g )]

In Eq. (22), g+ are the upper and lower limits to the
speed of relative motion given by the following equations

e4
(r(g, 11 )=

4m)3 [gsin(f/2) ]~
(15)

where I f =dEf—dLf. tr(g, lt)} is the differential cross sec-
tion in the (1)-(3) center-of-mass frame and for a
Coulombic interaction it is written as

g+ =min(g3, G3),

g =max(g„G, ),
gl Iv1 v3I

g3 =(U, +U3),

(23)

(24)

(25)

(26)
and also in term of the momentum transfer P as

4m' e4
(r(P) =

p4
(16)

For nonhydrogenic targets, o (g, P) cannot in general be
expressed in closed form analytically. However, in the
nonhydrogenic case, o (g, g) can be obtained numerically
(Berrington et al. [37], Bartschat and Burke [38]). Due
to the Coulombic nature of the interaction, the quantal
diff'erential cross section coincides with that of the classi-
cal difFerential cross section. The —,

' factor in the square
bracket accounts for the degeneracy of the rate coefficient
where for 813=0-2m, cos8,3 being an even function.
I@„1IdR is the probability associated with the orbital
electron in state (nl), orbiting the ionic core within dR
about R. Since we are dealing with a highly excited state
n, the WKB approximation to V„i(R) would be appropri-
ate. Therefore,

I)p„l(R)I'd R= (17)

where ~z is the radial period for a Coulombic field and is
written as

2

rt((E, ,L,') =2mIE; I.'3/2 ' 1/2
m&

2 (18)

0 'f R fdI;dl f/V (20)

and the radial speed vz is
1/2

2
E; —V(R)—

mi 2miR2

In the (1) and (2) center-of-mass frame, the number of
particles 1, in initial state (E;,L, },scattered into the solid
angle dQ, per incident Aux of particle 3, with velocity v3
and relative initial and final speed g and g, respectively,
1S,

where

Gl =(v, —v3) +263/m13,

G3 =(Ul+v3) +263/m13 .

The final velocity of particle 1 and 3 are

Vl = v 1 +2aE(2/M,

V3 = v 3
—2(E,2+ b, 3)/A .

The masses M and A are defined as

(27}

(28)

(29)

(30)

M=m, (1+m, /m2), (31)

(m, +m2)m3
JK=

[m, +m2+m3]
(32)

21 (max)1 (max)

R 2[(p2 p2}(p2 p2 )]1/2

d(L 2/(L (max) )2 )x
[1 L 2/(L (max) )2]1/2f f

(33)

where (Lf(;)"') in Eq. (33) is 2m, R [Ef(,.) —V(R}]. The
upper and lower limits to the momentum transfer are
defined by

We assume here that there is no change in the internal
energy of the projectile as a result of the collision. The
case of possible excitation of the projectile could be im-
plemented in the same fashion. Hence, in this case we
take 53=0. The element of angle d4 can be written in
terms of the momentum transfer P and the angular
momentum of the ejected electron as

which is given by

dI';dI f=I%'„,I dRdI;

P+ =min[M( V, +u, );At( V3+u3)],

P =max[MI v, —vlI;wI v3 —v3I] .

(34)

(35)

d(cos8, 3)
cr (g, P }d(cosg)d P

U3 2 2m

(21)

Since o (P) does not depend on g, the integration over g
of the above expression for the rate coefficient can be
done immediately and the doubly differential cross sec-
tion (DDCS) associated with transfer of energy and angu-
lar momentum to the ejected electron reads
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0 Oif C R22 I
dR

dE dL v i R [E +.e /R L—/2m, R ]'

1

[E +e /R L —/2m, R ]'

P+ dP
X

p p4[(p2 p2 )(p2 p2) ]1/2

(36)

where R, (E;,L; ) and R2(E, ,L; ) are the turning points
of the orbiting electron and are given by the roots of the
equation

[E;+e /R L —/2m, R ]' =0, (37)

where C is a constant equals to C=2 ~E, ~

m', e /m,

and E, = I„—= —13.605/n eV, being the initial energy
of the Rydberg electron. Performing the P integration
analytically, the above expression gives the DDCS associ-
ated with transfer of both energy and angular momen-
tum, namely,

C f dR [2(pi+ +P' )E(q) —P' K(q)]
dEfdLf 3v3 E; '

1 1

[—R +e R/~E, ~
L /2m—i~E;~]' [EfR +e R L /2m—&]'

(38)

P+ 0&q &1. (39)

C. Results

Figure 2, gives the DDCS d o /dEfdLf as a function
of the impact energy E for two sets of [Ef=1I„,
Lf =0 1(niri)] an. d [Ef=1I„, Lf =0.01(nA)]. We see

that as the final angular momentum increases, the DDCS
increases too, and in this case it does by a factor of 3.3.

In Fig. 3 we observe the variation of the classical ion-
ization cross section as a function of the final angular
momentum Lf. For an initial state (n =10), the transi-

~ ~

where E (q) and E(q} are the complete elliptic integral of
the first and the second kind respectively, and q is defined

by

(p2 p2 )I/2

1/2

Lf '"'= lim min (n' 1), n—-2(n +3}
It ~ oo n+1

1

2

which is written in terms of n as

(40)

I

tion from an excited bound state to the continuum no
longer follows the dipole transition rule. The maximum
cross section occurs at a certain value Lf closer to 15,
and then it drops sharply. Two major peaks emerge, one
corresponding to the value Lf = 1, of dipole character
and the other one to Lf =15 of nondipole character. The
magnitude of the DDCS corresponding to the latter one
is much higher than the former one. The value Lf '"' is
strongly dependent on the initial value of the principal
quantum number n, and is relatively insensitive to
changes in the initial angular-momentum number I. For
the ionization case we find that Lf '"' is
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FICx. 2. Doubly differential cross section for H(10s) as a
function of the impact energy E of the projectile electron; the
upper curve corresponds to Ef =1I„,Lf =0.1(nA), whereas the
lower one corresponds to Ef = 1I„and Lf =0.01(nb').

FIG. 3. Double differential cross section for H(10s) as a
function of the final angular momentum Lf(nfi) of the ejected
electron, and a final energy Ef =0.1I„ for the ejected electron.
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1/2

( ) (n+3)
(n+1) (41)

III. CONCLUSION

In this investigation, we have developed a classical
binary encounter approximation by deriving classical ex-
pressions for the energy and angular-momentum changes
suffered by the orbiting electron together with the rate
coefiicient and various expressions for doubly differential
cross sections as a function of Lf and E&, the angular-
momentum and energy of the ejected electron for ioniza-
tion of Rydberg atom H (nl).

This treatment is valid provided that all contributions
to the rate coefiicient arising from core-projectile col-
lisions are negligible with respect to those of the Rydberg
electron-projectile collisions. However, at low energy
the interaction between the ionic core and the projectile
could be substantial, and the Rydberg electron would be

This is related to the earlier work by Flannery and
McCann [3] in which the predictions for the preferential
population of the final discrete Rydberg states in col-
lisions involving an initially excited atom. These features
can be regarded as resulting from the drift of the pattern
of the final radial orbital out of the effective range of the
initial radial orbital. These trends do show up, for excita-
tion to discrete states, in the Born and the multichannel
eikonal treatments as well as in the early experimental
work of Lake and Grascadden [39] and in a more recent
work of Rail and co-workers [40]. As the impact energy
increases the dipole transitions become much stronger.
We see clearly that these trends depend on the value of
the principal quantum number n of the initial state of the
target, namely, the dipole transitions get stronger and
stronger as n gets higher. This is due mainly to the fact
that as n increases the radial period gets larger thereby
decreasing the probability of having a collision.

in a quasimolecular field of the ion core and neutral pro-
jectile.

The underlaying feature of this treatment is that it
yields the cross section for processes in which the internal
energy of an eiectron-ion pair, or of any ion-pair system,
is changed by an amount between a+de via the binary
e -A collision, and as such is, therefore, more suited to
target ionization than to discrete excitation of the target
atom from level n; to nf. This treatment does have ad-
vantage with respect to other theories because it provides
much additional information concerning for instance the
prediction of the final angular-momentum channels of the
ejected electron. Quantum details of the interaction in-
volved are furnished via the use of known and more
refined electron-atom difFerential cross section such that
various distortion effects would be automatically incor-
porated.

Our conclusions take the form of certain predictions
which, as we have shown here, are fully substantiated by
systematic trends in the ionization cross section of excit-
ed hydrogen atom induced by electron impact. These
trends are different from the results of excitation from the
ground-state target atoms, where excitation to levels opti-
cally connected to the initial level have larger cross sec-
tions. This study corroborates the previous experimental
and theoretical calculations based on a Born-type approx-
imation and on multichannel eikonal treatment. These
trends would be maintained for Rydberg atoms other
than the hydrogen atom H(nl), because the properties of
all Rydberg atoms are similar to those of highly excited
hydrogen atoms.
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